Transforming Trees to Improve Syntactic Convergence

David Burkett and Dan Klein
Computer Science Division
University of California, Berkeley
{dburkett,klein}@cs.berkeley.edu

Abstract

We describe a transformation-based learning
method for learning a sequence of mono-
lingual tree transformations that improve the
agreement between constituent trees and word
alignments in bilingual corpora. Using the
manually annotated English Chinese Transla-
tion Treebank, we show how our method au-
tomatically discovers transformations that ac-
commodate differences in English and Chi-
nese syntax. Furthermore, when transforma-
tions are learned on automatically generated
trees and alignments from the same domain as
the training data for a syntactic MT system,
the transformed trees achieve a 0.9 BLEU im-
provement over baseline trees.

1 Introduction

Monolingually, many Treebank conventions are
more or less equally good. For example, the En-
glish WSJ treebank (Marcus et al., 1993) attaches
verbs to objects rather than to subjects, and it at-
taches prepositional modifiers outside of all quan-
tifiers and determiners. The former matches most
linguistic theories while the latter does not, but to
a monolingual parser, these conventions are equally
learnable. However, once bilingual data is involved,
such treebank conventions entail constraints on rule
extraction that may not be borne out by semantic
alignments. To the extent that there are simply di-
vergences in the syntactic structure of the two lan-
guages, it will often be impossible to construct syn-
tax trees that are simultaneously in full agreement
with monolingual linguistic theories and with the
alignments between sentences in both languages.
To see this, consider the English tree in Figure 1a,
taken from the English side of the English Chi-
nese Translation Treebank (Bies et al., 2007). The

863

lowest VP in this tree is headed by ‘select, which
aligns to the Chinese verb * #ki%t.” However, ‘ #k
7% also aligns to the other half of the English in-
finitive, ‘to,” which, following common English lin-
guistic theory, is outside the VP. Because of this
violating alignment, many syntactic machine trans-
lation systems (Galley et al., 2004; Huang et al.,
2006) won’t extract any translation rules for this
constituent. However, by applying a simple trans-
formation to the English tree to set up the infinitive
as its own constituent, we get the tree in Figure 1b,
which may be less well-motivated linguistically, but
which corresponds better to the Chinese-mediated
semantics and permits the extraction of many more
syntactic MT rules.

In this work, we develop a method based on
transformation-based learning (Brill, 1995) for au-
tomatically acquiring a sequence of tree transforma-
tions of the sort in Figure 1. Once the transformation
sequence has been learned, it can be deterministi-
cally applied to any parsed sentences, yielding new
parse trees with constituency structures that agree
better with the bilingual alignments yet remain con-
sistent across the corpus. In particular, we use this
method to learn a transformation sequence for the
English trees in a set of English to Chinese MT train-
ing data. In experiments with a string-to-tree trans-
lation system, we show resulting improvements of
up to 0.9 BLEU.

A great deal of research in syntactic machine
translation has been devoted to handling the inher-
ent syntactic divergence between source and target
languages. Some systems attempt to model the dif-
ferences directly (Yamada and Knight, 2001; Eis-
ner, 2003), but most recent work focuses on reduc-
ing the sensitivity of the rule-extraction procedure
to the constituency decisions made by 1-best syn-
tactic parsers, either by using forest-based methods

Proceedings of the 2012 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural
Language Learning, pages 863-872, Jeju Island, Korea, 12—14 July 2012. (©2012 Association for Computational Linguistics

S

/\
NP VP

—_—

VBZ S
|
VP
VP
VB~ __ADVP

|

The first step is to select team members

N | . .
Y s . -~

TO

~

Bk DR

s

(a) Before

S
NP VP
VBZ S
VP
TO+VB VP
— |
TO VB ADVP

||

The first step is to select team members

(b) After

Figure 1: An example tree transformation merging a VB node with the TO sibling of its parent VP. Before the trans-
formation (a), the bolded VP cannot be extracted as a translation rule, but afterwards (b), both this VP and the newly

created TO+VB node are extractable.

for learning translation rules (Mi and Huang, 2008;
Zhang et al., 2009), or by learning rules that en-
code syntactic information but do not strictly ad-
here to constituency boundaries (Zollmann et al.,
2006; Marton and Resnik, 2008; Chiang, 2010). The
most closely related MT system is that of Zhao et al.
(2011), who train a rule extraction system to trans-
form the subtrees that make up individual translation
rules using a manually constructed set of transfor-
mations similar to those learned by our system.

Instead of modifying the MT system to work
around the input annotations, our system modifies
the input itself in order to improve downstream
translation. Most systems of this sort learn how to
modify word alignments to agree better with the syn-
tactic parse trees (DeNero and Klein, 2007; Fossum
et al., 2008), but there has also been other work di-
rectly related to improving agreement by modifying
the trees. Burkett et al. (2010) train a bilingual pars-
ing model that uses bilingual agreement features to
improve parsing accuracy. More closely related to
the present work, Katz-Brown et al. (2011) retrain a
parser to directly optimize a word reordering metric
in order to improve a downstream machine transla-
tion system that uses dependency parses in a prepro-
cessing reordering step. Our system is in the same
basic spirit, using a proxy evaluation metric (agree-
ment with alignments; see Section 2 for details) to
improve performance on a downstream translation

864

task. However, we are concerned more generally
with the goal of creating trees that are more com-
patible with a wide range of syntactically-informed
translation systems, particularly those that extract
translation rules based on syntactic constituents.

2 Agreement

Our primary goal in adapting parse trees is to im-
prove their agreement with a set of external word
alignments. Thus, our first step is to define an agree-
ment score metric to operationalize this concept.
Central to the definition of our agreement score
is the notion of an extractable node. Intuitively, an
extractable English! tree node (also often called a
“frontier node” in the literature), is one whose span
aligns to a contiguous span in the foreign sentence.
Formally, we assume a fixed word alignment a =
{(4,7)}, where (i,j) € a means that English word
1 is aligned to foreign word j. For an English span
[k, £] (inclusive), the set of aligned foreign words is:

fset([k, 0]) ={j | Fi:k <i<t(i,j) €a}
We then define the aligned foreign span as:

fspan([k, €]) = [min(fset([k, £])), max(fset([k, ¢]))]

"For expositional clarity, we will refer to “English” and “for-
eign” sentences/trees, but our definitions are in no way language
dependent and apply equally well to any language pair.

The aligned English span for a given foreign span
[s,t] is defined analogously:

eset([s,t]) ={i|Fj:s<j<t(i,]) €a}
espan([s,t]) = [min(eset([s, t])), max(eset([s, t]))]

Finally, we define [k, ¢] to be extractable if and
only if it has at least one word alignment and its

aligned foreign span aligns back to a subspan of
[k, £]:

Sset([k, €]) # O A espan(fspan([k, £])) € [k, €]
With this definition of an extractable span, we can

now define the agreement score g, (t) for an English
tree ¢, conditioned on an alignment a:2

ga(t)= Y sign(lk, 1)
[k, 0 et:
[[k,4]|>1

ey

Where
sign((k.) = {

Importantly, the sum in Equation 1 ranges over all
unique spans in t. This is simply to make the met-
ric less gameable, preventing degenerate solutions
such as an arbitrarily long chain of unary produc-
tions over an extractable span. Also, since all indi-
vidual words are generated by preterminal part-of-
speech nodes, the sum skips over all length 1 spans.

As a concrete example of agreement score, we can
return to Figure 1. The tree in Figure 1a has 6 unique
spans, but only 5 are extractable, so the total agree-
ment score is 5 - 1 = 4. After the transformation,
though, the tree in Figure 1b has 6 extractable spans,
so the agreement score is 6.

1 [k, /] is extractable
—1 otherwise

3 Transformation-Based Learning

Transformation-based learning (TBL) was origi-
nally introduced via the Brill part-of-speech tag-
ger (Brill, 1992) and has since been applied to a wide
variety of NLP tasks, including binary phrase struc-
ture bracketing (Brill, 1993), PP-attachment disam-
biguation (Brill and Resnik, 1994), base NP chunk-
ing (Ramshaw and Marcus, 1995), dialogue act tag-
ging (Samuel et al., 1998), and named entity recog-
nition (Black and Vasilakopoulos, 2002).

*Unextractable spans are penalized in order to ensure that
space is saved for the formation of extractable ones.

865

The generic procedure is simple, and requires
only four basic inputs: a set of training sentences, an
initial state annotator, an inventory of atomic trans-
formations, and an evaluation metric. First, you ap-
ply the initial state annotator (here, the source of
original trees) to your training sentences to ensure
that they all begin with a legal annotation. Then,
you test each transformation in your inventory to see
which one will yield the greatest improvement in the
evaluation metric if applied to the training data. You
greedily apply this transformation to the full training
set and then repeat the procedure, applying transfor-
mations until some stopping criterion is met (usu-
ally either a maximum number of transformations,
or a threshold on the marginal improvement in the
evaluation metric).

The output of the training procedure is an ordered
set of transformations. To annotate new data, you
simply label it with the same initial state annotator
and then apply each of the learned transformations
in order. This process has the advantage of being
quite fast (usually linear in the number of transfor-
mations and the length of the sentence; for parsing,
the cost will typically be dominated by the cost of
the initial state annotator), and, unlike the learned
parameters of a statistical model, the set of learned
transformations itself can often be of intrinsic lin-
guistic interest.

For our task, we have already defined the evalua-
tion metric (Section 2) and the initial state annotator
will either be the gold Treebank trees or a Treebank-
trained PCFG parser. Thus, to fully describe our sys-
tem, it only remains to define the set of possible tree
transformations.

4 Tree Transformations

The definition of an atomic transformation consists
of two parts: a rewrite rule and the triggering envi-
ronment (Brill, 1995). Tree transformations are best
illustrated visually, and so for each of our transfor-
mation types, both parts of the definition are repre-
sented schematically in Figures 2-7. We have also
included a real-world example of each type of trans-
formation, taken from the English Chinese Transla-
tion Treebank.

Altogether, we define six types of tree transfor-
mations. Each class of transformation takes be-

A A
AN ~ T
- B C - _) - B+C -

N\
BC

Type: ARTICULATE
Args: A: PARENT, B: LEFT, C: RIGHT

(a) Schematic

A A
AN PIANN
B _) -~ CD -

AN
CD

Type: FLATTEN
Args: A: PARENT, B: TARGET

A
PZANN
B C-- _) -~DEC-
N\

DE
Type: FLATTENINCONTEXT
Args: A: PARENT, B: TARGET,

C: SIBLING, /eft: DIRECTION

(a) Schematic

A A
/\ T~

- B _) - CB
/\ I
C -

Type: PROMOTE
Args: A: GRANDPARENT, B: PARENT,
C: CHILD, /ef: DIRECTION

(a) Schematic

A A
AN T~
-~BC- _) - B -
I AN
C

Type DEMOTE

Args: A: PARENT, B: DEMOTER,
C: DEMOTED, /eft: DIRECTION

(a) Schematic

S
/\
NP+VP .
NP VP

Other members will arrive in two groups .

i wF 9

(b) Example: ARTICULATE(S, NP, VP)

Figure 2: ARTICULATE transformations.

NP
NP
DT NNP NML NNP
NNP NNP DT NNP NNP NNP NNP
th_e. Chma Trade Promotron Councrl * th_e Chma Trade Promotlon Councrl
Bl i %ﬁ%

(b) Example: FLATTENINCONTEXT(NP, NML, NNP, /eft)

Figure 3: FLATTEN transformations.

PP PP

/\
IN NP
/\ A

by the French player N Taugla * by the French player N. Taugia

‘.

&E x#ﬁ %-ﬁ%m &E e

(b) Example: PROMOTE (PP, NP, NP, left)

Figure 4: PROMOTE transformations.

VP VP
— — T
VB PP PP PP PP
N N —7 S
IN NP IN NP VB IN NP IN NP

’@t.ﬁﬁ a?"zﬁ ’@t.%ﬁ

¥ 20
(b) Example: DEMOTE(VP, PP, VB, right)

Figure 5: DEMOTE transformations.

866

A NP NP
B C = B C NP SBAR NP SBAR
| /\ /\ | — — e~ |
Do 2D Al NNS WHNP S i NNS WHNP S

Type: TRANSFER

Args: A: GRANDPARENT, B: AUNT,
C: PARENT, D: TARGET, *Jﬁi
lefi: DIRECTION

(a) Schematic

serious consequences that cause losses ’ serious consequences that cause losses

R R R

(b) Example: TRANSFER (NP, NP, SBAR, WHNP, left)

Figure 6: TRANSFER transformations.

S S
NP ADVP \% 3 RB VP
A\ A\ | RB VBD PP VBD PP
D - BD - l | |
Type: ADOPT Sala)or alg(.)\tie_g.l:. \'n‘l‘ith .-E?t-z_a_ngon * Sa?or al_sg\fiqgi\ \yjth .E?t-e_a_ngon

.~
PR

B A PR

Args: A: GRANDPARENT, B: AUNT,
C: PARENT, D: TARGET,
left: DIRECTION

(a) Schematic

e
I

|

FORETESEE B TR E =

(b) Example: ADOPT(S, VP, ADVP, RB, right)

Figure 7: ADOPT transformations.

tween two and four syntactic category arguments,
and most also take a DIRECTION argument that
can have the value left or right.> We refer to the
nodes in the schematics whose categories are argu-
ments of the transformation definition as participat-
ing nodes. Basically, a particular transformation is
triggered anywhere in a parse tree where all partici-
pating nodes appear in the configuration shown. The
exact rules for the triggering environment are:

1. Each participating node must appear in the
schematically illustrated relationship to the
others. The non-participating nodes in the
schematic do not have to appear. Similarly, any
number of additional nodes can appear as sib-
lings, parents, or children of the explicitly illus-
trated nodes.

2. Any node that will gain a new child as a re-
sult of the transformation must already have at
least one nonterminal child. We have drawn the
schematics to reflect this, so this condition is

3To save space, the schematic for each of these transforma-
tions is only shown for the /eft direction, but the right version is
simply the mirror image.

867

equivalent to saying that any participating node
that is drawn with children must have a phrasal
syntactic category (i.e. it cannot be a POS).

3. Repeated mergings are not allowed. That is, the
newly created nodes that result from an ARTIC-
ULATE or ADOPT transformation cannot then
participate as the LEFT or RIGHT argument of a
subsequent ARTICULATE transformation or as
the AUNT or TARGET argument of a subsequent
ADOPT transformation. This is simply to pre-
vent the unrestrained proliferation of new syn-
tactic categories.

The rewrite rule for a transformation is essentially
captured in the corresponding schematic. Additional
nodes that do not appear in the schematic are gener-
ally handled in the obvious way: unillustrated chil-
dren or parents of illustrated nodes remain in place,
while unillustrated siblings of illustrated nodes are
handled identically to their illustrated siblings. The
only additional part of the rewrite that is not shown
explicitly in the schematics is that if the node in the
PARENT position of a TRANSFER or ADOPT trans-
formation is left childless by the transformation (be-

cause the TARGET node was its only child), then it is
deleted from the parse tree. In the case of a transfor-
mation whose triggering environment appears multi-
ple times in a single tree, transformations are always
applied leftmost/bottom-up and exhaustively.*

In principle, our transformation inventory consists
of all possible assignments of syntactic categories to
the arguments of each of the transformation types
(subject to the triggering environment constraints).
In practice, though, we only ever consider trans-
formations whose triggering environments appear in
the training corpus (including new triggering envi-
ronments that appear as the result of earlier trans-
formations). While the theoretical space of possi-
ble transformations is exponentially large, the set
of transformations we actually have to consider is
quite manageable, and empirically grows substan-
tially sublinearly in the size of the training set.

5 Results and Analysis

There are two ways to use this procedure. One is to
apply it to the entire data set, with no separate train-
ing phase. Given that the optimization has no notion
of gold transformations, this procedure is roughly
like an unsupervised learner that clusters its entire
data. Another way is to learn annotations on a sub-
set of data and apply it to new data. We choose the
latter primarily for reasons of efficiency and simplic-
ity: many common use cases are easiest to manage
when annotation systems can be trained once offline
and then applied to new data as it comes in.

Since we intend for our system to be used as
a pre-trained annotator, it is important to ensure
that the learned transformation sequence achieves
agreement score gains that generalize well to un-
seen data. To minimize errors that might be intro-
duced by the noise in automatically generated parses
and word alignments, and to maximize reproducibil-
ity, we conducted our initial experiments on the En-
glish Chinese Translation Treebank. For this dataset,
the initial state annotations (parse trees) were man-
ually created by trained human annotators, as were
the word alignments used to compute the agreement

“The transformation is repeatedly applied at the lowest, left-
most location of the parse tree where the triggering environment
appears, until the triggering environment no longer appears any-
where in the tree.

868

~—Training

—Dev

Average Agreement Score
Improvement

S = N W kA LU A 9 0 O

0 500 1000 1500 2000
Number of Transformations

2500

Figure 8: Transformation results on the English Chinese
Translation Treebank. The value plotted is the average
(per-sentence) improvement in agreement score over the
baseline trees.

Transfor- | Total | Extractable | Agreement
mations | Spans Spans Score
0 13.15 9.78 6.40
10 12.57 10.36 8.15
50 13.41 11.38 9.35
200 14.03 11.96 9.89
1584 14.58 12.36 10.15
2471 14.65 12.35 10.06

Table 1: Average span counts and agreement scores on
the English Chinese Translation Treebank development
set. The highest agreement score was attained at 1584
transformations, but most of the improvement happened
much earlier.

score.’ The data was divided into training/dev/test
using the standard Chinese parsing split; we trained
the system on the training set (2261 sentences af-
ter filtering out sentences with missing annotations),
and evaluated on the development set (223 sentences
after filtering).

The improvements in agreement score are shown
in Figure 8, with a slightly more detailed breakdown
at a few fixed points in Table 1. While the system
was able to find up to 2471 transformations that im-
proved the training set agreement score, the major-
ity of the improvement, and especially the majority
of the improvement that generalized to the test set,

5The annotation guidelines for the English side of this Tree-
bank are similar, though not identical, to those for the WSJ
Treebank.

1 | ARTICULATE(S,NP,VP)
2 | FLATTENINCONTEXT(PP,NPIN,right)
3 | PROMOTE(VP,VP,VBN,left)
4 | ADOPT(VP,TO,VP,VB,left)
5 | ADOPT(PP,VBG,PPIN,left)
6 | FLATTEN(VP,VP)
7 | ARTICULATE(VP,VBD,NP)
8 | FLATTENINCONTEXT(PP,NML,NNP,/eft)
9 | ARTICULATE(NPNNPNNS)
10 | ARTICULATE(S,NP,ADVP)
11 | TRANSFER(NPNP,SBAR,WHNP,/eft)
12 | FLATTENINCONTEXT(NP,NML,NNP,/eft)
13 | ARTICULATE(NP,NN,NNS)
14 | TRANSFER (NP NP+, SBAR,WHNP,/eft)
15 | ADOPT(PPIN,PPIN,eft)
16 | PROMOTE(S,VP,CC+VP,right)
17 | ARTICULATE(VP,VBZ,VBN)
18 | ARTICULATE(VP,VBD,PP)
19 | ARTICULATE(VP,MD,ADVP)
20 | ApoPT(PP,SYM,QP,CD,right)

Table 2: The first 20 learned transformations, excluding
those that only merged punctuation or conjunctions with
adjacent phrases. The first 5 are illustrated in Figure 9.

was achieved within the first 200 or so transforma-
tions. We also see from Table 1 that, though the first
few transformations deleted many non-extractable
spans, the overall trend was to produce more finely
articulated trees, with the full transformation se-
quence increasing the number of spans by more than
10%.

As discussed in Section 3, one advantage of TBL
is that the learned transformations can themselves
often be interesting. For this task, some of the high-
est scoring transformations did uninteresting things
like conjoining conjunctions or punctuation, which
are often either unaligned or aligned monotonically
with adjacent phrases. However, by filtering out
all ARTICULATE transformations where either the
LEFT or RIGHT argument is “CC”, “-RRB-", “”, or
“” and taking the top 20 remaining transformations,
we get the list in Table 2, the first 5 of which are
also illustrated in Figure 9. Some of these (e.g. #1,
#7, #10) are additional ways of creating new spans
when English and Chinese phrase structures roughly
agree, but many others do recover known differences

869

in English and Chinese syntax. For example, many
of these transformations directly address compound
verb forms in English, which tend to align to single
words in Chinese: #3 (past participle constructions),
#4 (infinitive), #6 (all), and #17 (present perfect).
We also see differences between English and Chi-
nese internal NP structure (e.g. #9, #12, #13).

6 Machine Translation

The ultimate goal of our system is to improve
the agreement between the automatically generated
parse trees and word alignments that are used as
training data for syntactic machine translation sys-
tems. Given the amount of variability between the
outputs of different parsers and word aligners (or
even the same systems with different settings), the
best way to improve agreement is to learn a trans-
formation sequence that is specifically tuned for the
same annotators (parsers and word aligners) we are
evaluating with. In particular, we found that though
training on the English Chinese Translation Tree-
bank produces clean, interpretable rules, prelimi-
nary experiments showed little to no improvement
from using these rules for MT, primarily because
actual alignments are not only noisier but also sys-
tematically different from gold ones. Thus, all rules
used for MT experiments were learned from auto-
matically annotated text.

For our Chinese to English translation experi-
ments, we generated word alignments using the
Berkeley Aligner (Liang et al., 2006) with default
settings. We used an MT pipeline that conditions
on target-side syntax, so our initial state annotator
was the Berkeley Parser (Petrov and Klein, 2007),
trained on a modified English treebank that has been
adapted to match standard MT tokenization and cap-
italization schemes.

As mentioned in Section 5, we could, in principle
train on all 500k sentences of our MT training data.
However, this would be quite slow: each iteration of
the training procedure requires iterating through all
n training sentences® once for each of the m can-
didate transformations, for a total cost of O(nm)
where m grows (albeit sublinearly) with n. Since the

By using a simple hashing scheme to keep track of trigger-
ing environments, this cost can be reduced greatly but is still
linear in the number of training sentences.

S S

AN N DN

- NP VP - _) -+ NP+VP -
N\
NP VP

(a) ARTICULATE(S,NP,VP)

PP PP

AN AN

- IN NP"'-) +INA B
/\
A B

(b) FLATTENINCONTEXT(PP,NP,IN,right)

VP VP

/\ — T

-+ VP =% - VBN VP
/\ I

(c) PROMOTE(VP,VP,VBN,/eft)

VP VP

/\ P
TO VP =» TO+VB VP
aN A

VB TO VB -

(d) ADOPT(VP,TO,VP,VB, left)

PP VP

AN PN
VBG PP =» VBG+IN PP
/\ N\ I

IN - VBG IN

(e) ADOPT(PP,VBG,PPIN,left)

Figure 9: Illustrations of the top 5 transformations from
Table 2.

870

most useful transformations almost by definition are
ones that are triggered the most frequently, any rea-
sonably sized training set is likely to contain them,
and so it is not actually likely that dramatically in-
creasing the size of the training set will yield partic-
ularly large gains.

Thus, to train our TBL system, we extracted a ran-
dom subset of 3000 sentences to serve as a train-
ing set.” We also extracted an additional 1000 sen-
tence test set to use for rapidly evaluating agreement
score generalization. Figure 10 illustrates the im-
provements in agreement score for the automatically
annotated data, analogous to Figure 8. The same
general patterns hold, although we do see that the
automatically annotated data is more idiosyncratic
and so more than twice as many transformations are
learned before training set agreement stops improv-
ing, even though the training set sizes are roughly
the same.® Furthermore, test set generalization in
the automatic annotation setting is a little bit worse,
with later transformations tending to actually hurt
test set agreement.

For our machine translation experiments, we used
the string-to-tree syntactic pipeline included in the
current version of Moses (Koehn et al., 2007).
Our training bitext was approximately 21.8 mil-
lion words, and the sentences and word alignments
were the same for all experiments; the only differ-
ence between each experiment was the English trees,
for which we tested a range of transformation se-
quence prefixes (including a 0-length prefix, which
just yields the original trees, as a baseline). Since
the transformed trees tended to be more finely artic-
ulated, and increasing the number of unique spans
often helps with rule extraction (Wang et al., 2007),
we equalized the span count by also testing bina-
rized versions of each set of trees, using the left-
branching and right-branching binarization scripts
included with Moses.’

We tuned on 1000 sentence pairs and tested on

"The sentences were shorter on average than those in the En-
glish Chinese Translation Treebank, so this training set contains
roughly the same number of words as that used in the experi-
ments from Section 5.

8Note that the training set improvement curves don’t actu-
ally flatten out because training halts once no improving trans-
formation exists.

“Binarized trees are guaranteed to have k& — 1 unique spans
for sentences of length k.

~—Training
—Test

Average Agreement Score
Improvement

0 1000

2000
Number of Transformations

3000 4000 5000

Figure 10: Transformation results on a subset of the MT
training data. The training and test sets are disjoint in
order to measure how well the learned transformation se-
quence generalizes. Once again, we plot the average im-
provement over the baseline trees. Though 5151 transfor-
mations were learned from the training set, the maximum
test set agreement was achieved at 630 transformations,
with an average improvement of 2.60.

642 sentence pairs from the NIST MT04 and MT05
data sets, using the BLEU metric (Papineni et al.,
2001). As discussed by Clark et al. (2011), the op-
timizer included with Moses (MERT, Och, 2003) is
not always particularly stable, and results (even on
the tuning set) can vary dramatically across tuning
runs. To mitigate this effect, we first used the Moses
training scripts to extract a table of translation rules
for each set of English trees. Then, for each rule
table, we ran MERT 11 times and selected the pa-
rameters that achieved the maximum tuning BLEU
to use for decoding the test set.

Table 3 shows the results of our translation exper-
iments. The best translation results are achieved by
using the first 139 transformations, giving a BLEU
improvement of more than 0.9 over the strongest
baseline.

7 Conclusion

We have demonstrated a simple but effective pro-
cedure for learning a tree transformation sequence
that improves agreement between parse trees and
word alignments. This method yields clear improve-
ments in the quality of Chinese to English trans-
lation, showing that by manipulating English syn-
tax to converge with Chinese phrasal structure, we
improve our ability to explicitly model the types of

871

Transfor- | Agrmnt BLEU

mations Score | None | Left Right
0 536 | 31.66 | 31.81 | 31.84
32 717 | 3241 | 32.17 | 32.06
58 742 | 32.18 | 32.68* | 32.37

139 7.81 32.20 | 32.60* | 32.77*
630 7.96 | 3248 | 32.06 | 32.22
5151 7.89 | 32.13 | 31.84 | 32.12

Table 3: Machine translation results. Agreement scores
are taken from the test data used to generate Figure 10.
Note that using 0 transformations just yields the original
baseline trees. The transformation sequence cutoffs at 32,
58, and 139 were chosen to correspond to marginal train-
ing (total) agreement gain thresholds of 50, 25, and 10,
respectively. The cutoff at 630 was chosen to maximize
test agreement score and the cutoff at 5151 maximized
training agreement score. Column headings for BLEU
scores (“None,” “Left,” “Right”) refer to the type of bina-
rization used after transformations. Entries marked with
a “*’ show a statistically significant difference (p < 0.05)
from the strongest (right-binarized) baseline, according
to the paired bootstrap (Efron and Tibshirani, 1994).

structural relationships between languages that syn-
tactic MT systems are designed to exploit, even if we
lose some fidelity to the original monolingual anno-
tation standards in the process.

Acknowledgements

This project is funded by an NSF graduate research
fellowship to the first author and by BBN under
DARPA contract HR0011-12-C-0014.

References

Ann Bies, Martha Palmer, Justin Mott, and Colin Warner.
2007. English Chinese translation treebank v 1.0.
Web download. LDC2007T02.

William J. Black and Argyrios Vasilakopoulos. 2002.
Language independent named entity classification by
modified transformation-based learning and by deci-
sion tree induction. In COLING.

Eric Brill and Philip Resnik. 1994. A transformation-
based approach to prepositional phrase attachment dis-
ambiguation. In COLING.

Eric Brill. 1992. A simple rule-based part of speech tag-

ger. In Proceedings of the workshop on Speech and
Natural Language.

Eric Brill. 1993. Automatic grammar induction and pars-
ing free text: A transformation-based approach. In
ACL.

Eric Brill. 1995. Transformation-based error-driven
learning and natural language processing: a case study
in part-of-speech tagging. Computational Linguistics,
21(4):543-565.

David Burkett, John Blitzer, and Dan Klein. 2010.
Joint parsing and alignment with weakly synchronized
grammars. In NAACL:HLT.

David Chiang. 2010. Learning to translate with source
and target syntax. In ACL.

Jonathan H. Clark, Chris Dyer, Alon Lavie, and Noah A.
Smith. 2011. Better hypothesis testing for statistical
machine translation: controlling for optimizer instabil-
ity. In ACL:HLT.

John DeNero and Dan Klein. 2007. Tailoring word
alignments to syntactic machine translation. In ACL.

Bradley Efron and R. J. Tibshirani. 1994. An Introduc-
tion to the Bootstrap (Chapman & Hall/CRC Mono-
graphs on Statistics & Applied Probability). Chapman
and Hall/CRC.

Jason Eisner. 2003. Learning non-isomorphic tree map-
pings for machine translation. In ACL.

Victoria Fossum, Kevin Knight, and Steven Abney. 2008.
Using syntax to improve word alignment for syntax-
based statistical machine translation. In ACL MT
Workshop.

Michel Galley, Mark Hopkins, Kevin Knight, and Daniel
Marcu. 2004. What’s in a translation rule? In HLT-
NAACL.

Liang Huang, Kevin Knight, and Aravind Joshi. 2006.
Statistical syntax-directed translation with extended
domain of locality. In HLT-NAACL.

Jason Katz-Brown, Slav Petrov, Ryan McDonald, Franz
Och, David Talbot, Hiroshi Ichikawa, Masakazu Seno,
and Hideto Kazawa. 2011. Training a parser for ma-
chine translation reordering. In EMNLP.

Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris
Callison-Burch, Marcello Federico, Nicola Bertoldi,
Brooke Cowan, Wade Shen, Christine Moran, Richard
Zens, Chris Dyer, Ondrej Bojar, Alexandra Con-
stantin, and Evan Herbst. 2007. Moses: Open source
toolkit for statistical machine translation. In ACL.

Percy Liang, Ben Taskar, and Dan Klein. 2006. Align-
ment by agreement. In HLT-NAACL.

Mitchell P. Marcus, Mary Ann Marcinkiewicz, and Beat-
rice Santorini. 1993. Building a large annotated cor-
pus of English: The Penn Treebank. Computational
Linguistics, 19(2):313-330.

Yuval Marton and Philip Resnik. 2008. Soft syntactic
constraints for hierarchical phrase-based translation.
In ACL:HLT.

872

Haitao Mi and Liang Huang. 2008. Forest-based transla-
tion rule extraction. In EMNLP.

Franz Josef Och. 2003. Miminal error rate training in
statistical machine translation. In ACL.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2001. Bleu: a method for automatic eval-
uation of machine translation. Research report, IBM.
RC22176.

Slav Petrov and Dan Klein. 2007. Improved inference
for unlexicalized parsing. In HLT-NAACL.

Lance A. Ramshaw and Mitchell P. Marcus. 1995.
Text chunking using transformation-based learning. In
ACL Workshop on Very Large Corpora.

Ken Samuel, Sandra Carberry, and K. Vijay-Shanker.
1998. Dialogue act tagging with transformation-based
learning. In COLING.

Wei Wang, Kevin Knight, and Daniel Marcu. 2007. Bi-
narizing syntax trees to improve syntax-based machine
translation accuracy. In EMNLP.

Kenji Yamada and Kevin Knight. 2001. A syntax-based
statistical translation model. In ACL.

Hui Zhang, Min Zhang, Haizhou Li, Aiti Aw, and
Chew Lim Tan. 2009. Forest-based tree sequence to
string translation model. In ACL-IJCNLP.

Bing Zhao, Young-Suk Lee, Xiaoqiang Luo, and Liu Li.
2011. Learning to transform and select elementary
trees for improved syntax-based machine translations.
InACL:HLT.

Andreas Zollmann, Ashish Venugopal, Stephan Vogel,
and Alex Waibel. 2006. The CMU-AKA syntax aug-
mented machine translation system for IWSLT-06. In
IWSLT.

