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Abstract

We propose a novel probabilistic technique
for modeling and extracting salient struc-
ture from large document collections. As
in clustering and topic modeling, our goal
is to provide an organizing perspective into
otherwise overwhelming amounts of infor-
mation. We are particularly interested in
revealing and exploiting relationships be-
tween documents. To this end, we focus on
extracting diverse sets of threads—singly-
linked, coherent chains of important doc-
uments. To illustrate, we extract research
threads from citation graphs and construct
timelines from news articles. Our method
is highly scalable, running on a corpus of
over 30 million words in about four minutes,
more than 75 times faster than a dynamic
topic model. Finally, the results from our
model more closely resemble human news
summaries according to several metrics and
are also preferred by human judges.

1 Introduction

The increasing availability of large document
collections has the potential to revolutionize
our ability to understand the world. However,
the scale and complexity of such collections fre-
quently make it difficult to quickly grasp the
important details and the relationships between
them. As a result, automatic interfaces for data
navigation, exploration, aggregation, and analy-
sis are becoming increasingly valuable.

In this work we propose a novel approach:
threading structured document collections. Con-

710

sider a large graph, with documents as nodes
and edges indicating relationships, as in Figure 1.
Our goal is to find a diverse set of paths (or
threads) through the collection that are indi-
vidually coherent and together cover the most
salient parts. For example, given a collection
of academic papers, we might want to identify
the most significant lines of research, threading
the citation graph to produce chains of impor-
tant papers. Or, given news articles connected
chronologically, we might want to extract threads
of articles to form timelines describing the ma-
jor events from the most significant news stories.
Top-tier news organizations like The New York
Times and The Guardian regularly publish such
timelines, but have so far been limited to creat-
ing them by hand. Other possibile applications
might include discovering trends on social media
sites, or perhaps mining blog entries for impor-
tant conversations through trackback links. We
show how these kinds of threading tasks can be
done efficiently, providing a simple, practical tool
for representing graph-based data that offers new
possibilities compared with existing models.

The Topic Detection and Tracking (TDT) pro-
gram (Wayne, 2000) has recently led to some
research in this direction. Several of TDT’s core
tasks, like link detection, topic detection, and
topic tracking, can be seen as subroutines for
the threading problem. Our work, however, ad-
dresses these tasks jointly, using a global prob-
abilistic model with a tractable inference algo-
rithm. To achieve this, we employ structured
determinantal point processes (SDPPs) (Kulesza
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Figure 1: An illustration of document collection threading. We first build a graph from the collection, using
measures of importance and relatedness to weight nodes (documents) and build edges (relationships). Then,
from this graph, we extract a diverse, salient set of threads to represent the collection. The supplement
contains a version of this figure for our real-world news dataset.

and Taskar, 2010), which offer a natural prob-
abilistic model over sets of structures (such as
threads) where diversity is desired, and we incor-
porate k-DPP extensions to control the number
of threads (Kulesza and Taskar, 2011).

We apply our model to two real-world datasets,
extracting threads of research papers and time-
lines of news articles. An example of news
threads extracted using our model is shown in
Figure 2. Quantitative evaluation shows that our
model significantly outperforms multiple base-
lines, including dynamic topic models, in com-
parisons with human-produced news summaries.
It also outperforms baseline methods in a user
evaluation of thread coherence, and runs 75 times
faster than a dynamic topic model.

The primary contributions of this paper
are: (1) proposing a novel framework for finding
diverse and salient sets of document threads; (2)
combining SDPPs and k-DPPs to implement the
proposed model; (3) introducing random projec-
tions to improve efficiency with only bounded
deviation; and (4) demonstrating the model on
large-scale, real-world datasets.

2 Related Work

A variety of papers from the topic tracking liter-
ature are broadly related to our work (Mei and
Zhai, 2005; Blei and Lafferty, 2006; Leskovec et
al., 2009; Ahmed and Xing, 2010). Blei and Laf-
ferty (2006) recently introduced dynamic topic
models (DTMs). Assuming a division of doc-
uments into time slices, a DTM draws in each
slice a set of topics from a Gaussian distribution
whose mean is determined by the topics from
the previous slice. In this way, a DTM generates
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topic threads. In this work we are interested in
the related but not identical task of generating
document threads. We engineer a baseline for
constructing document threads from DTM topic
threads (see Section 6.2.2), but the topic-centric
nature of DTMs means they are not ideal for
this task. Figure 2 illustrates some of the issues.

The work of Ahmed and Xing (2010) general-
izes DTMs to iDTMs (infinite DTMs) by allowing
topics to span only a subset of time slices, and
allowing an arbitrary number of topics. However,
iDTMs still require placing documents into dis-
crete epochs, and the issue of generating topic
rather than document threads remains. In Sec-
tion 6 we compare to DTMs but not iDTMs
because an implementation of iDTMs was not
readily available.

In the information retrieval community there
has also been work on extracting temporal in-
formation from document collections. Swan and
Jensen (2000) proposed a system for finding tem-
porally clustered named entities in news text and
presenting them on a timeline. Allan, Gupta,
and Khandelwal (2001) introduced the task of
temporal summarization, which takes a stream
of news articles on a particular topic and tries to
extract sentences describing important events as
they occur. Yan et al (2011) evaluated methods
for choosing sentences from temporally clustered
documents that are relevant to a query. Here, we
are interested not in extracting topically grouped
entities or sentences, but instead in organizing a
subset of the articles themselves into timelines,
with topic identification as a side effect.

There has also been some prior work focus-
ing more directly on threading. Shahaf and
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Figure 2: A set of five news threads generated by our method (left) and a dynamic topic model (right) for
the first half of 2005. Above, the threads are shown on a timeline with the most salient words superimposed;
below, the dates and headlines from the threads appearing at the bottom are listed. Topic models are not
designed for threading and often link together topically similar documents that do not constitute a coherent

news story, as on the right.

Guestrin (2010) and Chieu and Lee (2004) pro-
posed selecting a single thread, whereas we seek
a set of threads, which is a more general task.
Shahaf, Guestrin, and Horvitz (2012) recently
proposed metro maps as alternative structured
representations of related news stories. Metro
maps are effectively sets of non-chronological
threads that are encouraged to intersect and thus
create a “map” of events and topics. However,
these approaches assume some prior knowledge
about content. Shahaf and Guestrin (2010), for
example, assume the thread endpoints are spec-
ified, and Chieu and Lee (2004) require a set
of query words. These inputs make it possible
to quickly pare down the document graph. In
constrast, we work with very large graphs and
consider all possible threads. Furthermore, while
some prior work has relied on heuristics and ap-
proximate optimization, we can efficiently sample
a joint probabilistic model with approximation
guarantees.

In previous work on SDPPs (structured DPPs),
which we use here to model threads, Kulesza and
Taskar (2010) derived exact polynomial-time al-
gorithms for sampling and other inference. How-
ever, their experiments involved feature vectors
of only 32 dimensions. For text, natural features
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like word occurrences typically yield dimension-
ality in the tens of thousands, making SDPP
inference prohibitively expensive. We solve this
problem by reducing the feature space using ran-
dom projections (see Section 5). We prove that
even a logarithmic number of projections is suffi-
cient to yield a close approximation to the origi-
nal SDPP distribution.

3 Framework

Before presenting our probabilistic model, we
describe a natural framework for representing
document collections. We assume that the collec-
tion has been transformed into a directed graph
G = (V, E) on n vertices, where each node cor-
responds to a document and each edge repre-
sents a relationship between documents whose
semantics depend on the task. We also as-
sume the existence of a weight function w on
nodes and edges, which measures the impor-
tance or salience of documents and the relative
strength of the relationships between them. For-
mally, we define the weight of a path (or thread)
y =",y .y ), (y, 4 D) € E by:

w) =Y w0 (50) 4w (19,50) . ()
t=1

t=1



Lastly, we also assume the existence of node
features. Specifically, let ¢ represent a feature
mapping from nodes to R” (for example, tf-idf
word vectors). The feature map on a thread is
then just a sum over the nodes in the thread:

oy) = i o (y?) .
t=1

(If it is convenient to have features on edges as
well as on nodes, it is possible to accommodate
them without affecting asymptotic performance.)
Given this framework, our goal is to develop
a probabilistic model over sets of k threads of
length T', favoring sets whose threads have large
weight but are also distinct from one another with
respect to ¢. In other words, a high-probability
set under the model should include threads that
are both salient and diverse.

This is a daunting problem, given that the
number of possible sets of threads is O(n*7).
For the datasets we use later, the actual number
is around 2! However, we will show how to
construct the desired model in a way that allows
efficient inference, even for large datasets, using
determinantal point processes (DPPs). We begin
with some background.

(2)

4 Determinantal point processes

A DPP is a type of distribution over subsets.
Formally, a DPP P on a set of items Y =
{y1,...,yn} is a probability measure on 2%, the
set of all subsets of ). (In our setting, ) will be
the set of all possible threads.) For every Y C Y
we have:

o det(Ly) _ det(Ly)
PY) = Z det(Ly) o det(L+1) 3)
Yoy

where L is a positive semidefinite matrix and [
is the N x N identity matrix. Ly = [Lij}yiyjeY
denotes the restriction of L to the entries indexed
by elements of Y, and det(Ly) = 1. We can
define the entries of L as follows:

Li; = q(yi)d(vi) " d(y;)aly;) (4)

where we can think of ¢(y;) € RT as the “qual-
ity” of an item y;, and é(y;) € RP, |o(y;)]]2 = 1
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Figure 3: (a) The DPP probability of a set Y depends
on the volume spanned by vectors q(y;)¢(y;) fori € Y.
(b) As quality (length) increases, so does volume. (c)
As similarity increases, volume decreases.

as a normalized D-dimensional feature vector
such that ¢(y;)"é(y;) € [~1,1] is a measure of
similarity between items y; and y;. This simple
definition gives rise to a distribution that places
most of its weight on sets that are both high qual-
ity and diverse. To understand why this is the
case, note that determinants are closely related
to volumes; in particular, det(Ly ) is proportional
to the volume spanned by the vectors q(y;)o(y;)
for y; € Y. Thus, sets with high-quality, diverse
items have the highest probability; see Figure 3
for an illustration.

4.1 Structured DPPs

Kulesza and Taskar (2010) introduced structured
DPPs (SDPPs) to efficiently handle ) containing
exponentially many structures. In our setting, )
contains all threads of length T', so each y; € ) is
a sequence (yl(l), . ,yET)), where yit is the docu-
ment included in the thread at position t. When
G is a complete graph, there are n’ possible
sequences, so |Y| = N =nT.

In order to allow for efficient normalization
and sampling, SDPPs assume a factorization
of the quality score ¢(y;) and similarity score
qS(yZ)Tgb(yJ) into parts, decomposing quality mul-
tiplicatively and similarity additively:

q(y:) = ﬁq (ygt)> o(yi) = ET: ¢ (ygt)) (5)
t=1 t=1

For threading, the definition of ¢ is just as given
in Equation (2). However, in order to convert the
weight function defined in Equation (1) to the



appropriate multiplicative form, we use a sim-
ple log-linear model, setting q(y;) = exp(Aw(y;)),
where )\ is a hyperparameter that effectively gov-
erns the balance between quality and diversity
by adjusting the dynamic range of the quality
function.

An efficient algorithm for sampling structures
(in this case, sets of threads) from an SDPP is
derived in Kulesza and Taskar (2010). While
the details are beyond the scope of this paper,
we note that the sampling algorithm requires
O(Tn%D?) time. If the node degrees are bounded
by 7 then the time is reduced to O(Trn.D?). This
is not quite efficient enough when the number
of features, D, is large, as it often is for textual
tasks, but we will show in Section 5 how to
overcome this last hurdle.

Note that, in our later experiments, we fix T’
to moderate values (1" = 5, 8) for ease of analysis
and display. However, it is possible (and effi-
cient, due to the linear scaling) to allow longer
threads, as well as threads of variable length.
The latter effect can be achieved by adding a sin-
gle “dummy” node to the document graph, with
incoming edges from all other documents and a
single outgoing self-loop edge. Shorter threads
will simply transition to this dummy node when
they are complete.

4.2 k-DPPs

SDPPs allow us to efficiently model all sets of
threads; however, for practical reasons we would
prefer to focus only on sets of exactly k threads.
To do so we exploit recently developed methods
for working with DPPs of fixed size (Kulesza
and Taskar, 2011). A k-DPP P* is a DPP con-
ditioned on the event that the subset Y € ) has
cardinality k; formally, whenever |Y| = k:

det(Ly)

k —
P (Y) N Z|Y/|:k det(Ly/) '

(6)

In this work we combine k-DPPs with SDPPs,
referring to the result as a k-SDPP. We note that
using k-SDPPs instead of SDPPs does not affect
efficiency of sampling; it merely affords a mecha-
nism for controlling the number of threads.

714

5 Random projections

As described above, the time complexity for sam-
pling sets from SDPPs is O(TrnD?). Although
this is polynomial, for practical problems nD?
is prohibitively large. While previous work has
dealt only with small datasets, in our experi-
ments we typically have n, D > 30,000; storing
a single message for the message-passing routine
involved in SDPP sampling would require over
200 terabytes of memory. To make the model
practical, therefore, we turn to techniques for
dimensionality reduction.

Standard PCA requires O(D?) time and would
be much too slow. But a classic result of John-
son and Lindenstrauss (1984) shows that high-
dimensional points can be randomly projected
onto a logarithmic number of dimensions while
approximately preserving the distances between
them. More recently, Magen and Zouzias (2008)
extended this idea to the preservation of volumes
spanned by sets of points. Here, we use a rela-
tionship between determinants and volumes to
adapt the latter result. We will prove the follow-
ing bound on the variational distance between
the original £-SDPP and a randomly projected
version.

Theorem 1. Fix e, 6 < 1/2, and set d =

I]na}c{%:,%1 (log(3/6) +1> log2N + k — 1}.
€ € log N

(7)
Let P* be the k-SDPP distribution in Equa-
tion (6), let G be a d x D random matriz
whose entries are independently sampled from
N(0,1/d), and let P*(Y) be the k-SDPP distri-
bution after projecting ¢ by G—that is, replacing
¢ with G¢. Then with probability at least 1 — ¢,

IP* =Pl =D PRY) —PHY) < -1

Y |=k
(8)
Note that e%%¢ — 1 ~ 6ke when ke is small, and
d = O(max{k/e, (log(1/6) 4+ T'logn)/€%}).
Practically, Theorem 1 says that if we project
¢ down to dimension d logarithmic in the number
of documents and linear in thread length, the Ly
variational distance between the true model and
the projected model is bounded.



To prove Theorem 1, we will first state a vari-
ant of Magen and Zouzias’ result, which bounds
the ratio of volumes before and after projection
from D down to d dimensions.

Lemma 1. Let X be a Dx N matriz. Fizk < N
and €,6 < 1/2, and set d and G as in Theorem 1.
Then with probability at least 1 — & we have, for
all D x k matrices Y formed by a subset of k
columns from X:

Vol(GY')

—e)k<

= Vol(Y) <(1+9°,

(1

where Vol(Y') is the k-dimensional volume
spanned by the columns of Y and the origin.

We can make use of the following fact to con-
vert this bound on volumes to a bound on deter-

minants:
Vol(Y) = %« [det(YTY) . )

In order to handle the k-SDPP normalization
constant

D

Y=k

1 W) | det(6(Y) 6(Y)),  (10)

yi €Y

we also must adapt Lemma 1 to sums of deter-
minants. The following lemma gives the details.

Lemma 2. Under the same conditions as
Lemma 1, with probability at least 1 — 6,

Sy det (GY)T(GY))

(14275 < >y ek det(YTY) < (g™
Proof.
D det((GY)T(GY))
|v|=k
= Y (kIVol(GY))?
Y=k
>y (k:!Vol(Y)(l—e)k)Q
|Y|=k
> (1426)72F Y det(YTY)

Y=k
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Figure 4: The effect of random projections. In black,
on the left, we estimate the Ly variational distance
between the true and projected models. In blue, on
the right, we plot the memory required for sampling.
Running time is proportional to memory use.

where the first inequality holds with probability
at least 1 —¢ by Lemma 1, and the second follows
from the fact that (1 —€)(1 4 2¢) > 1 (since € <
1/2), thus (1 —€)?* > (14 2¢)72%. A symmetric
argument gives the upper bound. O

Proof (of Theorem 1). Let B be the matrix
whose columns are given by B; = q(yi)¢(yi)-
We have

IP* = PH = [PRY) = PH(Y))

|Y|=k

_ PH(Y)

) |5;=:kpk(Y) L)

_ k _ det(IGBy][GBy])
a l;kp &) ‘1 det(By- By)

=k det(By. By)
> pyrj=k det (G By, ][GBy])

< ‘1 (14 (14 26)%‘ Y PRY)
Y =k
< 66k6 o

< L,

where the first inequality follows from Lemma 1
and Lemma 2, which hold simultaneously with
probability at least 1 — §, and the second follows
from (14 a)® < e® for a,b > 0. O
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Figure 5: Example threads sampled from a 4-SDPP with thread length T' = 5 on the Cora dataset. We
project from word-space to two dimensions by running PCA on the centroids of the threads. The nodes not
on the thread paths form a representative subset of the other documents from Cora. Displayed beside each
thread are a few of its maximum-tfidf words. Paper titles from two of the threads are shown to the right.

6 Experiments

We begin by showing the performance of random
projections on a small, synthetic threading task
where the exact model is tractable, with n = 600
and D = 150. Figure 4 shows the L; variational
distance (estimated by sampling) as well as the
actual memory required for a variety of projec-
tion dimensions d. Note that, as predicted by
Theorem 1, fidelity to the true model increases
rapidly with d.

6.1 Cora citation graph

To qualitatively illustrate our model, we apply
it to Cora (McCallum et al., 2000). Cora is a
large collection of academic papers on computer
science topics, plus citations between them. We
construct a directed graph with papers as nodes
and citations as edges; after removing papers
with missing metadata or zero outgoing citations,
our graph contains n = 28,155 papers.

To obtain useful threads, we set edge weights
to reflect the degree of textual similarity between
the citing and cited papers, and set node weights
to reflect paper “importance”. Edge weights
are given by normalized cosine similarity (NCS),
which for two documents ¢ and j is the dot prod-
uct of their normalized tfidf vectors:

ZwGW tﬁdfi (w)tﬁdfj (’LU)
VS e L 07/ ey (BT 0
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where W is a subset of the words found in the
documents. We select W by filtering according
to document frequency; that is, we remove words
that are too common or too rare. After filtering,
there are 50,912 unique words. The node weights
are given by LexRank scores (Erkan and Radev,
2004), which are similar to node degrees.

Finally, we build a similarity feature map ¢ to
encourage diversity. We represent each document
by the 1000 documents to which it is most similar
according to NCS; this results in binary ¢ of
dimension m = n with exactly 1000 non-zeros.
The dot product between the similarity features
of two documents is thus proportional to the
fraction of top-1000 similar documents they have
in common. As described in Section 5, we then
randomly project this large feature set from D ~
28,000 to d = 50 dimensions.

We illustrate the behavior of the resulting
model in Figure 5. The discovered threads oc-
cupy distinct regions of word-space, standing
apart visually, and contain diverse salient terms.

6.2 News articles

For quantitative evaluation, we use newswire
data. Our dataset comprises over 200,000 arti-
cles from the New York Times, collected from
2005-2007 as part of the English Gigaword cor-
pus (Graff and Cieri, 2009). We split the articles
into six-month time periods, with an average of



n = 34,504 articles per period. After filtering,
there are a total of 36,356 unique words.

For each time period, we generate a graph with
articles as nodes. We use NCS for edge weights,
and throw away edges with weight < 0.1. We
also require that edges go forward in time; this
enforces the chronological ordering of our threads.
The supplement contains illustrations of one of
the resulting graphs. We use LexRank for node
weights and the top-1000 similar documents as
similarity features ¢, projecting to d = 50, as
before (Section 6.1). We also add a constant fea-
ture p to ¢, which controls the overall degree of
repulsion; large values of p make all documents
This makes the k-SDPP distri-
bution more peaked around diverse sets. For
all of the following results, we use T' = 8 and
k = 10 so that the resulting timelines are of a
manageable size for analysis. However, we tried
several values of k and 7" in our experiments, and
did not see significant differences in relative per-
formance. We report all metrics averaged over
100 random samples from the model for each
six-month period.

more similar.

6.2.1 Graph visualizations

The (very large) news graph for the first
half of 2005 can be viewed interactively at
http://zoom.it /JOKV. In this graph each node
(dark circle) represents a news article, and is an-
notated with its headline. Node size corresponds
to weight (LexRank score). Nodes are laid out
chronologically, left-to-right, from January to
June of 2005. The five colored paths indicate a
set of threads sampled from the k-SDPP. Head-
lines of the articles in each thread are colored
to match the thread. Edges are included as de-
scribed in the paper, but due to the scale of this
dataset, only 1% of the edges are shown. Edge
thickness corresponds to weight (NCS).

We provide a view of a small subgraph for
illustration purposes in Figure 6, which shows
the incoming and outgoing edges for a single
node. A zoomable version of this subgraph is
available at http://zoom.it/GUCR.
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Figure 6: Snapshot of a single article node
and all of its neghboring article nodes.  See
http://zoom.it/GUCR for the zoomable image.

6.2.2 Baselines

k-means baseline: A simple baseline is to
split each six-month period of articles into T
equal time slices, then apply k-means clustering
to each slice, using NCS to measure distance.
We then select the most central article from each
cluster, and finally match the k articles from
time slice ¢ one-to-one with those from slice 7 + 1
by computing the pairing that maximizes the
average NCS of the pairs, i.e., the coherence of
the threads. The result is a set of k threads
of length T, where no two threads contain the
same article. In its use of clustering, this base-
line is somewhat similar to the “event threading”
baseline of Shahaf and Guestrin (2010).

DTM baseline: A more sophisticated base-
line is the dynamic topic model (Blei and Lafferty,
2006), which explicitly attempts to find topics
that are smooth through time. We use code
provided by the authors to fit DTMs with the
number of topics set to k and with the data split
into T equal slices, as before. We then choose,
for each topic at each time step, the document
with the highest per-word probability of being
generated by that topic. Documents from the
same topic form a single thread.



CosSim ROUGE-1 ROUGE-2 ROUGE-SU4

F Prec/Rec F Prec / Rec F Prec/Rec

k-means 29.9 16.5 17.3/15.8 | 0.695 0.725/0.669 | 3.76  3.94/3.60
DTM 27.0 14.7 155/14.0 | 0.750 0.813/0.698 | 3.44 3.63/3.28
k-SDPP 33.2 17.2 17.7/16.7 | 0.892 0.917/0.870 | 3.98 4.11/3.87

Table 1: Similarity of automatically generated timelines to human summaries. Bold entries are significantly
higher than others in the column at 99% confidence, computed using bootstrapping (Hesterberg et al., 2003).

6.2.3 Comparison to human summaries

We compare the threads generated by our
baselines and sampled from the k-SDPP to a
set of human-generated news summaries. The
human summaries are not threaded; they are
flat, roughly daily news summaries published by
Agence France-Presse and found in the Gigaword
corpus, distinguished by their “multi” type tag.
A sample summary is included in the supplement.
These summaries tend to focus on world news,
which is only a subset of the contents of our
dataset. However, they allow us to provide an
extrinsic evaluation of our method without gold
standard timelines. We compute four statistics:

e Cosine similarity: NCS (in percent) be-
tween the concatenated threads and con-
catenated human summaries. The hyper-
parameters for all methods—such as the
constant feature magnitude p for k-SDPPs
and the parameter governing topic propor-
tions for DTMs—were tuned to optimize
cosine similarity on a development set from
January-June 2005.

ROUGE-1, 2, and SU4: Standard
ROUGE scores for summarization evalua-
tion (Lin, 2004).

Table 1 shows the results of these comparisons,
averaged across all six half-year intervals. Under
each measure, the k-SDPP threads more closely
resemble human summaries.

6.2.4 Mechanical Turk evaluation

An important distinction between the base-
lines and the k-SDPP is that the former are
topic-oriented, choosing articles that relate to
broad subject areas, while our approach is story-
oriented, chaining together articles with direct
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Rating Interlopers
k-means | 2.73 0.71
DTM 3.19 1.10
k-SDPP | 3.31 1.15

Table 2: Rating: average coherence score from 1
(worst) to 5 (best). Interlopers: average number of
interloper articles identified (out of 2). Bold entries
are significantly higher with 95% confidence.

individual relationships. An example of this dis-
tinction can be seen in Figure 2.

To obtain a large-scale evaluation of thread co-
herence, we turn to Mechanical Turk. We asked
Turkers to read the headlines and first few sen-
tences of each article in a timeline and then rate
the overall narrative coherence of the timeline on
a scale of 1 (“the articles are totally unrelated”)
to 5 (“the articles tell a single clear story”). Five
separate Turkers rated each timeline; the average
ratings are shown in Table 2. Note that k-means
does particularly poorly in terms of coherence
since it has no way to ensure that clusters are
similar between time slices.

We also had Turkers evaluate threads implic-
itly by performing a simple task. We showed
them timelines into which two additional “in-
terloper” articles selected at random had been
inserted, and asked them to remove the two ar-
ticles that they thought should be removed to
“improve the flow of the timeline”. A screenshot
of the task is provided in the supplement. Intu-
itively, the interlopers should be selected more
often when the original timeline is coherent. The
average number of interloper articles correctly
identified is shown in Table 2.



Runtime

k-means 625.63
DTM 19,433.80
k-SDPP 252.38

Table 3: Time (in seconds) required to produce a
complete set of threads. The test machine has eight
Intel Xeon E5450 cores and 32GB of memory.

6.2.5 Runtimes

Finally, we report in Table 3 the time required
to produce a complete set of threads for each
method. This time includes clustering for k-
means, model fitting for DTM and random pro-
jections, computation of the covariance matrix,
and sampling for k-SDPP. We view the graph
as an input (much like tfidf vectors for the base-
lines), and so do not include its computation in
the runtime for the k-SDPP. Constructing the
graph only requires an additional 160 seconds
though.

6.3 Analysis

Below we briefly summarize the main differences
between the k-SDPP and the baselines, and dis-
cuss their significance.

e Neither baseline directly models the docu-
ment threads themselves. In contrast, the
k-SDPP defines a probability distribution
over all possible sets of document threads.
This makes the k-SDPP a better choice for
applications where, for instance, the coher-
ence of individual threads is important.

e While the baselines seek threads that cover
or explain as much of the dataset as possible,
k-SDPPs are better suited for tasks where
a balance between quality and diversity is
key, since its hyperparameters correspond
to weights on these quantities. With news
timelines, for example, we want not just
topical diversity but also a focus on the
most important stories.

e Both baselines require input to be split into
time slices, whereas the k-SDPP does not;
this flexibility allows the k-SDPP to put
multiple articles from a single time slice in
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a thread, or to build threads that span only
part of the input period.

e While clustering and topic models rely on
EM to approximately optimize their objec-
tives, the k-SDPP comes with an exact,
polynomial-time sampling algorithm.

Revisiting Figure 2, we can see all of these
advantages in action. The k-SDPP produces
more consistent threads due to its use of graph
information, while the DTM threads, though
topic-focused, are less coherent as a story. Fur-
thermore, DTM threads span the entire time
period, while our method selects threads cover-
ing only relevant spans. The quantitative results
in this section underscore the empirical value of
these characteristics.

7 Conclusion

We introduced the novel problem of finding di-
verse and salient threads in graphs of large doc-
ument collections. We developed a probabilistic
approach, combining SDPPs and k-SDPPs, and
showed how random projections make inference
efficient and yield an approximate model with
bounded variational distance to the original. We
then demonstrated that the method produces
qualitatively reasonable results, and, relative to
several baslines, reproduces human news sum-
maries more faithfully, builds more coherent story
threads, and is significantly faster. It would be
interesting to extend our model to structures be-
yond linear chains to trees and other structures.
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