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Abstract

Learning the meaning of words from ambigu-
ous and noisy context is a challenging task for
language learners. It has been suggested that
children draw on syntactic cues such as lexical
categories of words to constrain potential ref-
erents of words in a complex scene. Although
the acquisition of lexical categories should be
interleaved with learning word meanings, it
has not previously been modeled in that fash-
ion. In this paper, we investigate the inter-
play of word learning and category induction
by integrating an LDA-based word class learn-
ing module with a probabilistic word learning
model. Our results show that the incremen-
tally induced word classes significantly im-
prove word learning, and their contribution is
comparable to that of manually assigned part
of speech categories.

1 Learning the Meaning of Words

For young learners of a natural language, mapping
each word to its correct meaning is a challenging
task. Words are often used as part of an utterance
rather than in isolation. The meaning of an utter-
ance must be inferred from among numerous pos-
sible interpretations that the (usually complex) sur-
rounding scene offers. In addition, the linguistic and
visual context in which words are heard and used
is often noisy and highly ambiguous. Particularly,
many words in a language are polysemous and have
different meanings.

Various learning mechanisms have been proposed
for word learning. One well-studied mechanism
is cross-situational learning, a bottom-up strategy
based on statistical co-occurrence of words and ref-
erents across situations (Quine 1960, Pinker 1989).
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Several experimental studies have shown that adults
and children are sensitive to cross-situational evi-
dence and use this information for mapping words to
objects, actions and properties (Smith and Yu 2007,
Monaghan and Mattock 2009). A number of com-
putational models have been developed based on this
principle, demonstrating that cross-situational learn-
ing is a powerful and efficient mechanism for learn-
ing the correct mappings between words and mean-
ings from noisy input (e.g. Siskind 1996, Yu 2005,
Fazly et al. 2010).

Another potential source of information that can
help the learner to constrain the relevant aspects of a
scene is the sentential context of a word. It has been
suggested that children draw on syntactic cues pro-
vided by the linguistic context in order to guide word
learning, a hypothesis known as syntactic bootstrap-
ping (Gleitman 1990). There is substantial evidence
that children are sensitive to the structural regular-
ities of language from a very young age, and that
they use these structural cues to find the referent of
a novel word (e.g. Naigles and Hoff-Ginsberg 1995,
Gertner et al. 2006). In particular, young children
have robust knowledge of some of the abstract lexi-
cal categories such as nouns and verbs (e.g. Gelman
and Taylor 1984, Kemp et al. 2005).

Recent studies have examined the interplay of
cross-situational learning and sentence-level learn-
ing mechanisms, showing that adult learners of an
artificial language can successfully and simultane-
ously apply cues and constraints from both sources
of information when mapping words to their refer-
ents (Gillette et al. 1999, Lidz et al. 2010, Koehne
and Crocker 2010; 2011). Several computational
models have also investigated this interaction by
adding manually annotated part-of-speech tags as
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input to word learning algorithms, and suggesting
that integration of lexical categories can boost the
performance of a cross-situational model (Yu 2006,
Alishahi and Fazly 2010).

However, none of the existing experimental or
computational studies have examined the acquisition
of word meanings and lexical categories in paral-
lel. They all make the simplifying assumption that
prior to the onset of word learning, the categoriza-
tion module has already formed a relatively robust
set of lexical categories. This assumption can be jus-
tified in the case of adult learners of a second or ar-
tificial language. But children’s acquisition of cate-
gories is most probably interleaved with the acquisi-
tion of word meaning, and these two processes must
ultimately be studied simultaneously.

In this paper, we investigate concurrent acquisi-
tion of word meanings and lexical categories. We
use an online version of the LDA algorithm to
induce a set of word classes from child-directed
speech, and integrate them into an existing prob-
abilistic model of word learning which combines
cross-situational evidence with cues from lexical
categories. Through a number of simulations of a
word learning scenario, we show that our automat-
ically and incrementally induced categories signifi-
cantly improve the performance of the word learning
model, and are closely comparable to a set of gold-
standard, manually-annotated part of speech tags.

2 A Word Learning Model

We want to investigate whether lexical categories
(i.e. word classes) that are incrementally induced
from child-directed speech can improve the perfor-
mance of a cross-situational word learning model.
For this purpose, we use the model of Alishahi and
Fazly (2010). This model uses a probabilistic learn-
ing algorithm for combining evidence from word—
referent co-occurrence statistics and the meanings
associated with a set of pre-defined categories. They
use child-directed utterances, manually annotated
with a small set of part of speech tags, from the
Manchester corpus (Theakston et al. 2001) in the
CHILDES database (MacWhinney 1995). Their ex-
perimental results show that integrating these gold-
standard categories into the algorithm boosts its per-
formance over a pure cross-situational version.
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The model of Alishahi and Fazly (2010) has the
suitable architecture for our goal: it provides an in-
tegrated learning mechanism which combines evi-
dence from word-referent co-occurrence with cues
from the meaning representation associated with
word categories. However, the model has two ma-
jor shortcomings. First, it assumes that lexical cate-
gories are formed and finalized prior to the onset of
word learning and that a correct and unique category
for a target word can be identified at each point in
time, assumptions that are highly unlikely. Second,
it does not handle any ambiguity in the meaning of
a word. Instead, each word is assumed to have only
one correct meaning. Considering the high level of
lexical ambiguity in most natural languages, this as-
sumption unreasonably simplifies the word learning
problem.

To investigate the plausibility of integrating word
and category learning, we use an online algorithm
for automatically and incrementally inducing a set
of lexical categories. Moreover, we use each word in
its original form instead of lemmatizing them, which
implies that categories contain different morpholog-
ical forms of the same word. By applying these
changes, we are able to study the contribution of lex-
ical categories to word learning in a more realistic
scenario.

Representation of input. The input to the model
consists of a sequence of utterances, each paired
with a representation of an observed scene. We rep-
resent an utterance as a set of words, U = {w}
(e.g. {she, went, home, ...}), and the corresponding
scene as a set of semantic features, S = {f} (e.g.
{ANIMATE, HUMAN, FEMALE, ...}).

Word and category meaning. We represent the
meaning of a word as a time-dependent probability
distribution p® (-|w) over all the semantic features,
where p*)(f|w) is the probability of feature f be-
ing associated with word w at time ¢. In the absence
of any prior knowledge, the model assumes a uni-
form distribution over all features as the meaning of
a novel word. Also, a function cat® (w) gives us
the category to which a word w in utterance U® be-
longs.

At each point in time, a category ¢ contains a set
of word tokens. We assign a meaning to each cat-



egory as a weighted sum of the meaning learned
so far for each of its members, or p(*)(flc) =
(1/]e]) e P (f|w), where |¢] is the number of
word tokens in c at the current moment.

Learning algorithm. Given an utterance-scene pair
(U®, S®) received at time ¢, the model first calcu-
lates an alignment score a for each word w € U®
and each semantic feature f € S®). A semantic fea-
ture can be aligned to a word according to the mean-
ing acquired for that word from previous observa-
tions (word-based alignment, or a,,). Alternatively,
distributional clues of the word can be used to de-
termine its category, and the semantic features can
be aligned to the word according to the meaning as-
sociated to its category (category-based alignment,
or a.). We combine these two sources of evidence
when estimating an alignment score:

a(w|f,UD,SU) = Nw) x ay(w|f,UD,50) (1)
(1= A(w)) X ac(w|f,U®, M)

where the word-based and category-based alignment
scores are estimated based on the acquired meanings
of the word and its category, respectively:

(t-1)

au(wlf,U0,50) = L)
> oI (flwr)
wkEU(t)

P!~ (fleat(w))
S I (fleat(wy))

wkEU(t)

ac(w‘fv U(t)a S(t)) -

The relative contribution of the word-based versus
the category-based alignment is determined by the
weight function A(w). Cross-situational evidence
is a reliable cue for frequent words; on the other
hand, the category-based score is most informative
when the model encounters a low-frequency word
(See Alishahi and Fazly (2010) for a full analysis of
the frequency effect). Therefore, we define A(w) as
a function of the frequency of the word n(w):

A(w) = n(w)/(n(w) +1)

Once an alignment score is calculated for each
word w € U® and each feature f € S, the model
revises the meanings of all the words in U® and
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their corresponding categories as follows:
assoc®) (w, f) = assoc 1 (w, f) + a(w|f, UV, $®)

where assoc*~1) (w, f) is zero if w and f have not
co-occurred before. These association scores are
then used to update the meaning of the words in the
current input:

assoc®) (f, w)

Z assoc) (f, w)

fj€.7:

PO (flw) = )

where F is the set of all features seen so far. We use
a smoothed version of this formula to accommodate
noisy or rare input. This process is repeated for all
the input pairs, one at a time.

Uniform categories. Adding the category-based
alignment as a new factor to Eqn. (1) might im-
ply that the role of categories in this model is noth-
ing more than smoothing the cross-situational-based
alignment of words and referents. In order to in-
vestigate this issue, we use the following alignment
formula as an informed baseline in our experiments,
where we replace a.(-|f, U®, S®)) with a uniform
distribution:'

a(w|f, U, SO) = Mw) x ay(w]f,UD,5D) (3)

1
Aw)) x W

+(1—
where a,, (w|f, U®), S®)) and A(w) are estimated as
before. In our experiments in Section 4, we refer to
this baseline as the ‘uniform’ condition.

3 Online induction of word classes with
LDA

Empirical findings suggest that young children form
their knowledge of abstract categories, such as
verbs, nouns, and adjectives, gradually (e.g. Gel-
man and Taylor 1984, Kemp et al. 2005). In ad-
dition, several unsupervised computational mod-
els have been proposed for inducing categories of
words which resemble part-of-speech categories, by

"We thank an anonymous reviewers for suggesting this con-
dition as an informed baseline.



drawing on distributional properties of their con-
text (see for example Redington et al. 1998, Clark
2000, Mintz 2003, Parisien et al. 2008, Chrupata
and Alishahi 2010). However, explicit accounts of
how such categories can be integrated in a cross-
situational model of word learning have been rare.
Here we adopt an online version of the model pro-
posed in Chrupata (2011), a method of soft word
class learning using Latent Dirichlet Allocation. The
approach is much more efficient than the commonly
used alternative (Brown clustering, (Brown et al.
1992)) while at the same time matching or outper-
forming it when the word classes are used as au-
tomatically learned features for supervised learning
of various language understanding tasks. Here we
adopt this model as our approach to learning lexical
categories.

In Section 3.1 we describe the LDA model for
word classes; in Section 3.2 we discuss the online
Gibbs sampler we use for inference.

3.1 Word class learning with LDA

Latent Dirichlet Allocation (LDA) was introduced
by Blei et al. (2003) and is most commonly used
for modeling the topic structure in document collec-
tions. It is a generative, probabilistic hierarchical
Bayesian model that induces a set of latent variables,
which correspond to the topics. The topics them-
selves are multinomial distributions over words.

The generative structure of the LDA model is the
following:

¢y ~ Dirichlet(3), ke[l,K]
64 ~ Dirichlet(«), de[1,D] @
zn, ~ Categorical(6,), ng € [1, Ny

wy,, ~ Categorical(¢z, ), na € [1, N

Chrupata (2011) reinterprets the LDA model in
terms of word classes as follows: K is the number
of classes, D is the number of unique word types,
Ny is the number of context features (such as right or
left neighbor) associated with word type d, 2y, is the
class of word type d in the ng‘ context, and wy,, is the
ng‘ context feature of word type d. Hyperparameters
« and (3 control the sparseness of the vectors 6, and

o
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Wordtype Features
How dop
do Howy youp youp
you doy, dop

Table 1: Matrix of context features

1.8M words (CHILDES)  100M words (BNC)

train car can will
give  bring || June  March
shoes  clothes | man  woman
“book  hole | black  white
“monkey rabbit || business language

Table 2: Most similar word pairs

As an example consider the small corpus consist-
ing of the single sentence How do you do. The rows
in Table 1 show the features w; ...wy, for each
word type d if we use each word’s left and right
neighbors as features, and subscript words with j,
and g to indicate left and right.

After inference, the §; parameters correspond to
word class probability distributions given a word
type while the ¢y, correspond to feature distributions
given a word class: the model provides a probabilis-
tic representation for word types independently of
their context, and also for contexts independently of
the word type.

Probabilistic, soft word classes are more expres-
sive than hard categories. First, they make it
easy and efficient to express shared ambiguities:
Chrupata (2011) gives an example of words used
as either first names or surnames, and this shared
ambiguity is reflected in the similarity of their word
class distributions. Second, with soft word classes it
becomes easy to express graded similarity between
words: as an example, Table 2 shows a random se-
lection out of the 100 most similar word pairs ac-
cording to the Jensen-Shannon divergence between
their word class distributions, according to a word
class model with 25 classes induced from (i) 1.8 mil-
lion words of the CHILDES corpus or (ii) 100 mil-
lion word of the BNC corpus. The similarities were
measured between each of the 1000 most frequent
CHILDES or BNC words.



3.2 Online Gibbs sampling for LDA

There have been a number of attempts to develop
online inference algorithms for topic modeling with
LDA. A simple modification of the standard Gibbs
sampler (0-LDA) was proposed by Song et al.
(2005) and Banerjee and Basu (2007).

Canini et al. (2009) experiment with three sam-
pling algorithms for online topic inference: (i) o-
LDA, (ii) incremental Gibbs sampler, and (iii) a par-
ticle filter. Only o-LDA is truly online in the sense
that it does not revisit previously seen documents.
The other two, the incremental Gibbs sampler and
the particle filter, keep seen documents and periodi-
cally resample them. In Canini et al.’s experiments
all of the online algorithms perform worse than the
standard batch Gibbs sampler on a document clus-
tering task.

Hoffman et al. (2010) develop an online version
of the variational Bayes (VB) optimization method
for inference for topic modeling with LDA. Their
method achieves good empirical results compared
to batch VB as measured by perplexity on held-
out data, especially when used with large minibatch
sizes.

Online VB for LDA is appropriate when stream-
ing documents: with online VB documents are rep-
resented as word count tables. In our scenario where
we apply LDA to modeling word classes we need to
process context features from sentences arriving in
a stream: i.e. we need to sample entries from a ta-
ble like Table 1 in order of arrival rather than row
by row. This means that online VB is not directly
applicable to online word-class induction.

However it also means that one issue with o-LDA
identified by Canini et al. (2009) is ameliorated.
When sampling in a topic modeling setting, docu-
ments are unique and are never seen again. Thus,
the topics associated with old documents get stale
and need to be periodically rejuvenated (i.e. resam-
pled). This is the reason why the incremental Gibbs
sampler and the particle filter algorithms in Canini
et al. (2009) need to keep old documents around and
cannot run in a true online fashion. Since for word
class modeling we stream context features as they
arrive, we will continue to see features associated
with the seen word types, and will automatically re-
sample their class assignments. In exploratory ex-
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periments we have seen that this narrows the per-
formance gap between the o-LDA sampler and the
batch collapsed Gibbs sampler.

We present our version of the 0-LDA sampler in
Algorithm 1. For each incoming sentence ¢ we run J
passes of sampling, updating the counts tables after
each sampling step. We sample the class assignment
2z, for feature wy; according to:

("5 + ) x (n{"}" + )
NEEE
®)
where n; @ stands for the number of times class z
co-occurred with word type d up to step ¢, and sim-
ilarly n;"" is the number of times feature w was as-
signed to class z. V4 is the number of unique features
seen up to step ¢, while v and 3 are the LDA hyper-
parameters. There are two differences between the
original 0-LDA and our version: we do not initialize
the algorithm with a batch run over a prefix of the
data, and we allow more than one sampling pass per
sentence.” Exploratory experiments have shown that
batch initialization is unnecessary, and that multiple
passes typically improve the quality of the induced
word classes.

P(Zt|Zt—1,Wt,dt) X

Algorithm 1 Online Gibbs sampler for word class
induction with LDA
fort =1— oo do
forj=1— Jdo
for:=1— I;do
sample 2, ~ P(z,|2¢,—1, Wy,, dt;)

W, 2t;,dt;

. Zt
increment 7, and n;

Figure 1 shows the top 10 words for each of the
10 word classes induced with our online Gibbs sam-
pler from 1.8 million words of CHILDES. Similarly,
Figure 2 shows the top 10 words for 5 randomly cho-
sen topics out of 50, learned online from 100 million
words of the BNC.

The topics are relatively coherent and at these lev-
els of granularity express mostly part of speech and
subcategorization frame information.

Note that for each word class we show the words
most frequently assigned to it while Gibbs sampling.

Note that we do not allow multiple passes over the stream

of sentences. Rather, while processing the current sentence, we
allow the words in this sentence to be sampled more than once.



do are have can not go put did get play

going want bit go have look got will at little

Figure 1: Top 10 words for 10 classes learned from
CHILDES

I you he it they we she , You He

the his her their this an that its your my

Figure 2: Top 10 words of 5 randomly chosen classes
learned from BNC

Since we are dealing with soft classes, most word-
types have non-zero assignment probabilities for
many classes. Thus frequently occurring words such
as not will typically be listed for several classes.

4 Evaluation

4.1 Experimental setup

As training data, we extract utterances from the
Manchester corpus (Theakston et al. 2001) in the
CHILDES database (MacWhinney 1995), a corpus
that contains transcripts of conversations with chil-
dren between the ages of 1 year, 8 months and 3
years. We use the mother’s speech from transcripts
of 12 children (henceforth referred to by children’s
names).

We run word class induction while simultane-
ously outputting the highest scoring word-class la-
bel for each word: for a new sentence, we sam-
ple class assignments for each feature (doing J
passes), update the counts, and then for each word
dy, output the highest scoring class label according

z,d¢. z,dy,
to argmax, n, ' (wheren, * stands for the num-
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ber of times class z co-occurred with word type d;,
up to step t).

During development we ran the online word class
induction module on data for Aran, Becky, Carl and
Anne and then started the word learning module for
the Anne portion while continuing inducing cate-
gories. We then evaluated word learning on Anne.
We chose the parameters of the word class induc-
tion module based on those development results:
S a=10,4=0.1, K =10and J = 20.

We used cross-validation for the final evaluation.
For each of six data files (Anne, Aran, Becky, Carl,
Dominic and Gail), we ran word-class induction on
the whole corpus with the chosen file last, and then
started applying the word-learning algorithm on this
last chosen file (while continuing with category in-
duction). We evaluated how well word meanings
were learned in those six cases.

We follow Alishahi and Fazly (2010) in the con-
struction of the input. We need a semantic represen-
tation paired with each utterance. Such a represen-
tation is not available from the corpus and has to be
constructed. We automatically construct a gold lexi-
con for all nouns and verbs in this corpus as follows.
For each word, we extract all hypernyms for its first
sense in the appropriate (verb or noun) hierarchy in
WordNet (Fellbaum 1998), and add the first word in
the synset of each hypernym to the set of semantic
features for the target word. For verbs, we also ex-
tract features from VerbNet (Kipper et al. 2006). A
small subset of words (pronouns and frequent quan-
tifiers) are also manually added. This lexicon repre-
sents the true meaning of each word, and is used in
generating the scene representations in the input and
in evaluation.

For each utterance in the input corpus, we form
the union of the feature representations of all its
words. Words not found in the lexicon (i.e. for which
we could not extract a semantic representation from
WordNet and VerbNet) are removed from the utter-
ance (only for the word learning module).

In order to simulate the high level of noise that
children receive from their environment, we follow
Alishahi and Fazly (2010) and pair each utterance
with a combination of its own scene representation
and the scene representation for the following utter-
ance. This decision was based on the intuition that
consequent utterances are more likely to be about re-



Utterance: {
Scene: {

mommy, ate, broccoli }
ANIMATE, HUMAN, ...,
CONSUMPTION, ACTION, ...
BROCCOLI, VEGETABLE, ...
PLATE, OBJECT, ... }

Figure 3: A sample input item to the word learning model

lated topics and scenes. This results in a (roughly)
200% ambiguity. In addition, we remove the mean-
ing of one random word from the scene representa-
tion of every second utterance in an attempt to sim-
ulate cases where the referent of an uttered word is
not within the perception field (such as ‘daddy is not
home yet’). A sample utterance and its correspond-
ing scene are shown in Figure 3.

As mentioned before, many words in our input
corpus are polysemous. For such words, we extract
different sets of features depending on their manu-
ally tagged part of speech and keep them in the lex-
icon (e.g. the lexicon contains two different entries
for set:N and set: V). When constructing a scene rep-
resentation for an utterance which contains an am-
biguous word, we choose the correct sense from our
lexicon according to the word’s part of speech tag in
Manchester corpus.

In the experiments reported in the next section,
we assess the performance of our model on learning
words at each point in time: for each target word,
we compare its set of features in the lexicon with
its probability distribution over the semantic fea-
tures that the model has learned. We use mean aver-
age precision (MAP) to measure how well p(®) (-|w)
ranks the features of w.

4.2 Learning curves

To understand whether our categories contribute to
learning of word—meaning mappings, we compare
the pattern of word learning over time in four con-
ditions. The first condition represents our baseline,
in which we do not use category-based alignment
in the word learning model by setting A(w) = 1
in Eqn. (1). In the second condition we use a set
of uniformly distributed categories for alignment,
as estimated by Eqn. (3) on page 3 (this condition
is introduced to examine whether categories act as
more than a simple smoothing factor in the align-
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Category | Avg. MAP  Std. Dev.
None 0.626 0.032
Uniform 0.633 0.032
LDA 0.659 0.029
POS 0.672 0.030

Table 3: Final Mean Average Precision scores

ment process.) In the third condition we use the cat-
egories induced by online LDA in the word learning
model. The fourth condition represents the perfor-
mance ceiling, in which we use the pre-defined and
manually annotated part of speech categories from
the Manchester corpus.

Table 3 shows the average and the standard devia-
tion of the final MAP scores across the six datasets,
for the four conditions (no categories, uniform cat-
egories, LDA categories and gold part-of-speech
tags). The differences between LDA and None, and
between LDA and Uniform are statistically signif-
icant according to the paired ¢ test (p < 0.01),
while the difference between LDA and POS is not
(p = 0.16).

Figure 4 shows the learning curves in each con-
dition, averaged over the six splits explained in the
previous section. The top panel shows the average
learning curve over the minimum number of sen-
tences across the six sub-corpora (8800 sentences).
The curves show that our LDA categories signifi-
cantly improve the performance of the model over
both baselines. That means that using these cate-
gories can improve word learning compared to not
using them and relying on cross-situational evidence
alone. Moreover, LDA-induced categories are not
merely acting as a smoothing function the way the
‘uniform’ categories are. Our results show that they
are bringing relevant information to the task at hand,
that is, improving word learning by using the sen-
tential context. In fact, this improvement is compa-
rable to the improvement achieved by integrating the
‘gold-standard’ POS categories.

The middle and bottom panels of Figure 4 zoom
in on shorter time spans (5000 and 1000 sentences,
respectively). These diagrams suggest that the pat-
tern of improvement over baseline is relatively con-
stant, even at very early stages of learning. In fact,
once the model receives enough input data, cross-
situational evidence becomes stronger (since fewer



words in the input are encountered for the first time)
and the contribution of the categories becomes less
significant.

4.3 Class granularity

In Figure 5 we show the influence of the number of
word classes used on the performance in word learn-
ing. It is evident that in the range between 5 to 20
classes the performance of the word learning module
is quite stable and insensitive to the exact class gran-
ularity. Even with only 5 classes the model can still
roughly distinguish noun-like words from verb-like
words from pronoun-like words, and this will help
learn the meaning elements derived from the higher
levels of WordNet hierarchy. Notwithstanding that,
ideally we would like to avoid having to pre-specify
the number of classes for the word class induction
module: we thus plan to investigate non-parametric
models such as Hierarchical Dirichlet Process for
this purpose.

5 Related Work

This paper investigates the interplay between two
language learning tasks which have so far been stud-
ied in isolation: the acquisition of lexical categories
from distributional clues, and learning the mapping
between words and meanings. Previous models
have shown that lexical categories can be learned
from unannotated text, mainly drawing on distri-
butional properties of words (e.g. Redington et al.
1998, Clark 2000, Mintz 2003, Parisien et al. 2008,
Chrupata and Alishahi 2010).

Independently, several computational models
have exploited cross-situational evidence in learning
the correct mappings between words and meanings,
using rule-based inference (Siskind 1996), neural
networks (Li et al. 2004, Regier 2005), hierarchical
Bayesian models (Frank et al. 2007) and probabilis-
tic alignment inspired by machine translation mod-
els (Yu 2005, Fazly et al. 2010).

There are only a few existing computational mod-
els that explore the role of syntax in word learning.
Maurits et al. (2009) investigates the joint acquisi-
tion of word meaning and word order using a batch
model. This model is tested on an artificial language
with a simple first order predicate representation of
meaning, and limited built-in possibilities for word
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Figure 4: Mean average precision for all observed words
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POS categories, with LDA categories, with uniform cate-
gories, and without using categories. Each panel displays
a different time span.
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Figure 5: Mean average precision for all observed words
at each point in time in four conditions: using online LDA
categories of varying numbers of 20, 10 and 5, and with-
out using categories.

order. The model of Niyogi (2002) simulates the
mutual bootstrapping effects of syntactic and seman-
tic knowledge in verb learning, that is the use of syn-
tax to aid in inducing the semantics of a verb, and the
use of semantics to narrow down possible syntactic
frames in which a verb can participate. However,
this model relies on manually assigned priors for as-
sociations between syntactic and semantic features,
and is tested on a toy language with very limited vo-
cabulary and a constrained syntax.

Yu (2006) integrates automatically induced syn-
tactic word categories into his model of cross-
situational word learning, showing that they can im-
prove the model’s performance. Yu’s model also
processes input utterances in a batch mode, and its
evaluation is limited to situations in which only a
coarse distinction between referring words (words
that could potentially refer to objects in a scene, e.g.
concrete nouns) and non-referring words (words that
cannot possibly refer to objects, e.g. function words)
is sufficient. It is thus not clear whether information
about finer-grained categories (e.g. verbs and nouns)
can indeed help word learning in a more naturalistic
incremental setting.

On the other hand, the model of Alishahi and
Fazly (2010) integrates manually annotated part-of-
speech tags into an incremental word learning al-
gorithm, and shows that these tags boost the over-
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all word learning performance, especially for infre-
quent words.

In a different line of research, a number of mod-
els have been proposed which study the acquisition
of the link between syntax and semantics within the
Combinatory Categorial Grammar (CCG) frame-
work (Briscoe 1997, Villavicencio 2002, Buttery
2006, Kwiatkowski et al. 2012). These approaches
set the parameters of a semantic parser on a cor-
pus of utterances paired with a logical form as their
meaning.

These models bring in extensive and detailed prior
assumptions about the nature of the syntactic repre-
sentation (i.e. atomic categories such as S and NP,
and built-in rules which govern their combination),
as well as about the representation of meaning via
the formalism of lambda calculus.

This is fundamentally different than the approach
taken in this paper, which in comparison only as-
sumes very simple syntactic and semantic represen-
tations of syntax. We view word and category learn-
ing as stand-alone cognitive tasks with independent
representations (word meanings as probabilistic col-
lections of properties or features as opposed to sin-
gle symbols; categories as sets of word tokens with
similar context distribution) and we do not bring in
any prior knowledge of specific atomic categories.

6 Conclusion

In this paper, we show the plausibility of using
automatically and incrementally induced categories
while learning word meanings. Our results suggest
that the sentential context that a word appears in
across its different uses can be used as a complemen-
tary source of guidance for mapping it to its featural
meaning representation.

In Section 4 we show that the improvement
achieved by our categories is comparable to that
gained by integrating gold POS categories. This re-
sult is very encouraging, since manually assigned
POS tags are typically believed to set the upper
bound on the usefulness of category information.

We believe that it automatically induced cate-
gories have the potential to do even better: Chrupata
and Alishahi (2010) have shown that categories in-
duced from usage data in an unsupervised fashion
can be used more effectively than POS categories in



a number of tasks. In our experiments here on the
development data we observed some improvements
over POS categories. This advantage can result from
the fact that our categories are more fine-grained (if
also more noisy) than POS categories, which some-
times yields more accurate predictions.

One important characteristic of the category in-
duction algorithm we have used in this paper is that
it provides a soft categorization scheme, where each
word is associated with a probability distribution
over all categories. In future, we plan to exploit this
feature: when estimating the category-based align-
ment, we can interpolate predictions of multiple cat-
egories to which a word belongs, weighted by its
probabilities associated with membership in each
category.
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