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Abstract

Evidence-based medicine is an approach
whereby clinical decisions are supported by
the best available findings gained from scien-
tific research. This requires efficient access
to such evidence. To this end, abstracts in
evidence-based medicine can be labeled using
a set of predefined medical categories, the so-
called PICO criteria. This paper presents an
approach to automatically annotate sentences
in medical abstracts with these labels. Since
both structural and sequential information are
important for this classification task, we use
kLog, a new language for statistical relational
learning with kernels. Our results show a clear
improvement with respect to state-of-the-art
systems.

1 Introduction

Evidence-based medicine (EBM) or evidence-based
practice (EBP) combines clinical expertise, the pref-
erences and values of the patient and the best
available evidence to make good patient care deci-
sions. Clinical research findings are systematically
reviewed, appraised and used to improve the patient
care, for which efficient access to such evidence is
required. In order to facilitate the search process,
medical documents are labeled using a set of prede-
fined medical categories, the PICO criteria. PICO is
an acronym for the mnemonic concepts that are used
to construct queries when searching for scientific ev-
idence in the EBM process. The need to automatize
the annotation process has initiated research into au-
tomatic approaches to annotate sentences in medical
documents with the PICO labels.

As indicated by Kim et al. (2011), both the struc-
tural information of the words in the sentence, and
that of the sentences in the document are important
features for this task. Furthermore, sequential infor-
mation can leverage the dependencies between dif-
ferent sentences in the text. Therefore we propose an
approach using kLog (Frasconi et al., 2012) to tackle
this problem. kLog is a new language for statistical
relational learning with kernels, that is embedded in
Prolog, and builds upon and links together concepts
from database theory, logic programming and learn-
ing from interpretations. Learning from interpreta-
tions is a logical and relational learning setting (De
Raedt et al., 2008) in which the examples are inter-
pretations, that is, sets of tuples that are true in the
examples. In a sense, each example can be viewed
as a small relational database. kLog is able to trans-
form relational into graph-based representations and
apply kernel methods to extract an extended high-
dimensional feature space.

The choice for kLog was motivated by previous
results (Verbeke et al., 2012), where we showed that
a statistical relational learning approach using kLog
is able to process the contextual aspects of language
improving on state-of-the-art results for hedge cue
detection. However, the current task adds two levels
of complexity. First, next to the relations between
the words in the sentence, now also the relations be-
tween the sentences in the document become impor-
tant. In the proposed approach, we first generate a
feature space with kLog that captures the intrasen-
tential properties and relations. Hereafter, these fea-
tures serve as input for a structured output support
vector machine that can handle sequence tagging
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(Tsochantaridis et al., 2004), in order to take the
intersentential features into account. Second, since
there are more than two categories, and each sen-
tence can have multiple labels, the problem is now a
multiclass multilabel classification task.

The main contribution of this paper is that we
show that kLog’s relational nature and its ability
to declaratively specify and use background knowl-
edge is beneficial for natural language learning prob-
lems. This is shown on the NICTA-PIBOSO corpus,
for which we present results that indicate a clear im-
provement on the state-of-the-art.

The remainder of this paper is organized as fol-
lows. In Section 2, we outline earlier work that is
related to the research presented here. Section 3 de-
scribes the methodology of our method. We present
a thorough evaluation of our method in Section
4. The last section draws conclusions and presents
some ideas for future work.

2 Related Work

EBM is an approach to clinical problem-solving
based on “systematically finding, appraising, and us-
ing contemporaneous research findings as the ba-
sis for clinical decisions” (Rosenberg and Donald,
1995). The evidence-based process consists of four
steps: (1) Formulating a question from a patient’s
problem; (2) Searching the literature for relevant
clinical articles; (3) Evaluating the evidence; And
(4) implementing useful findings in clinical prac-
tice. Given the amounts of medical publications
available in databases such as PubMed, automating
step 2 is crucial to help doctors in their practice.
Efforts in this direction from the NLP community
have so far focused on corpus annotation (Demner-
Fushman and Lin, 2007; Kim et al., 2011), text cate-
gorization (Davis-Desmond and Mollá, 2012), sum-
marization (Mollá and Santiago-Martı́nez, 2011),
and question-anwering (Niuet al., 2003; Demner-
Fushman and Lin, 2007).

The existing corpora are usually annotated with
the PICO mnemonic (Armstrong, 1999) concepts,
that are used to build queries when searching for
literature for EBM purposes. The PICO concepts
are: primary Problem (P) or population, main Inter-
vention (I), main intervention Comparison (C), and

Outcome of intervention (O). PICO helps determin-
ing what terms are important in a query and there-
fore it helps building the query, which is sent to the
search repositories. Once the documents are found,
they need to be read by a person who eliminates ir-
relevant documents.

The first attempt to classify PICO concepts is pre-
sented in Demner-Fushman and Lin (2007), who
apply a rule-based approach to identify sentences
where PICO concepts occur and a supervised ap-
proach to classify sentences that contain an Out-
come. The features used by this classifier are n-
grams, position, and semantic information from the
parser used to process the data. The system is trained
on 275 abstracts manually annotated. The accura-
cies reported range from 80% for Population, 86%
for Problem, 80% for Intervention, and, from 64%
to 95% for Outcome depending on the test set of ab-
stracts.

Kim et al. (2011) perform a similar classification
task in two steps. First a classifier identifies the sen-
tences that contain PICO concepts, and then another
classifier assigns PICO tags to the sentences found
to be relevant by the previous classifier. The sys-
tem is based on a CRF algorithm and is trained on
the NICTA-PIBOSO corpus. This dataset contains
1,000 medical abstracts manually annotated with an
extension of the PICO tagset, for which the defini-
tions are listed in Table 1. The annotation is per-
formed at sentence level and one sentence may have
more than one tag. An example of an annotated
abstract from the corpus can be found in the sup-
plementary material. The features used by the al-
gorithm include features derived from the context,
semantic relations, structure and sequencing of the
text. The system is evaluated for 5-way and 6-way
classification and results are provided apart from
structured and unstructured abstracts. The F-scores
for structured abstracts is 89.32% for 5-way classifi-
cation and 80.88% for 6-way classification, whereas
for unstructured abstracts it is 71.54% for 5-way
classification and 64.66% for 6-way classification.

Chung (2009) uses CRF to classify PICO con-
cepts by combining them with general categories as-
sociated with rhetorical roles: Aim, Method, Results
and Conclusion. Her system is tested on corpora of
abstracts of randomized control trials. First struc-
tured abstracts with headings labeled with PICO
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Background Material that informs and may place the current study in perspective, e.g. work that preceded the
current; information about disease prevalence; etc.

Population The group of individual persons, objects or items comprising the study’s sample, or from which
the sample was taken for statistical measurement

Intervention The act of interfering with a condition to modify it or with a process to change its course (includes
prevention)

Outcome The sentence(s) that best summarizes the consequences of an intervention
Study Design The type of study that is described in the abstract
Other Any sentence not falling into one of the other categories and presumed to provide little help with

clinical decision making, i.e. non-key or irrelevant sentences

Table 1: Definitions of the semantic tags used as annotation categories (taken from Kim et al. (2011)).

concepts are used. A sentence level classification
task is performed, assigning only one rhetorical role
per sentence. The F-scores obtained range from 0.93
to 0.98. Then another sentence level classification
task is performed to automatically assign the labels
Intervention, Participant and Outcome Measures to
sentences in unstructured and structured abstracts
without headings. F-scores of up to 0.83 and 0.84
are obtained for Intervention and Outcome Measure
sentences.

Other work aimed at identifying rhetorical zones
in biomedical articles. In this case areas of text are
classified in terms of the rhetorical categories In-
troduction, Methods, Results and Discussion (IM-
RAD) (Agarwal and Yu, 2009) or richer categories,
such as problem-setting or insight (Mizuta et al.,
2006).

There exists a wide range of statistical relational
learning systems (Getoor and Taskar, 2007; De
Raedt et al., 2008), and many of these systems
are in principle useful for natural language process-
ing. The most popular formalism today is Markov
Logic, which has already been used for natural lan-
guage processing tasks such as semantic role label-
ing (Riedel and Meza-Ruiz, 2008) and coreference
resolution (Poon and Domingos, 2008). With re-
spect to Markov Logic, two distinguishing features
of kLog are that 1) it employs kernel based meth-
ods grounded in statistical learning theory, and 2) it
employs a Prolog like language for defining and us-
ing background knowledge. As Prolog is a program-
ming language, this is more flexible that the formal-
ism used by Markov Logic.

3 Methodology

In learning from examples, or interpretations (De
Raedt et al., 2008), the instances are sampled iden-
tically and independently from some unknown but
fixed distribution. They can be represented as pairs
z = (x, y), in which x represents the inputs and y
the outputs. An example interpretation can be found
in Figure 3, where the hasCategory relation repre-
sents y in this case, since it is the target relation we
want to predict. The inputs x are formed by all other
facts. The task is now to learn a function h : X → Y
that maps the inputs to the outputs. Sentences may
have multiple labels. Hence this is a structured out-
put task where the output is a sequence of sets of
labels attached to the sentences in a given document.

kLog is the new statistical relational language for
learning with kernels that we use to tackle the PICO
categories classification task. The novelty of kLog
is that, based on the regular, linguistic features, it
allows to define an extended high-dimensional fea-
ture space that is also able to take relational features
into account in a principled manner. Furthermore,
its declarative approach offers a flexible and inter-
pretable way to construct features.

The choice of kLog is motivated by our previous
results (Verbeke et al., 2012), where we showed that
the relational representation of the domain as used
by kLog is able to take the contextual aspects of lan-
guage into account. Whereas there we only used
the relations at the sentence level, the current task
adds a new level of complexity, since the identifica-
tion of PICO categories in abstracts also requires to
take into account various relations between the sen-
tences of an abstract. The general workflow of our
approach is depicted in Figure 1, which will be de-
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Figure 1: General kLog workflow.

scribed step by step in the following paragraphs.

Preprocessing The sentences have been prepro-
cessed with a named entity tagger and a dependency
parser.

Named entity tagging has been performed with
the BiogaphTA named entity module, which
matches token sequences with entries in the UMLS
database1. UMLS integrates over 2 million names
for some 900,000 concepts from more than 60 fami-
lies of biomedical vocabularies (Bodenreider, 2004).
The tagger matches sequences with a length of max-
imum 4 tokens. This covers 66.2% of the UMLS
entries. By using UMLS, different token sequences
referring to the same concept can be mapped to
the same concept identifier (CID). The BiographTA
named entity tagger has been evaluated on the
BioInfer corpus (Pyysalo et al., 2007) obtaining a
72.02 F1 score.

Dependency parsing has been performed with the
GENIA dependency parser GDep (Sagae and Tsu-
jii, 2007), which uses a best-first probabilistic shift-
reduce algorithm based on the LR algorithm (Knuth,
1965) and extended by the pseudo-projective pars-
ing technique. This parser is a version of the KSDep
dependency parser trained on the GENIA Treebank
for parsing biomedical text. KSDep was evaluated
in the CoNLL Shared Task 2007 obtaining a La-
beled Attachment Score of 89.01% for the English
dataset. GDEP outputs the lemmas, chunks, Genia
named entities and dependency relations of the to-
kens in a sentence.

This information can be represented as an
Entity/Relationship (E/R) diagram, a modeling
paradigm that is frequently used in database theory
(Garcia-Molina et al., 2008). The E/R-model for the

1From UMLS only the MRCONSO.RRF and MRSTY.RRF
files are used.

problem under consideration is shown in Figure 2,
which provides an abstract representation of the ex-
amples, i.e. medical abstracts in this case. We will
show later how this abstract representation can be
unrolled for each example, resulting in a graph; cf.
also Figure 4 for our example sentence. This rela-
tional database representation will serve as the input
for kLog.

w

depHead

next

wordID

depRel

lemma

POS-tag

chunktag

wordString

NEGenia

NEUMLS

sentence hasWord

class

sentID

hasCategory

nextS

Figure 2: E/R-diagram modeling the sentence identifica-
tion task.

The entities are the words and sentences in the
abstract. They are represented by the rectangles in
the E/R-model. Each entity can have a number of
properties attached to it, depicted by the ovals and
has a unique identifier (underlined properties). As
in database theory, each entity corresponds with a
tuple, or fact, in the database.

Figure 3 shows a part of an example interpretation
z. For example, w(w4 1,‘Surgical’,‘Surgical’,b-
np,jj,‘O’,‘O’) specifies a word entity, with w4 1 as
identifier and the other arguments as properties. As
indicated before, as lexical information we take the
token string itself, its lemma, the part-of-speech tag
and the chunk tag into account. We also include
some semantic information, namely two binary val-
ues indicating if the word is a (biological) named
entity. sentence(s4,4) represents a sentence entity,
with its index in the abstract as a property.

Furthermore, the E/R-diagram also contains a
number of relationships, which are represented by
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sentence(s4,4)
hasCategory(s4,‘background’)
w(w4_1,‘Surgical’,‘Surgical’,b-np,
jj,‘O’,‘O’) hasWord(s4,w4_1)
dh(w4_1,w4_2,nmod)
nextW(w4_2,w4_1)
w(w4_2,‘excision’,‘excision’,i-np,
nn,‘O’,‘O’) hasWord(s4,w4_2)
dh(w4_2,w4_5,sub)
nextW(w4_3,w4_2)
w(w4_3,‘of’,‘of’,b-pp,in,’O’,’O’)
hasWord(s4,w4_3)
dh(w4_3,w4_2,nmod)
nextW(w4_4,w4_3)
w(w4_4,‘CNV’,‘CNV’,b-np,nn,
‘B-protein’,‘O’) hasWord(s4,w4_4)
dh(w4_4,w4_3,pmod)
nextW(w4_5,w4_4)
...

Figure 3: Part of an example interpretation z, represent-
ing the example sentence in Figure 4.

the diamonds. They are linked to the entities that
participate in the relationship, or stand alone if they
characterize general properties of the interpretation.
An example relation is nextW(w4 2,w4 1), which
indicates the sequence of the words in the sentence.
dh(w4 1,w4 2,nmod) specifies that word w4 1 is
a noun modifier of word w4 2, and thus serves to
incorporate the dependency relationships between
the words. hasCategory(s4,‘background’) signi-
fies that sentence s4 is a sentence describing back-
ground information. This relation is the target re-
lation that we want to predict for this task and will
not be taken into account as a feature, but is listed in
the database and only used during the training of the
model.

Since the previously described entities and rela-
tionships are listed explicitly in the database, these
are called extensional relations, in contrast to the in-
tensional relations, as we will describe next.

Declarative feature construction A strength of
kLog is that it is also capable of constructing fea-
tures declaratively, by using intensional relations.
This enables one to encode additional background
knowledge based on a small set of preprocessed fea-

tures, which renders experimentation very flexible
and makes the results more interpretable. It further-
more allows one to limit the required features to the
core discriminative ones. These intensional features
are defined through definite clauses, and is done us-
ing an extension of the declarative programming lan-
guage Prolog. The following features were used.
We make a distinction between the features used for
structured and unstructured abstracts.

For structured abstracts, four intensional relations
were defined. The relation lemmaRoot(S,L) is
specified as:

lemmaRoot(S,L) ←
hasWord(S, I),
w(I,_,L,_,_,_,_),
dh(I,_,root).

For each sentence, it only selects the lemmas
of the root word in the dependency tree, which
markedly limits the number of word features used.
The following relations are related to, and try to
capture the document structure imposed by the sec-
tion headers present in the structured abstracts.
hasHeaderWord(S,X) identifies whether a sen-
tence is a header of a section. In order to realize this,
it selects the words of a sentence that count more
than four characters (to discard short names of bio-
logical entities), which all need to be uppercase.

hasHeaderWord(S,X) ←
w(W,X,_,_,_,_,_),
hasWord(S,W),
(atom(X) -> name(X,C) ; C = X),
length(C,Len),
Len > 4,
all_upper(C).

Also the sentences below a certain section header
need to be marked as belonging to this sec-
tion, which is done by the relation hasSection-
Header(S,X).

hasSectionHeader(S,X) ←
nextS(S1,S),
hasHeaderWord(S1,X).

hasSectionHeader(S,X) ←
nextS(S1,S),
not isHeaderSentence(S),
once(hasSectionHeader(S1,X)).
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For the unstructured abstracts, also the lemma-
Root relation is used, but next to the lemma, now
also the part-of-speech tag of the root word is taken
into account. Since the unstructured abstracts lack
section headers, other features were needed to dis-
tinguish between the different sections, for which
the relation prevLemmaRoot proved to be very in-
formative. It adds the lemma of the root word in the
previous sentence as a property to the current sen-
tence under consideration.

prevLemmaRoot(S,L) ←
nextS(S1,S),
lemmaRoot(S1,L,_).

The intensional predicates are grounded. This is
a proces similar to materialization in databases, that
is, the atoms implied by the background knowledge
and the facts in the example are all computed using
Prolog’s deduction mechanism. This leads to the
extensionalized database, in which both the exten-
sional as well as the grounded intensional predicates
are listed.

Graphicalization and feature generation In the
third step, the interpretations are graphicalized, i.e.
transformed into graphs. Since the facts that form
the interpretation still conform to the E/R-diagram,
this can be interpreted as unfolding the E/R-diagram
over the data. An example illustrating this process
is given in Figure 4. Each interpretation is converted
into a bipartite graph, for which there is a vertex for
every ground atom of every E-relation, one for every
ground atom of every R-relation, and an undirected
edge {e, r} if an entity e participates in relationship
r.

The obtained graphs can then be used in the next
step for feature generation. This is done by means
of a graph kernel κ, which calculates the similar-
ity between two graphicalized interpretations. Any
graph kernel that allows fast computations on large
graphs and has a flexible bias to enable heteroge-
neous features can in theory be applied. In the cur-
rent implementation, an extension of the Neighbor-
hood Subgraph Pairwise Distance Kernel (NSPDK)
(Costa and De Grave, 2010) is used.

NSPDK is a decomposition kernel (Haussler,
1999), in which pairs of subgraphs are compared
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nextS

nextS
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dh(sub)

dh(pmod)
  

hasWord
    

  

  

  

Figure 4: Graphicalization Gz of interpretation z.

to each other in order to calculate the similarity be-
tween two graphs. These subgraphs can be seen as
circles in the graph, and are defined by three hyper-
parameters. First of all, there is the center of the
subgraph, the kernel point, which can be any entity
or relation in the graph. The entities and relations
to be taken into account as kernel points are marked
beforehand as a subset of the intensional and exten-
sional domain relations. The radius r determines
the size of the subgraphs and defines which entities
or relations around the kernel point are taken into ac-
count. Each entity or relation that is within a number
of r edges away from the kernel point is considered
to be part of the subgraph. The third hyperparam-
eter, the distance d, determines how far apart from
each other the kernel points can be. Each subgraph
around a kernel point that is within a distance d or
less from the current kernel point will be considered.
This is captured by the relation Rr,d(Av, Bu, G) be-
tween two rooted subgraphs Av, Bu and a graph G,
which selects all pairs of neighborhood graphs of ra-
dius r whose roots are at distance d in a given graph
G.

The kernel κr,d(G,G
′) between graphs G and G′

on the relation Rr,d is then defined as:

κr,d(G,G
′) =

∑
Av , Bu ∈ R−1

r,d(G)

A′
v′ , B

′
u′ ∈ R−1

r,d(G′)

δ(Av, A
′
v′)δ(Bu, B

′
u′)

(1)
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For efficiency reasons, an upper bound is imposed
on the radius and distance parameters, which leads
to the following kernel definition:

Kr∗,d∗(G,G
′) =

r∗∑
r=0

d∗∑
d=0

κr,d(G,G
′) (2)

We hereby limit the sum of the κr,d kernels for all
increasing values of the radius and distance parame-
ter up to a maximum given value of r∗, respectively
d∗.

The result of this graphicalization and feature
generation process is an extended, high-dimensional
feature space, which serves as input for the statisti-
cal learner in the next step.

Learning The constructed feature space contains
one feature vector per sentence. This implies that
the sequence information of the sentences at the doc-
ument level is not taken into account yet. Since the
order of the sentences in the abstract is a valuable
feature for this prediction problem, a learner that
reflects this in the learning process is needed, al-
though in principle any statistical learner can be used
on the feature space constructed by kLog. There-
fore we opted for SVM-HMM2 (Tsochantaridis et
al., 2004), which is an implementation of structural
support vector machines for sequence tagging. In
contrast to a conventional Hidden Markov Model,
SVM-HMM is able to take these entire feature vec-
tors as observations, and not just atomic tokens.

In our case, the instances to be tagged are formed
by the sentences for which feature vectors were cre-
ated in the previous step. The qid is a special fea-
ture that is used in the structured SVM to restrict
the generation of constraints. Since every document
needs to be represented as a sequence of sentences,
in SVM-HMM, the qid’s are used to obtain the doc-
ument structure. The order of the HMM was set
to 2, which means that the two previous sentences
were considered for collective classification. The
cost value was set to 500, and was determined via
cross-validation. For epsilon, the default value, 0.5,
was kept, since this mainly only influences the run-
ning time and memory consumption during training.

2http://www.cs.cornell.edu/people/tj/
svm_light/svm_hmm.html

All S U
Nb. Abstracts 1000 376 624
Nb. Sentences 10379 4774 5605
- Background 2557 669 1888
- Intervention 690 313 377
- Outcome 4523 2240 2283
- Population 812 369 443
- Study Design 233 149 84
- Other 1564 1034 530

Table 2: Number of abstracts and sentences for Struc-
tured (S) and Unstructured (U) abstract sets, including
number of sentences per class (taken from (Kim et al.,
2011)).

4 Evaluation

We evaluate the performance of kLog against a base-
line system and a memory-based tagger (Daelemans
and van den Bosch, 2005). The results are also com-
pared against those from Kim et al. (2011), which is
the state-of-the-art system for this task.

4.1 Datasets

We perform our experiments on the NICTA-
PIBOSO dataset from Kim et al. (2011) (kindly pro-
vided by the authors). It contains 1,000 abstracts of
which 500 were retrieved from MEDLINE by query-
ing for diverse aspects in the traumatic brain injury
and spinal cord injury domain. The dataset consists
of two types of abstracts. If the abstract contains
section headings (e.g. Background, Methodology,
Results, etc.), it is considered to be structured. This
information can be used as a feature in the model.
The other abstracts are regarded unstructured.

The definitions of the semantic tags used as an-
notations categories are a variation on the PICO tag
set, with the addition of two additional categories
(see Table 1 in Section 2). Each sentence can be an-
notated with multiple classes. This renders the task
a multiclass multilabel classification problem. The
statistics on this dataset can be found in Table 2.

In order to apply the same evaluation setting as
Kim et al. (2011), we used the dataset from Demner-
Fushman et al. (2005) as external dataset. It con-
sists of 100 sentences of which 51 are structured.
Because the semantic tag set used for annotation
slightly differs from the one presented in Table 1,
and to make our results comparable, we will use the
same mapping as used in Kim et al. (2011).
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4.2 Baseline and benchmarks

We compare the kLog system to three other systems:
a baseline system, a memory-based system, and the
scores reported by Kim et al. (2011).

The memory-based system that we use is based
on the memory-based tagger MBT3 (Daelemans and
van den Bosch, 2005). This machine learner is orig-
inally designed for part-of-speech tagging. It pro-
cesses data on a sentence basis by carrying out se-
quential tagging, viz. the class label or other features
from previously tagged tokens can be used when
classifying a new token. In our setup, the sentences
of an abstract are taken as the processing unit and
the collection of all sentences in an abstract is taken
as one sequence.

The features that are used to label a sentence are
the class labels of four previous sentences, the am-
bitags of the following two sentences, the lemma of
the dependency root of the sentence, the position of
the sentence in the abstract, the lemma of the root
of the previous sentence, and section information.
For each root lemma, all possible class labels, as ob-
served in the training data, are concatenated into one
ambitag. These tags are stored in a list. An am-
bitag for a sentence is retrieved by looking up the
root lemma in this list. The position of the sentence
is expressed by a number. Section information is ob-
tained by looking for a previous sentence that con-
sists of only one token in uppercase. Finally, basic
lemmatization is carried out by removing a final S.
All other settings of MBT are the default settings
and no feature optimization nor feature selection has
been carried out to prevent overfitting.

When a class label contains multiple labels, like
e.g. population and study design, these labels are
concatenated in an alphabetically sorted manner.
This method of working reduces the multilabel prob-
lem to a problem with many different labels, i.e. the
label powerset method of Tsoumakas et al. (2010).

The baseline system is exactly the same as
the memory-based system except that no machine
learner is included. The most frequent class label in
the training data, i.e. Outcome, is assigned to each
instance. The memory-based system enables us to
compare kLog against a basic machine learning ap-
proach, using few features. The majority baseline

3http://ilk.uvt.nl/mbt [16 March 2012]

system enables us to compare the memory-based
system and kLog against a baseline in which no in-
formation about the observations is used.

4.3 Parametrization

From the kernel definition it might be clear that
the kLog hyperparameters, namely the distance d
and radius r, can have a strong influence on the
results. This requires a deliberate choice during
parametrization. From a linguistic perspective, the
use of unigrams and bigrams is justifiable, since
most phrases that reveal clues on the structure of the
abstract (e.g. evaluation measures, methodolody, fu-
ture work) can be expressed with single or pairs of
words. This is reflected by a distance and radius both
set to 1, which enables to take all possible combina-
tions of consecutive words into account and captures
the relational information attached to the word in fo-
cus, i.e. the current kernel point. This is confirmed
by cross-validation on other settings for the hyper-
parameters.

Since kLog generates a feature vector, only the
sequence information at word level is taken into ac-
count by kLog. Since we use a sequence labeling
approach as statistical learner, i.e. SVM-HMM, at
the level of the abstract this information is however
implicitly taken into account during learning. For
SVM-HMM, only the cost parameter C, which reg-
ulates the trade-off between the slack and the mag-
nitude of the weight-vector, and ε, that specifies the
precision to which constraints are required to be sat-
isfied by the solution, were optimized by means of
cross-validation. For the other parameters, the de-
fault values were used.

4.4 Results

Experiments are run on structured and unstructured
abstracts separately. On the NICTA-PIBOSO cor-
pus, we performed 10-fold cross-validation. Over
all folds, all labels, i.e. the parts of the multilabels,
are compared in a binary way between gold standard
and prediction. Summing all true positives, false
positives, and false negatives over all folds leads to
micro-averaged F-scores. This was done for two dif-
ferent settings. In one setting, CV/6-way, we com-
bined the labeling of the sentences with the identifi-
cation of irrelevant information, by adding the Other

586



label as an extra class in the classification. The re-
sults are listed in Table 3.

CV/6-way MBT Kim et al. kLog
Label S U S U S U
Background 71.0 61.3 81.84 68.46 86.19 76.90
Intervention 24.3 6.4 20.25 12.68 26.05 16.14
Outcome 87.9 70.4 92.32 72.94 92.99 77.69
Population 50.6 15.9 56.25 39.80 35.62 21.58
Study Design 45.9 13.10 43.95 4.40 45.5 6.67
Other 86.1 20.9 69.98 24.28 87.98 24.42

Table 3: F-scores per class for structured (S) and unstruc-
tured (U) abstracts.

For this setting, kLog is able to outperform both
MBT and the system of Kim et al. (2011), for both
structured and unstructured abstracts on all classes
except Population. From Table 4, where the micro-
average F-scores over all classes and for all settings
are listed, it can be observed that kLog performs up
to 3.73% better than MBT over structured abstracts,
and 9.67% better over unstructured ones.

Although to a lesser extent for the structured ab-
stracts, the same pattern can be observed for the
CV/5-way setting, where we tried to classify the sen-
tences only, without considering the irrelevant ones.
The per-class results for this setting are shown in Ta-
ble 5. Now the scores for Population are comparable
to the other systems, due to which we assume these
sentences are similar in structure to the ones labeled
with Other.

For the external corpus, the results are listed in Ta-
ble 6. Although kLog performs comparably for the
individual classes Background and Intervention, its
overall performance is worse on the structured ab-
stracts. In case of the unstructured abstracts, kLog
performs better on the majority of the individual
classes and in overall performance for the 5-way set-
ting, and comparable for the 4-way setting.

Baseline MBT kLog
Method S U S U S U
CV/6-way 43.90 41.87 80.56 57.47 84.29 67.14
CV/5-way 61.79 46.66 86.96 64.37 87.67 72.95
Ext/5-way 66.18 6.76 36.34 11.56 20.50 14.00
Ext/4-way 30.11 27.23 67.29 55.96 50.40 50.50

Table 4: Micro-averaged F1-score obtained for structured
(S) and unstructured (U) abstracts, both for 10-fold cross-
validation (CV) and on the external corpus (Ext).

CV/5-way MBT Kim et al. kLog
Label S U S U S U
Background 87.1 64.9 87.92 70.67 91.45 80.06
Intervention 48.0 6.9 48.08 21.39 45.58 22.65
Outcome 95.8 75.9 96.03 80.51 96.21 83.04
Population 70.9 21.4 63.88 43.15 63.96 23.32
Study Design 50.0 7.4 47.44 8.6 48.08 4.50

Table 5: F-scores per class for 5-way classification over
structured (S) and unstructured (U) abstracts.

MBT Kim et al. kLog
Label S U S U S U

Ext/5-way
Background 58.9 15.7 56.18 15.67 58.30 29.10
Intervention 21.5 13.8 15.38 28.57 40.00 34.30
Outcome 29.3 17.8 81.34 60.45 27.80 24.10
Population 10.7 17.8 35.62 28.07 5.60 28.60
Other 40.7 3.5 46.32 15.77 11.40 8.50

Ext/4-way
Background 90.4 67.5 77.27 37.5 65 68.6
Intervention 29 23.1 28.17 8.33 28.1 32.3
Outcome 74.1 74.6 90.5 78.77 72.4 72.7
Population 48.7 23.8 42.86 28.57 11.8 15.4

Table 6: F-scores per class for 5-way and 4-way classifi-
cation over structured (S) and unstructured (U) abstracts
on the external corpus.

As a general observation, it is important to note
that there is a high variability between the different
labels. Due to kLog’s ability to take the structured
input into account, we assume a correlation between
the sentence structure of the label and the predic-
tion quality. We intend to perform an extensive error
analysis, in order to detect patterns which may allow
us to incorporate additional declarative background
knowledge into our model.

5 Conclusions

We presented a statistical relational learning ap-
proach for the automatic identification of PICO cat-
egories in medical abstracts. To this extent, we used
kLog, a new framework for logical and relational
learning with kernels. Due to its graphical approach,
it is able to exploit the full relational representation,
that is often inherent in language structure. Since
contextual features are often essential and relations
are prevalent, the aim of this paper was to show
that statistical relational learning in general, and the
graph kernel-based approach of kLog in particular,
is specifically suited for problems in natural lan-
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guage learning.
In future work, we intend to explore additional

ways to incorporate background knowledge in a
declarative way, since it renders the language learn-
ing problem more intuitive and gives a better under-
standing of feature contribution. Furthermore, we
also want to investigate the use of SRL approaches
for high-relational domains, and make a clear com-
parison with related techniques.
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