
Proceedings of the 2012 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural
Language Learning, pages 557–567, Jeju Island, Korea, 12–14 July 2012. c©2012 Association for Computational Linguistics

Exploiting Chunk-level Features to Improve Phrase Chunking

Junsheng Zhou Weiguang Qu Fen Zhang

Jiangsu Research Center of Information Security & Privacy Technology
School of Computer Science and Technology

Nanjing Normal University. Nanjing, China, 210046
Email:{zhoujs,wgqu}@njnu.edu.cn zf9646@126.com

Abstract

Most existing systems solved the phrase
chunking task with the sequence labeling
approaches, in which the chunk candidates
cannot be treated as a whole during parsing
process so that the chunk-level features
cannot be exploited in a natural way. In this
paper, we formulate phrase chunking as a
joint segmentation and labeling task. We
propose an efficient dynamic programming
algorithm with pruning for decoding,
which allows the direct use of the features
describing the internal characteristics of
chunk and the features capturing the
correlations between adjacent chunks. A
relaxed, online maximum margin training
algorithm is used for learning. Within this
framework, we explored a variety of
effective feature representations for
Chinese phrase chunking. The
experimental results show that the use of
chunk-level features can lead to significant
performance improvement, and that our
approach achieves state-of-the-art
performance. In particular, our approach is
much better at recognizing long and
complicated phrases.

1 Introduction

Phrase chunking is a Natural Language Processing
task that consists in dividing a text into
syntactically correlated parts of words. Theses
phrases are non-overlapping, i.e., a word can only
be a member of one chunk (Abney, 1991).
Generally speaking, there are two phrase chunking
tasks, including text chunking (shallow parsing),

and noun phrase (NP) chunking. Phrase chunking
provides a key feature that helps on more
elaborated NLP tasks such as parsing, semantic
role tagging and information extraction.
 There is a wide range of research work on
phrase chunking based on machine learning
approaches. However, most of the previous work
reduced phrase chunking to sequence labeling
problems either by using the classification models,
such as SVM (Kudo and Matsumoto, 2001),
Winnow and voted-perceptrons (Zhang et al., 2002;
Collins, 2002), or by using the sequence labeling
models, such as Hidden Markov Models (HMMs)
(Molina and Pla, 2002) and Conditional Random
Fields (CRFs) (Sha and Pereira, 2003). When
applying the sequence labeling approaches to
phrase chunking, there exist two major problems.
Firstly, these models cannot treat globally a
sequence of continuous words as a chunk
candidate, and thus cannot inspect the internal
structure of the candidate, which is an important
aspect of information in modeling phrase chunking.
In particular, it makes impossible the use of local
indicator function features of the type "the chunk
consists of POS tag sequence p1...,pk". For example,
the Chinese NP " 农 业 /NN(agriculture) 生 产

/NN(production) 和/CC(and) 农村/NN(rural) 经济

/NN(economic) 发 展 /NN(development)" seems
relatively difficult to be correctly recognized by a
sequence labeling approach due to its length. But if
we can treat the sequence of words as a whole and
describe the formation pattern of POS tags of this
chunk with a regular expression-like form
"[NN]+[CC][NN]+", then it is more likely to be
correctly recognized, since this pattern might better
express the characteristics of its constituents. As
another example, consider the recognition of
special terms. In Chinese corpus, there exists a
kind of NPs called special terms, such as "『 生命

557

(Life) 禁 区 (Forbidden Zone) 』 ", which are
bracketed with the particular punctuations like "
『 , 』 , 「 , 」 , 《 , 》". When recognizing the
special terms, it is difficult for the sequence
labeling approaches to guarantee the matching of
particular punctuations appearing at the starting
and ending positions of a chunk. For instance, the
chunk candidate "『 生命(Life) 禁区(Forbidden
Zone)” is considered to be an invalid chunk. But
it is easy to check this kind of punctuation
matching in a single chunk by introducing a chunk-
level feature.

Secondly, the sequence labeling models cannot
capture the correlations between adjacent chunks,
which should be informative for the identification
of chunk boundaries and types. In particular, we
find that some headwords in the sentence are
expected to have a stronger dependency relation
with their preceding headwords in preceding
chunks than with their immediately preceding
words within the same chunk. For example, in the
following sentence:
" [双方/PN(Bilateral)]_NP [经贸/NN(economic
and trade) 关系/NN(relations)]_NP [正/AD(just)
稳步/AD(steadily) 发展/VV(develop)]_VP "
if we can find the three headwords "双方", "关系"
and "发展" located in the three adjacent chunks
with some head-finding rules, then the headword
dependency expressed by headword bigrams or
trigrams should be helpful to recognize these
chunks in this sentence.

In summary, the inherent deficiency in applying
the sequence labeling approaches to phrase
chunking is that the chunk-level features one
would expect to be very informative cannot be
exploited in a natural way.

In this paper, we formulate phrase chunking as a
joint segmentation and labeling problem, which
offers advantages over previous learning methods
by providing a natural formulation to exploit the
features describing the internal structure of a chunk
and the features capturing the correlations between
the adjacent chunks.

Within this framework, we explored a variety of
effective feature representations for Chinese phrase
chunking. The experimental results on Chinese
chunking corpus as well as English chunking
corpus show that the use of chunk-level features
can lead to significant performance improvement,

and that our approach performs better than other
approaches based on the sequence labeling models.

2 Related Work

In recent years, many chunking systems based on
machine learning approaches have been presented.
Some approaches rely on k-order generative
probabilistic models, such as HMMs (Molina and
Pla, 2002). However, HMMs learn a generative
model over input sequence and labeled sequence
pairs. It has difficulties in modeling multiple non-
independent features of the observation sequence.
To accommodate multiple overlapping features on
observations, some other approaches view the
phrase chunking as a sequence of classification
problems, including support vector machines
(SVMs) (Kudo and Matsumoto 2001) and a variety
of other classifiers (Zhang et al., 2002). Since these
classifiers cannot trade off decisions at different
positions against each other, the best classifier
based shallow parsers are forced to resort to
heuristic combinations of multiple classifiers.
Recently, CRFs were widely employed for phrase
chunking, and presented comparable or better
performance than other state-of-the-art models
(Sha and Pereira 2003; McDonald et al. 2005).
Further, Sun et al. (2008) used the latent-dynamic
conditional random fields (LDCRF) to explicitly
learn the hidden substructure of shallow phrases,
achieving state-of-the-art performance over the
NP-chunking task on the CoNLL data.

Some similar approaches based on classifiers or
sequence labeling models were also used for
Chinese chunking (Li et al., 2003; Tan et al., 2004;
Tan et al., 2005). Chen et al. (2006) conducted an
empirical study of Chinese chunking on a corpus,
which was extracted from UPENN Chinese
Treebank-4 (CTB4). They compared the
performances of the state-of-the-art machine
learning models for Chinese chunking, and
proposed some Tag-Extension and novel voting
methods to improve performance.

In this paper, we model phrase chunking with a
joint segmentation and labeling approach, which
offer advantages over previous learning methods
by explicitly incorporating the internal structural
feature and the correlations between the adjacent
chunks. To some extent, our model is similar to
Semi-Markov Conditional Random Fields (called a
Semi-CRF), in which the segmentation and

558

labeling can also be done directly (Sarawagi and
Cohen, 2004). However, Semi-CRF just models
label dependency, and it cannot capture more
correlations between adjacent chunks, as is done in
our approach. The limitation of Semi-CRF leads to
its relatively low performance.

3 Problem Formulation

3.1 Chunk Types

Unlike English chunking, there is not a
benchmarking corpus for Chinese chunking. We
follow the studies in (Chen et al. 2006) so that a
more direct comparison with state-of-the-art
systems for Chinese chunking would be possible.
There are 12 types of chunks: ADJP, ADVP, CLP,
DNP, DP, DVP, LCP, LST, NP, PP, QP and VP in
the chunking corpus (Xue et al., 2000). The
training and test corpus can be extracted from
CTB4 with a public tool, as depicted in (Chen et al.
2006).

3.2 Sequence Labeling Approaches to Phrase
Chunking

The standard approach to phrase chunking is to use
tagging techniques with a BIO tag set. Words in
the input text are tagged with one of B for the
beginning of a contiguous segment, I for the inside
of a contiguous segment, or O for outside a
segment. For instance, the sentence (word
segmented and POS tagged) "他/NR(He) 到达

/VV(reached) 北 京 /NR(Beijing) 机 场

/NN(airport) 。/PU" will be tagged as follows:

Example 1:
S1: [NP 他][VP 到达][NP 北京/机场][O 。]
S2: 他/B-NP 到达/B-VP 北京/B-NP 机场/I-
NP 。/O
Here S1 denotes that the sentence is tagged with
chunk types, and S2 denotes that the sentence is
tagged with chunk tags based on the BIO-based
model. With the data representation like the S2, the
problem of phrase chunking can be reduced to a
sequence labeling task.

3.3 Phrase Chunking via a Joint
Segmentation and Labeling Approach

To tackle the problems with the sequence labeling
approaches to phrase chunking, we formulate it as
a joint problem, which maps a Chinese sentence x

with segmented words and POS tags to an output y
with tagged chunk types, like the S1 in Example 1.
The joint model considers all possible chunk
boundaries and corresponding chunk types in the
sentence, and chooses the overall best output. This
kind of parser reads the input sentences from left to
right, predicts whether current segment of
continuous words is some type of chunk. After one
chunk is found, parser move on and search for next
possible chunk.

Given a sentence x, let y denote an output tagged
with chunk types, and GEN a function that
enumerates a set of segmentation and labeling
candidates GEN(x) for x. A parser is to solve the
following “argmax” problem:

()

| |

[1..]
()

1

ˆ arg max ()

arg max ()

T

y GEN x

y
T

i
y GEN x

i

y w y

 w yf

Î

Î =

= ⋅F

= ⋅å

where F and f are global and local feature maps
and w is the parameter vector to learn. The inner
product

[1..]()T
iw yf⋅ can be seen as the confidence

score of whether yi is a chunk. The parser takes into
account confidence score of each chunk, by using
the sum of local scores as its criteria. Markov
assumption is necessary for computation, so f is
usually defined on a limited history.

The main advantage of the joint segmentation
and labeling approach to phrase chunking is to
allow for integrating both the internal structural
features and the correlations between the adjacent
chunks for prediction. The two basic components
of our model are decoding and learning algorithms,
which are described in the following sections.

4 Decoding

The inference technique is one of the most
important components for a joint segmentation and
labeling model. In this section, we propose a
dynamic programming algorithm with pruning to
efficiently produce the optimal output.

4.1 Algorithm Description

Given an input sentence x, the decoding algorithm
searches for the highest-scored output with
recognized chunks. The search space of combined
candidates in the joint segmentation and labeling
task is very large, which is an exponential growth

(1)

559

in the number of possible candidates with
increasing sentence size. The rate of growth is
O(2nTn) for the joint system, where n is the length
of the sentence and T is the number of chunk types.
It is natural to use some greedy heuristic search
algorithms for inference in some similar joint
problems (Zhang and Clark, 2008; Zhang and
Clark, 2010). However, the greedy heuristic search
algorithms only explore a fraction of the whole
space (even with beam search) as opposed to
dynamic programming. Additionally, a specific
advantage of the dynamic programming algorithm
is that constraints required in a valid prediction
sequence can be handled in a principled way. We
show that dynamic programming is in fact possible
for this joint problem, by introducing some
effective pruning schemes.
 To make the inference tractable, we first make a
first-order Markov assumption on the features used
in our model. In other words, we assume that the
chunk ci and the corresponding label ti are only
associated with the preceding chunk ci-1 and the
label ti-1. Suppose that the input sentence has n
words and the constant M is the maximum chunk
length in the training corpus. Let V(b,e,t) denote
the highest-scored segmentation and labeling with
the last chunk starting at word index b, ending at
word index e and the last chunk type being t. One
way to find the highest-scored segmentation and
labeling for the input sentence is to first calculate
the V(b,n-1,t) for all possible start position b∈(n-
M)..n-1, and all possible chunk type t, respectively,
and then pick the highest-scored one from these
candidates. In order to compute V(b,n-1,t), the last
chunk needs to be combined with all possible
different segmentations of words (b-M)..b-1 and all
possible different chunk types so that the highest-
scored can be selected. According to the principle
of optimality, the highest-scored among the
segmentations of words (b-M)..b-1 and all possible
chunk types with the last chunk being word b¢ ..b-
1 and the last chunk type being t ¢ will also give
the highest score when combined with the word
b..n-1 and tag t. In this way, the search task is
reduced recursively into smaller subproblems,
where in the base case the subproblems V(0,e,t) for
e∈0..M-1, and each possible chunk type t, are
solved in straightforward manner. And the final
highest-scored segmentation and labeling can be

found by solving all subproblems in a bottom-up
fashion.
 The pseudo code for this algorithm is shown in
Figure 1. It works by filling an n by n by T table
chart, where n is the number of words in the input
sentence sent, and T is the number of chunk types.
chart[b,e,t] records the value of subproblem
V(b,e,t). chart[0, e, t] can be computed directly for
e = 0..M-1 and for chunk type t=1..T. The final
output is the best among chart[b,n-1,t], with b=
n-M..n-1, and t=1..T.

Inputs: sentence sent (word segmented and POS
tagged)
Variables:
word index b for the start of chunk;
word index e for the end of chunk;
word index p for the start of the previous chunk.
chunk type index t for the current chunk;
chunk type index t ¢ for the previous chunk;
Initialization:
for e = 0.. M-1:
 for t =1..T:
 chart[0,e,t] ←single chunk sent[0,e] and type t
Algorithm:
for e = 0..n-1:
 for b = (e-M)..e:
 for t =1..T:
 chart[b,e,t]←the highest scored segmentation
 and labeling among those derived by
 combining chart[p,b-1, t ¢] with sent[b,e]
 and chunk type t, for p = (b-M)..b-1,
 t ¢ =1..T.
Outputs: the highest scored segmentation and
labeling among chart[b,n-1,t], for b=n-M..n-1, t
=1..T.

Figure 1: A dynamic-programming algorithm for
phrase chunking.

4.2 Pruning

The time complexity of the above algorithm is
O(M2T2n), where M is the maximum chunk size. It
is linear in the length of sentence. However, the
constant in the O is relatively large. In practice, the
search space contains a large number of invalid
partial candidates, which make the algorithm slow.
In this section we describe three partial output
pruning schemes which are helpful in speeding up
the algorithm.

560

Firstly, we collect chunk type transition
information between chunk types by observing
every pair of adjacent chunks in the training corpus,
and record a chunk type transition matrix. For
example, from the Chinese Treebank that we used
for our experiments, a transition from chunk type
ADJP to ADVP does not occur in the training
corpus, the corresponding matrix element is set to
false, true otherwise. During decoding, the chunk
type transition information is used to prune
unlikely combinations between current chunk and
the preceding chunk by their chunk types.

Secondly, a POS tag dictionary is used to record
POS tags associated with each chunk type.
Specifically, for each chunk type, we record all
POS tags appearing in this type of chunk in the
training corpus. During decoding, a segment of
continuous words that contains only allowed POS
tags according to the POS tag dictionary will be
considered to be a valid chunk candidate.

Finally, the system records the maximum
number of words for each type of chunk in the
training corpus. For example, in the Chinese
Treebank, most types of chunks have one to three
words. The few chunk types that are seen with
length bigger than ten are NP, QP and ADJP.
During decoding, the chunk candidate whose
length is greater than the maximum chunk length
associated with its chunk type will be discarded.

For the above pruning schemes, development
tests show that it improves the speed significantly,
while having a very small negative influence on
the accuracy.

5 Learning

5.1 Discriminative Online Training

By defining features, a candidate output y is
mapped into a global feature vector, in which each
dimension represents the count of a particular
feature in the sentence. The learning task is to set
the parameter values w using the training examples
as evidence.
 Online learning is an attractive method for the
joint model since it quickly converges within a few
iterations (McDonald, 2006). We focus on an
online learning algorithm called MIRA, which is a
relaxed, online maximum margin training
algorithm with the desired accuracy and scalability
properties (Crammer, 2004). Furthermore, MIRA

is very flexible with respect to the loss function.
Any loss function on the output is compatible with
MIRA since it does not require the loss to factor
according to the output, which enables our model
to be optimized with respect to evaluation metrics
directly. Figure 2 outlines the generic online
learning algorithm (McDonald, 2006) used in our
framework.

MIRA updates the parameter vector w with two
constraints: (1) the positive example must have a
higher score by a given margin, and (2) the change
to w should be minimal. This second constraint is
to reduce fluctuations in w. In particular, we use a
generalized version of MIRA (Crammer et al.,
2005; McDonald, 2006) that can incorporate k-best
decoding in the update procedure.

Input: Training set
1{(,)}T

t t tS x y ==

1: w(0) = 0; v = 0; i = 0
2: for iter = 1 to N do
3: for t = 1 to T do
4: w(i+1) = update w(i) according to (xt, yt)
5: v = v + w(i+1)
6: i = i + 1
7: end for
8: end for
9: w = v/(N × T)
Output: weight vector w

Figure 2: Generic Online Learning Algorithm

In each iteration, MIRA updates the weight
vector w by keeping the norm of the change in the
weight vector as small as possible. Within this
framework, we can formulate the optimization
problem as follows (McDonald, 2006):

(1) ()

()

argmin

. . (;) :

() () (,)

i i
w

i
k t

T T
t t

w w w

s t y best x w

 w y w y L y y

+ = -

¢" Î
¢ ¢⋅F - ⋅F ³

where ()(;)i
k tbest x w represents a set of top k-best

outputs for xt given the weight vector w(i). In our
implementation, the top k-best outputs are obtained
with a straightforward k-best extension to the
decoding algorithm in section 4.1. The above
quadratic programming (QP) problem can be
solved using Hildreth’s algorithm (Yair Censor,
1997). Replacing Eq. (2) into line 4 of the
algorithm in Figure 2, we obtain k-best MIRA.

As shown in (McDonald, 2006), parameter
averaging can effectively avoid overfitting. The

(2)

561

final weight vector w is the average of the weight
vectors after each iteration.

5.2 Loss Function

For the joint segmentation and labeling task, there
are two alternative loss functions: 0-1 loss and F1
loss. 0-1 loss gives credit only when the entire
output sequence is correct: there is no notion of
partially correct solutions. The most common loss
function for joint segmentation and labeling
problems is F1 measure over chunks. This is the
geometric mean of precision and recall over the
(properly-labeled) chunk identification task,
defined as follows.

2 | |
ˆ(,) 1

| | | |
F y y

L y y
y y

¢Ç-
¢+



where the cardinality of y is simply the number of
chunks identified. The cardinality of the
intersection is the number of chunks in common.
As can be seen in the definition, one is penalized
both for identifying too many chunks (penalty in
the denominator) and for identifying too few
(penalty in the numerator).

In our experiments, we will compare the
performance of the systems with different loss
functions.

5.3 Features

Table 1 shows the feature templates for the joint
segmentation and labeling model. In the row for
feature templates, c, t, w and p are used to
represent a chunk, a chunk type, a word and a POS
tag, respectively. And c0 and c−1 represent the
current chunk and the previous chunk respectively.
Similarly, w−1, w0 and w1 represent the previous
word, the current word and the next word,
respectively.

Although it is slightly less natural to do so, part
of the features used in the sequence labeling
models can also be represented in our approach.
Therefore the features employed in our model can
be divided into three types: the features similar to
those used in the sequence labeling models (called
SL-type features), the features describing internal
structure of a chunk (called Internal-type features),
and the features capturing the correlations between
the adjacent chunks (called Correlation-type
features).

Firstly, some features associated with a single
label (here refers to label "B" and "I") used in the

sequence labeling models are also represented in
our model. In Table 1, templates 1-4 are SL-type
features, where label(w) denotes the label
indicating the position of the word w in the current
chunk; len(c) denotes the length of chunk c. For
example, given an NP chunk "北京(Beijing) 机场
(Airport)", which includes two words, the value of
label("北京") is "B" and the value of label("机场")
is "I". Bigram(w) denotes the word bigrams formed
by combining the word to the left of w and the one
to the right of w. And the same meaning is for
biPOS(w). Template specitermMatch(c) is used to
check the punctuation matching within chunk c for
the special terms, as illustrated in section 1.

Secondly, in our model, we have a chance to
treat the chunk candidate as a whole during
decoding, which means that we can employ more
expressive features in our model than in the
sequence labeling models. In Table 1, templates 5-
13 concern the Internal-type features, where
start_word(c) and end_word(c) represent the first
word and the last word of chunk c, respectively.
Similarly, start_POS(c) and end_POS(c) represent
the POS tags associated with the first word and the
last word of chunk c, respectively. These features
aim at expressing the formation patterns of the
current chunk with respect to words and POS tags.
Template internalWords(c) denotes the
concatenation of words in chunk c, while
internalPOSs(c) denotes the sequence of POS tags
in chunk c using regular expression-like form, as
illustrated in section 1.

Finally, in Table 1, templates 14-28 concern the
Correlation-type features, where head(c) denotes
the headword extracted from chunk c, and
headPOS(c) denotes the POS tag associated with
the headword in chunk c. These features take into
account various aspects of correlations between
adjacent chunks. For example, we extracted the
headwords located in adjacent chunks to form
headword bigrams to express semantic dependency
between adjacent chunks. To find the headword
within every chunk, we referred to the head-
finding rules from (Bikel, 2004), and made a
simple modification to them. For instance, the
head-finding rule for NP in (Bikel, 2004) is as
follows:

(NP (r NP NN NT NR QP) (r))
Since the phrases are non-overlapping in our task,
we simply remove the overlapping phrase tags NP

 (3)

562

and QP from the rule, and then the rule is modified
as follows:

 (NP (r NN NT NR) (r))
Additionally, the different bigrams formed by

combining the first word (or POS) and last word
(or POS) located in two adjacent chunks can also
capture some correlations between adjacent chunks,
and templates 17-22 are designed to express this
kind of bigram information.

ID Feature template
1 wlabel(w) t0

for all w in c0
2 bigram (w) label(w)t0

for all w in c0
3 biPOS(w) label(w)t0

for all w in c0
4 w-1w1label(w0) t0 , where len(c0)=1
5 start_word(c0)t0
6 start_POS(c0)t0
7 end_word(c0)t0
8 end_POS(c0)t0
9 wend_word (c0) t0

 where 0 0_ ()w c and w end word cÎ ¹

10 pend_POS (c0) t0
 where

0 0_ ()p c and p end POS cÎ ¹

11 internalPOSs(c0) t0
12 internalWords(c0) t0
13 specitermMatch(c0)
14 t-1t0
15 head(c-1)t-1head(c0)t0
16 headPOS(c-1)t-1headPOS(c0)t0
17 end_word(c-1)t-1start_word(c0)t0
18 end_POS(c-1)t-1start_POS(c0)t0
19 end_word(c-1)t-1end_word(c0)t0
20 end_POS(c-1)t-1end_POS(c0)t0
21 start_word(c-1)t-1start_word(c0)t0
22 start_POS(c-1)t-1start_POS(c0)t0
23 end_word(c-1)t0
24 end_POS(c-1)t0
25 t-1t0start_word(c0)
26 t-1t0start_POS(c0)
27 internalWords(c-1) t-1 internalWords(c0) t0

28 internalPOSs(c-1) t-1 internalPOSs(c0) t0

Table 1: Feature templates.

6 Experiments

6.1 Data Sets and Evaluation

Following previous studies on Chinese chunking in
(Chen et al., 2006), our experiments were
performed on the CTB4 dataset. The dataset
consists of 838 files. In the experiments, we used
the first 728 files (FID from chtb 001.fid to chtb
899.fid) as training data, and the other 110 files
(FID from chtb 900.fid to chtb 1078.fid) as testing
data. The training set consists of 9878 sentences,
and the test set consists of 5920 sentences. The
standard evaluation metrics for this task are
precision p (the fraction of output chunks matching
the reference chunks), recall r (the fraction of
reference chunks returned), and the F-measure
given by F = 2pr/(p + r).

Our model has two tunable parameters: the
number of training iterations N; the number of top
k-best outputs. Since we were interested in finding
an effective feature representation at chunk-level
for phrase chunking, we fixed N = 10 and k = 5 for
all experiments. In the following experiments, our
model has roughly comparable training time to the
sequence labeling approach based on CRFs.

6.2 Chinese NP chunking

NP is the most important phrase in Chinese
chunking and about 47% phrases in the CTB4
Corpus are NPs. In this section, we present the
results of our approach to NP recognition.

Table 2 shows the results of the two systems
using the same feature representations as defined
in Table 1, but using different loss functions for
learning. As shown, learning with F1 loss can
improve the F-score by 0.34% over learning with
0-1 loss. It is reasonable that the model optimized
with respect to evaluation metrics directly can
achieve higher performance.

Loss Function Precision Recall F1
0-1 loss 91.39 90.93 91.16
F1 loss 92.03 90.98 91.50

Table 2: Experimental results on Chinese NP
chunking.

6.3 Chinese Text Chunking

There are 12 different types of phrases in the
chunking corpus. Table 3 shows the results from

563

two different systems with different loss functions
for learning. Observing the results in Table 3, we
can see that learning with F1 loss can improve the
F-score by 0.36% over learning with 0-1 loss,
similar to the case in NP recognition. More

specifically, learning with F1 loss provides much
better results for ADJP, ADVP, DVP, NP and VP,
respectively. And it yields equivalent or
comparable results to 0-1 loss in other categories.

 F1 loss 0-1 loss

precision recall F1 precision recall F1

ADJP 87.86 87.09 87.47 86.74 86.55 86.64

ADVP 90.66 78.73 84.27 91.91 76.68 83.61

CLP 0.00 0.00 0.00 1.32 5.88 2.15

DNP 99.42 99.93 99.68 99.42 99.95 99.69

DP 99.46 99.76 99.61 99.46 99.76 99.61

DVP 99.61 99.61 99.61 99.22 99.61 99.42

LCP 99.74 99.96 99.85 99.74 99.93 99.84

LST 87.50 52.50 65.63 87.50 52.50 65.63

NP 91.87 91.01 91.44 91.34 90.52 90.93

PP 99.57 99.77 99.67 99.57 99.77 99.67

QP 96.45 96.64 96.55 96.45 97.07 96.76

VP 90.14 90.39 90.26 89.92 89.79 89.85

ALL 92.54 91.68 92.11 92.30 91.20 91.75

Table 3: Experimental results on Chinese text chunking.

6.4 Comparison with Other Models

Chen et al. (2006) compared the performance of
the state-of-the-art machine learning models for
Chinese chunking, and found that the SVMs
approach yields higher accuracy than respective
CRFs, Transformation-based Learning (TBL)
(Megyesi, 2002), and Memory-based Learning
(MBL) (Sang, 2002) approaches.

In this section, we give a comparison and
analysis between our model and other state-of-the-
art machine learning models for Chinese NP
chunking and text chunking tasks. Performance of
our model and some of the best results from the
state-of-the-art systems are summarized in Table 4.
Row "Voting" refers to the phrase-based voting
methods based on four basic systems, which are
respectively SVMs, CRFs, TBL and MBL, as
depicted in (Chen et al., 2006). Observing the
results in Table 4, we can see that for both NP
chunking and text chunking tasks, our model
achieves significant performance improvement
over those state-of-the-art systems in terms of the
F1-score, even for the voting methods. For text

chunking task, our approach improves performance
by 0.65% over SVMs, and 0.43% over the voting
method, respectively.

 Method F1

NP
chunking

CRFs 89.72
SVMs 90.62
Voting 91.13
Ours 91.50

Text
chunking

CRFs 90.74
SVMs 91.46
Voting 91.68
Ours 92.11

Table 4: Comparisons of chunking performance for
Chinese NP chunking and text chunking.

In particular, for NP chunking task, the F1-score
of our approach is improved by 0.88% in
comparison with SVMs, the best single system.
Further, we investigated the likely cause for
performance improvement by comparing the
recognized results from our system and SVMs

564

respectively. We first sorted NPs by their length,
and then calculated the F1-scores associated with
different lengths for the two systems respectively.
Figure 3 shows the comparison of F1-scores of the
two systems by the chunk length. In the Chinese
chunking corpus, the max NP length is 27, and
the mean NP length is 1.5. Among all NPs, the
NPs with the length 1 account for 81.22%. For the
NPs with the length 1, our system gives slight
improvement by 0.28% over SVMs. From the
figure, we can see that the performance gap grows
rapidly with the increase of the chunk length. In
particular, the gap between the two systems is
27.73% when the length hits 4. But the gap begins
to become smaller with further growth of the
chunk length. The reasons may include the
following two aspects. First, the number of NPs
with the greater length is relatively small in the
corpus. Second, the NPs with greater length in
Chinese corpus often exhibit some typical rules.
For example, an NP with length 8 is given as
follows.
 "棉花/NN(cotton) 、/PU 油料/NN(oil) 、/PU 药
材/NN(drug) 、/PU 蔬菜/NN(vegetable) 等/ETC
(et al)".

The NP consists of a sequence of nouns simply
separated by a punctuation "、". So it is also easy
to be recognized by the sequence labeling
approach based on SVMs. In summary, the above
investigation indicates that our system is better at
recognizing the long and complicated phrases
compared with the sequence labeling approaches.

35

45

55

65

75

85

95

1 2 3 4 5 6 7 8 >8
The length of NP

F
-s

co
r
e

our system
SVM

Figure 3: Comparison of F1-scores of NP
recognition on Chinese corpus by the chunk length.

6.5 Impact of Different Types of Features

Our phrase chunking model is highly dependent
upon chunk-level information. To establish the
impact of each type of feature (SL-type, Internal-
type, Correlation-type), we look at the

improvement in F1-score brought about by adding
each type of features. Table 5 shows the accuracy
with various features added to the model.

First consider the effect of the SL-type features.
If we use only the SL-type features, the system
achieves slightly lower performance than CRFs or
SVMs, as shown in Table 4. Since the SL-type
features consist of the features associated with
single label, not including the features associated
with label bigrams. Then, adding the Internal-type
features to the system results in significant
performance improvement on NP chunking and on
text chunking, achieving 2.53% and 1.37%,
respectively. Further, if Correlation-type features
are used, the F1-scores on NP chunking and on text
chunking are improved by 1.01% and 0.66%,
respectively. The results show a significant impact
due to the use of Internal-type features and
Correlation-type features for both NP chunking
and text chunking.

Task Type Feature Type F1

NP chunking
SL-type 87.96
+Internal-type 90.49
+Correlation-type 91.50

Text chunking
SL-type 90.08
+Internal-type 91.45
+Correlation-type 92.11

Table 5: Test F1-scores for different types of
features on Chinese corpus.

6.6 Performance on Other Languages

We mainly focused on Chinese chunking in this
paper. However, our approach is generally
applicable to other languages including English,
except that the definition of feature templates may
be language-specific. To validate this point, we
evaluated our system on the CoNLL 2000 data set,
a public benchmarking corpus for English
chunking (Sang and Buchholz 2000). The training
set consists of 8936 sentences, and the test set
consists of 2012 sentences.

We conducted both the NP-chunking and text
chunking experiments on this data set with our
approach, using the same feature templates as in
Chinese chunking task excluding template 13. To
find the headword within every chunk, we referred
to the head-finding rules from (Collins, 1999), and
made a simple modification to them in a similar
way as in Chinese. As we can see from Table 6,

565

our model is able to achieve better performance
compared with state-of-the-art systems. Table 6
also shows state-of-the-art performance for both
NP-chunking and text chunking tasks. LDCRF's
results presented in (Sun et al., 2008) are the state-
of-the-art for the NP chunking task, and SVM's
results presented in (Wu et al., 2006) are the state-
of-the-art for the text chunking task.

Moreover, the performance should be further
improved if some additional features tailored for
English chunking are employed in our model. For
example, we can introduce an orthographic feature
type called Token feature and the affix feature into
the model, as used in (Wu et al., 2006).

 Method Precision Recall F1
NP

chunking
Ours 94.79 94.65 94.72

LDCRF 94.65 94.03 94.34
Text

chunking
Ours 94.31 94.12 94.22

SVMs 94.12 94.13 94.12

Table 6: Performance on English corpus.

7 Conclusions and Future Work

In this paper we have presented a novel approach
to phrase chunking by formulating it as a joint
segmentation and labeling problem. One important
advantage of our approach is that it provides a
natural formulation to exploit chunk-level features.
The experimental results on both Chinese chunking
and English chunking tasks show that the use of
chunk-level features can lead to significant
performance improvement and that our approach
outperforms the best in the literature.

Future work mainly includes the following two
aspects. Firstly, we will explore applying external
information, such as semantic knowledge, to
represent the chunk-level features, and then
incorporate them into our model to improve the
performance. Secondly, we plan to apply our
approach to other joint segmentation and labeling
tasks, such as clause identification and named
entity recognition.

Acknowledgments

This research is supported by Projects 61073119,
60773173 under the National Natural Science
Foundation of China, and project BK2010547
under the Jiangsu Natural Science Foundation of
China. We would also like to thank the excellent

and insightful comments from the three
anonymous reviewers.

References

Steven P. Abney. 1991. Parsing by chunks. In Robert C.
Berwick, Steven P. Abney, and Carol Tenny, editors,
Principle-Based Parsing , pages 257-278. Kluwer
Academic Publishers.

Daniel M, Bikel. 2004. On the Parameter Space of
Generative Lexicalized Statistical Parsing Models.
Ph.D. thesis, University of Pennsylvania.

Wenliang Chen, Yujie Zhang, and Hitoshi Isahara. 2006.
An empirical study of Chinese chunking. In
Proceedings of the COLING/ACL 2006 Main
Conference Poster Sessions, pages 97-104.

Michael Collins. 2002. Discriminative training methods
for hidden Markov models: Theory and experiments
with perceptron algorithms. In Proc. EMNLP-02.

Michael Collins. 1999. Head-Driven Statistical Models
for Natural Language Parsing. Ph.D. thesis,
University of Pennsylvania.

Koby Crammer. 2004. Online Learning of Complex
Categorial Problems. Hebrew University of
Jerusalem, PhD Thesis.

Taku Kudo and Yuji Matsumoto. 2001. Chunking with
support vector machines. In Proceedings of
NAACL01.

Koby Crammer, Ryan McDonald, and Fernando Pereira.
2005. Scalable large-margin online learning for
structured classification. In NIPS Workshop on
Learning With Structured Outputs.

Heng Li, Jonathan J. Webster, Chunyu Kit, and
Tianshun Yao. 2003. Transductive hmm based
chinese text chunking. In Proceedings of IEEE
NLPKE2003, pages 257-262, Beijing, China.

Ryan McDonald, Femando Pereira, Kiril Ribarow, and
Jan Hajic. 2005. Non-projective dependency parsing
using spanning tree algorithms. In Proceedings of
HLT/EMNLP, pages 523-530.

Ryan. McDonald, K. Crammer, and F. Pereira, 2005.
Flexible Text Segmentation with Structured
Multilabel Classification. In Proceedings
HLT/EMNLP, pages 987- 994.

Ryan McDonald. 2006. Discriminative Training and
Spanning Tree Algorithms for Dependency Parsing.
University of Pennsylvania, PhD Thesis.

Beata Megyesi. 2002. Shallow parsing with pos taggers
and linguistic features. Journal of Machine Learning
Research, 2:639-668.

566

Antonio Molina and Ferran Pla. 2002. Shallow parsing
using specialized hmms. Journal of Machine
Learning Research., 2:595- 613.

 E.F.T.K Sang and S. Buchholz. 2000. Introduction to
the CoNLL-2000 shared task: Chunking. In
Proceedings CoNLL-00, pages 127-132.

Sunita Sarawagi and W. Cohen. 2004. Semi-markov
conditional random fields for information extraction.
In Proceedings of NIPS 17, pages 1185–1192.

Fei Sha and Fernando Pereira. 2003. Shallow parsing
with conditional random fields. In Proceedings of
HLT-NAACL03.

Xu Sun, Louis-Philippe Morency, Daisuke Okanohara,
and Jun’ichi Tsujii. 2008. Modeling Latent-Dynamic
in Shallow Parsing: A Latent Conditional Model with
Improved Inference. In Proceedings of the 22nd
International Conference on Computational
Linguistics, pages 841–848.

Yongmei Tan, Tianshun Yao, Qing Chen, and Jingbo
Zhu. 2004. Chinese chunk identification using svms
plus sigmoid. In IJCNLP, pages 527-536.

Yongmei Tan, Tianshun Yao, Qing Chen, and Jingbo
Zhu. 2005. Applying conditional random fields to
chinese shallow parsing. In Proceedings of CICLing-
2005, pages 167-176.

Erik F. Tjong Kim Sang. 2002. Memory-based shallow
parsing. JMLR, 2(3):559-594.

Yu-Chieh Wu, Chia-Hui Chang, and Yue-Shi Lee. 2006.
A general and multi-lingual phrase chunking model
based on masking method. In Proceedings of 7th
International Conference on Intelligent Text
Processing and Computational Linguistics, pages
144-155.

Nianwen Xue, Fei Xia, Shizhe Huang, and Anthony
Kroch. 2000. The bracketing guidelines for the penn
chinese treebank. Technical report, University of
Pennsylvania.

Stavros A. Zenios Yair Censor. 1997. Parallel
Optimization: Theory, Algorithms, and Applications.
Oxford University Press.

Tong Zhang, F. Damerau, and D. Johnson. 2002. Text
chunking based on a generalization of winnow.
Journal of Machine Learning Research, 2:615-637.

Yue Zhang and Stephen Clark. 2008. Joint word
segmentation and POS tagging using a single
perceptron. In Proceedings of ACL/HLT, pages 888-
896.

Yue Zhang and Stephen Clark. 2010. A fast decoder for
joint word segmentation and POS-tagging using a

single discriminative model. In Proceedings of
EMNLP, pages 843-852.

567

