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Abstract

Open Information Extraction (IE) systems ex-
tract relational tuples from text, without re-
quiring a pre-specified vocabulary, by iden-
tifying relation phrases and associated argu-
ments in arbitrary sentences. However, state-
of-the-art Open IE systems such as REVERB
and WOE share two important weaknesses —
(1) they extract only relations that are medi-
ated by verbs, and (2) they ignore context,
thus extracting tuples that are not asserted as
factual. This paper presents OLLIE, a sub-
stantially improved Open IE system that ad-
dresses both these limitations. First, OLLIE
achieves high yield by extracting relations me-
diated by nouns, adjectives, and more. Sec-
ond, a context-analysis step increases preci-
sion by including contextual information from
the sentence in the extractions. OLLIE obtains
2.7 times the area under precision-yield curve
(AUC) compared to REVERB and 1.9 times
the AUC of WOEP*"¢,

1 Introduction

While traditional Information Extraction (IE)
(ARPA, 1991; ARPA, 1998) focused on identifying
and extracting specific relations of interest, there
has been great interest in scaling IE to a broader
set of relations and to far larger corpora (Banko et
al., 2007; Hoffmann et al., 2010; Mintz et al., 2009;
Carlson et al., 2010; Fader et al., 2011). However,
the requirement of having pre-specified relations of
interest is a significant obstacle. Imagine an intel-
ligence analyst who recently acquired a terrorist’s
laptop or a news reader who wishes to keep abreast
of important events. The substantial endeavor in
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1. “After winning the Superbowl, the Saints are now
the top dogs of the NFL.”
O: (the Saints; win; the Superbowl)
2. “There are plenty of taxis available at Bali airport.”
O: (taxis; be available at; Bali airport)
3. “Microsoft co-founder Bill Gates spoke at ...”
O: (Bill Gates; be co-founder of; Microsoft)
4. “Early astronomers believed that the earth is the
center of the universe.”
R: (the earth; be the center of; the universe)
W: (the earth; be; the center of the universe)
O: ((the earth; be the center of; the universe)
AttributedTo believe; Early astronomers)
5. “If he wins five key states, Romney will be elected
President.”
R,W: (Romney; will be elected; President)
O: ((Romney; will be elected; President)
ClausalModifier if; he wins five key states)

Figure 1: OLLIE (O) has a wider syntactic range and finds
extractions for the first three sentences where REVERB
(R) and WOEP*"*¢ (W) find none. For sentences #4.,5,
REVERB and WOEP?"*¢ have an incorrect extraction by
ignoring the context that OLLIE explicitly represents.

analyzing their corpus is the discovery of important
relations, which are likely not pre-specified. Open
IE (Banko et al., 2007) is the state-of-the-art
approach for such scenarios.

However, the state-of-the-art Open IE systems,
REVERB (Fader et al., 2011; Etzioni et al., 2011)
and WOEP?"%¢ (Wu and Weld, 2010) suffer from two
key drawbacks. Firstly, they handle a limited sub-
set of sentence constructions for expressing relation-
ships. Both extract only relations that are mediated
by verbs, and REVERB further restricts this to a sub-
set of verbal patterns. This misses important infor-
mation mediated via other syntactic entities such as
nouns and adjectives, as well as a wider range of
verbal structures (examples #1-3 in Figure 1).
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Secondly, REVERB and WOEP*"*¢ perform only
a local analysis of a sentence, so they often extract
relations that are not asserted as factual in the sen-
tence (examples #4,5). This often occurs when the
relation is within a belief, attribution, hypothetical
or other conditional context.

In this paper we present OLLIE (Open Language
Learning for Information Extraction), ! our novel
Open IE system that overcomes the limitations of
previous Open IE by (1) expanding the syntactic
scope of relation phrases to cover a much larger
number of relation expressions, and (2) expand-
ing the Open IE representation to allow additional
context information such as attribution and clausal
modifiers. OLLIE extractions obtain a dramatically
higher yield at higher or comparable precision rela-
tive to existing systems.

The outline of the paper is as follows. First, we
provide background on Open IE and how it relates
to Semantic Role Labeling (SRL). Section 3 de-
scribes the syntactic scope expansion component,
which is based on a novel approach that learns open
pattern templates. These are relation-independent
dependency parse-tree patterns that are automati-
cally learned using a novel bootstrapped training set.
Section 4 discusses the context analysis component,
which is based on supervised training with linguistic
and lexical features.

Section 5 compares OLLIE with REVERB and
WOEP?"5¢ on a dataset from three domains: News,
Wikipedia, and a Biology textbook. We find that
OLLIE obtains 2.7 times the area in precision-yield
curves (AUC) as REVERB and 1.9 times the AUC
as WOEP?"¢_ Moreover, for specific relations com-
monly mediated by nouns (e.g., ‘is the president
of”) OLLIE obtains two order of magnitude higher
yield. We also compare OLLIE to a state-of-the-art
SRL system (Johansson and Nugues, 2008) on an
IE-related end task and find that they both have com-
parable performance at argument identification and
have complimentary strengths in sentence analysis.
In Section 6 we discuss related work on pattern-
based relation extraction.

2 Background

Open IE systems extract tuples consisting of argu-
ment phrases from the input sentence and a phrase

! Available for download at http://openie.cs.washington.edu
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from the sentence that expresses a relation between
the arguments, in the format (arg1; rel; arg2). This is
done without a pre-specified set of relations and with
no domain-specific knowledge engineering. We
compare OLLIE to two state-of-the-art Open IE sys-
tems: (1) REVERB (Fader et al., 2011), which
uses shallow syntactic processing to identify rela-
tion phrases that begin with a verb and occur be-
tween the argument phrases;2 (2) WOEPY%¢ (Wu
and Weld, 2010), which uses bootstrapping from en-
tries in Wikipedia info-boxes to learn extraction pat-
terns in dependency parses. Like REVERB, the
relation phrases begin with verbs, but can handle
long-range dependencies and relation phrases that
do not come between the arguments. Unlike RE-
VERB, WOE does not include nouns within the re-
lation phrases (e.g., cannot represent ‘is the presi-
dent of” relation phrase). Both systems ignore con-
text around the extracted relations that may indi-
cate whether it is a supposition or conditionally true
rather than asserted as factual (see #4-5 in Figure 1).

The task of Semantic role labeling is to identify
arguments of verbs in a sentence, and then to clas-
sify the arguments by mapping the verb to a se-
mantic frame and mapping the argument phrases to
roles in that frame, such as agent, patient, instru-
ment, or benefactive. SRL systems can also identify
and classify arguments of relations that are mediated
by nouns when trained on NomBank annotations.
Where SRL begins with a verb or noun and then
looks for arguments that play roles with respect to
that verb or noun, Open IE looks for a phrase that ex-
presses a relation between a pair of arguments. That
phrase is often more than simply a single verb, such
as the phrase ‘plays a role in’, or ‘is the CEO of”.

3 Relational Extraction in OLLIE

Figure 2 illustrates OLLIE’s architecture for learning
and applying binary extraction patterns. First, it uses
a set of high precision seed tuples from REVERB to
bootstrap a large training set. Second, it learns open
pattern templates over this training set. Next, OLLIE
applies these pattern templates at extraction time.
This section describes these three steps in detail. Fi-
nally, OLLIE analyzes the context around the tuple
(Section 4) to add information (attribution, clausal
modifiers) and a confidence function.

2 Available for download at http://reverb.cs.washington.edu/
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Figure 2: System architecture: OLLIE begins with seed
tuples from REVERB, uses them to build a bootstrap
training set, and learns open pattern templates. These are
applied to individual sentences at extraction time.

3.1 Constructing a Bootstrapping Set

Our goal is to automatically create a large training
set, which encapsulates the multitudes of ways in
which information is expressed in text. The key ob-
servation is that almost every relation can also be ex-
pressed via a REVERB-style verb-based expression.
So, bootstrapping sentences based on REVERB’s tu-
ples will likely capture all relation expressions.

We start with over 110,000 seed tuples — these are
high confidence REVERB extractions from a large
Web corpus (ClueWeb)? that are asserted at least
twice and contain only proper nouns in the argu-
ments. These restrictions reduce ambiguity while
still covering a broad range of relations. For ex-
ample, a seed tuple may be (Paul Annacone; is the
coach of; Federer) that REVERB extracts from the
sentence “Paul Annacone is the coach of Federer.”

For each seed tuple, we retrieve all sentences in a
Web corpus that contains all content words in the
tuple. We obtain a total of 18 million sentences.
For our example, we will retrieve all sentences that
contain ‘Federer’, ‘Paul’, ‘Annacone’ and some syn-
tactic variation of ‘coach’. We may find sentences
like “Now coached by Annacone, Federer is win-
ning more titles than ever.”

Our bootstrapping hypothesis assumes that all
these sentences express the information of the orig-
inal seed tuple. This hypothesis is not always true.
As an example, for a seed tuple (Boyle; is born in;
Ireland) we may retrieve a sentence “Felix G. Whar-
ton was born in Donegal, in the northwest of Ireland,
a county where the Boyles did their schooling.”

*http://lemurproject.org/clueweb09.php/
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To reduce bootstrapping errors we enforce addi-
tional dependency restrictions on the sentences. We
only allow sentences where the content words from
arguments and relation can be linked to each other
via a linear path of size four in the dependency parse.
To implement this restriction, we only use the sub-
set of content words that are headwords in the parse
tree. In the above sentence ‘Ireland’, ‘Boyle’ and
‘born’ connect via a dependency path of length six,
and hence this sentence is rejected from the training
set. This reduces our set to 4 million (seed tuple,
sentence) pairs.

In our implementation, we use Malt Dependency
Parser (Nivre and Nilsson, 2004) for dependency
parsing, since it is fast and hence, easily applica-
ble to a large corpus of sentences. We post-process
the parses using Stanford’s CCprocessed algorithm,
which compacts the parse structure for easier extrac-
tion (de Marneffe et al., 2000).

We randomly sampled 100 sentences from our
bootstrapping set and found that 90 of them sat-
isfy our bootstrapping hypothesis (64 without de-
pendency constraints). We find this quality to be sat-
isfactory for our needs of learning general patterns.

Bootstrapped data has been previously used to
generate positive training data for IE (Hoffmann et
al., 2010; Mintz et al., 2009). Howeyver, previous
systems retrieved sentences that only matched the
two arguments, which is error-prone, since multiple
relations can hold between a pair of entities (e.g.,
Bill Gates is the CEO of, a co-founder of, and has a
high stake in Microsoft).

Alternatively, researchers have developed sophis-
ticated probabilistic models to alleviate the effect
of noisy data (Riedel et al., 2010; Hoffmann et al.,
2011). In our case, by enforcing that a sentence ad-
ditionally contains some syntactic form of the rela-
tion content words, our bootstrapping set is naturally
much cleaner.

Moreover, this form of bootstrapping is better
suited for Open IE’s needs, as we will use this data
to generalize to other unseen relations. Since the
relation words in the sentence and seed match, we
can learn general pattern templates that may apply
to other relations too. We discuss this process next.

3.2 Open Pattern Learning

OLLIE’s next step is to learn general patterns that
encode various ways of expressing relations. OL-



Extraction Template Open Pattern

1. (argl; be {rel} {prep}; arg2)

{argl} Tnsubjpass? {rel:postag=VBN} |{prep_x}| {arg2}

2. (argl; {rel}; arg2)

{argl} Tnsubj] {rel:postag=VBD} |dobj| {arg2}

3. (argl; be {rel} by; arg2)

{argl} Tnsubjpass? {rel:postag=VBN} |agent| {arg2}

4. (argl; be {rel} of; arg2)

{rel:postag=NN;type=Person} Tnn{ {argl} |nn] {arg2}

5. (argl; be {rel} {prep}; arg2)

{argl} Tnsubjpass? {slot:postag=VBN;lex cannounce|name|choose...}
|dobj| {rel:postag=NN} |{prep_x}| {arg2}

Figure 3: Sample open pattern templates. Notice that some patterns (1-3) are purely syntactic, and others are seman-
tic/lexically constrained (in bold font). A dependency parse that matches pattern #1 is shown in Figure 4.

LIE learns open pattern templates — a mapping from
a dependency path to an open extraction, i.e., one
that identifies both the arguments and the exact
(REVERB-style) relation phrase. Figure 3 gives ex-
amples of high-frequency pattern templates learned
by OLLIE. Note that some of the dependency
paths are completely unlexicalized (#1-3), whereas
in other cases some nodes have lexical or semantic
restrictions (#4, 5).

Open pattern templates encode the ways in
which a relation (in the first column) may
be expressed in a sentence (second column).
For example, a relation (Godse; kill; Gandhi)
may be expressed with a dependency path (#2)
{Godse} nsubj{kill:postag=VBD} | dobj| { Gandhi}.

To learn the pattern templates, we first extract the
dependency path connecting the arguments and re-
lation words for each seed tuple and the associated
sentence. We annotate the relation node in the path
with the exact relation word (as a lexical constraint)
and the POS (postag constraint). We create a re-
lation template from the seed tuple by normalizing
‘is’/*was’/‘will be’ to ‘be’, and replacing the rela-
tion content word with {rel}.*

If the dependency path has a node that is not part
of the seed tuple, we call it a slof node. Intuitively,
if slot words do not negate the tuple they can be
skipped over. As an example, ‘hired’ is a slot word
for the tuple (Annacone; is the coach of; Federer) in
the sentence “Federer hired Annacone as a coach”.
We associate postag and lexical constraints with the
slot node as well. (see #5 in Figure 3).

Next, we perform several syntactic checks on
each candidate pattern. These checks are the con-
straints that we found to hold in very general pat-
terns, which we can safely generalize to other un-
seen relations. The checks are: (1) There are no slot

*Our current implementation only allows a single relation

content word; extending to multiple words is straightforward —
the templates will require rell, rel2,. . .
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nodes in the path. (2) The relation node is in the
middle of argl and arg2. (3) The preposition edge
(if any) in the pattern matches the preposition in the
relation. (4) The path has no nn or amod edges.

If the checks hold true we accept it as a purely
syntactic pattern with no lexical constraints. Oth-
ers are semantic/lexical patterns and require further
constraints to be reliable as extraction patterns.

3.2.1 Purely Syntactic Patterns

For syntactic patterns, we aggressively general-
ize to unseen relations and prepositions. We remove
all lexical restrictions from the relation nodes. We
convert all preposition edges to an abstract {prep_x}
edge. We also replace the specific prepositions in
extraction templates with {prep}.

As an example, consider the sentences, “Michael
Webb appeared on Oprah...” and “...when Alexan-
der the Great advanced to Babylon.” and associ-
ated seed tuples (Michael Webb; appear on; Oprah)
and (Alexander; advance to; Babylon). Both these
data points return the same open pattern after gen-
eralization: “{argl} Tnsubj] {rel:postag=VBD}
|{prep_x}| {arg2}” with the extraction template
(argl, {rel} {prep}, arg2). Other examples of syn-
tactic pattern templates are #1-3 in Figure 3.

3.2.2 Semantic/Lexical Patterns

Patterns that do not satisfy the checks are not as
general as those that do, but are still important. Con-
structions like “Microsoft co-founder Bill Gates...”
work for some relation words (e.g., founder, CEO,
director, president, efc.) but would not work for
other nouns; for instance, from “Chicago Symphony
Orchestra” we should not conclude that (Orchestra;
is the Symphony of; Chicago).

Similarly, we may conclude (Annacone; is the
coach of; Federer) from the sentence “Federer hired
Annacone as a coach.”, but this depends on the se-
mantics of the slot word, ‘hired’. If we replaced



‘hired’ by ‘fired’ or ‘considered’ then the extraction
would be false.

To enable such patterns we retain the lexical con-
straints on the relation words and slot words.> We
collect all patterns together based only on the syn-
tactic restrictions and convert the lexical constraint
into a list of words with which the pattern was seen.
Example #5 in Figure 3 shows one such lexical list.

Can we generalize these lexically-annotated pat-
terns further? Our insight is that we can generalize
a list of lexical items to other similar words. For
example, if we see a list like {CEO, director, presi-
dent, founder}, then we should be able to generalize
to ‘chairman’ or ‘minister’.

Several ways to compute semantically similar
words have been suggested in the literature like
Wordnet-based, distributional similarity, efc. (e.g.,
(Resnik, 1996; Dagan et al., 1999; Ritter et al.,
2010)). For our proof of concept, we use a simple
overlap metric with two important Wordnet classes
— Person and Location. We generalize to these types
when our list has a high overlap (> 75%) with hy-
ponyms of these classes. If not, we simply retain the
original lexical list without generalization. Example
#4 in Figure 3 is a type-generalized pattern.

We combine all syntactic and semantic patterns
and sort in descending order based on frequency of
occurrence in the training set. This imposes a natural
ranking on the patterns — more frequent patterns are
likely to give higher precision extractions.

3.3 Pattern Matching for Extraction

We now describe how these open patterns are used
to extract binary relations from a new sentence. We
first match the open patterns with the dependency
parse of the sentence and identify the base nodes for
arguments and relations. We then expand these to
convey all the information relevant to the extraction.
As an example, consider the sentence: “I learned
that the 2012 Sasquatch music festival is scheduled
for May 25th until May 28th.” Figure 4 illustrates the
dependency parse. To apply pattern #1 from Figure
3 we first match argl to ‘festival’, rel to ‘scheduled’
and arg2 to ‘25th’ with prep ‘for’. However, (festi-
val, be scheduled for, 25th) is not a very meaningful
extraction. We need to expand this further.

3For highest precision extractions, we may also need seman-
tic constraints on the arguments. In this work, we increase our
yield by ignoring the argument-type constraints.
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Figure 4: The col-

A sample dependency parse.
ored/greyed nodes represent all words that are extracted
from the pattern {argl} Tnsubjpass| {rel:postag=VBN}

I{prepx}| {arg2}.  The extraction is (the 2012
Sasquatch Music Festival; is scheduled for; May 25th).

For the arguments we expand on amod, nn, det,
neg, prep_of, num, quantmod edges to build the
noun-phrase. When the base noun is not a proper
noun, we also expand on rcmod, infmod, partmod,
ref, prepc_of edges, since these are relative clauses
that convey important information. For relation
phrases, we expand on advmod, mod, aux, auxpass,
cop, prt edges. We also include dobj and iobj in the
case that they are not in an argument. After identi-
fying the words in arg/relation we choose their order
as in the original sentence. For example, these rules
will result in the extraction (the Sasquatch music fes-
tival; be scheduled for; May 25th).

3.4 Comparison with WOEP?"*¢

OLLIE’s algorithm is similar to that of WOEP?"*¢
— both systems follow the basic structure of boot-
strap learning of patterns based on dependency parse
paths. However, there are three significant differ-
ences. WOE uses Wikipedia-based bootstrapping,
finding a sentence in a Wikipedia article that con-
tains the infobox values. Since WOE does not have
access to a seed relation phrase, it heuristically as-
signs all intervening words between the arguments
in the parse as the relation phrase. This often results
in under-specified or nonsensical relation phrases.
For example, from the sentence “David Miscavige
learned that after Tom Cruise divorced Mimi Rogers,
he was pursuing Nicole Kidman.” WOE’s heuristics
will extract the relation divorced was pursuing be-
tween ‘Tom Cruise’ and ‘Nicole Kidman’. OLLIE,
in contrast, produces well-formed relation phrases
by basing its templates on REVERB relation phrases.

Secondly, WOE does not assign semantic/lexical
restrictions to its patterns, and thus, has lower preci-
sion due to aggressive syntactic generalization. Fi-
nally, WOE is designed to have verb-mediated rela-



tion phrases that do not include nouns, thus missing
important relations such as ‘is the president of’. In
our experiments (see Figure 5) we find WOEP*"*¢ to
have lower precision and yield than OLLIE.

4 Context Analysis in OLLIE

We now turn to the context analysis component,
which handles the problem of extractions that are not
asserted as factual in the text. In some cases, OLLIE
can handle this by extending the tuple representation
with an extra field that turns an otherwise incorrect
tuple into a correct one. In other cases, there is no re-
liable way to salvage the extraction, and OLLIE can
avoid an error by giving the tuple a low confidence.

Cases where OLLIE extends the tuple representa-
tion include conditional truth and attribution. Con-
sider sentence #4 in Figure 1. It is not asserting that
the earth is the center of the universe. OLLIE adds
an AttributedTo field, which makes the final extrac-
tion valid (see OLLIE extraction in Figure 1). This
field indicates who said, suggested, believes, hopes,
or doubts the information in the main extraction.

Another case is when the extraction is only condi-
tionally true. Sentence #5 in Figure 1 does not assert
as factual that (Romney; will be elected; President),
so it is an incorrect extraction. However, adding
a condition (“if he wins five states™) can turn this
into a correct extraction. We extend OLLIE to have
a ClausalModifier field when there is a dependent
clause that modifies the main extraction.

Our approach for extracting these additional fields
makes use of the dependency parse structure. We
find that attributions are marked by a ccomp (clausal
complement) edge. For example, in the parse of sen-
tence #4 there is a ccomp edge between ‘believe’
and ‘center’. Our algorithm first checks for the pres-
ence of a ccomp edge to the relation node. However,
not all ccomp edges are attributions. We match the
context verb (e.g., ‘believe’) with a list of commu-
nication and cognition verbs from VerbNet (Schuler,
2006) to detect attributions. The context verb and its
subject then populate the AttributedTo field.

Similarly, the clausal modifiers are marked by ad-
vel (adverbial clause) edge. We filter these lexically,
and add a ClausalModifier field when the first word
of the clause matches a list of 16 terms created using
a training set: {if, when, although, because, ...}.

OLLIE has high precision for AttributedTo and
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ClausalModifier fields, nearly 98% on a develop-
ment set, however, these two fields do not cover all
the cases where an extraction is not asserted as fac-
tual. To handle others, we train OLLIE’s confidence
function to reduce the confidence of an extraction if
its context indicates it is likely to be non-factual.
We use a supervised logistic regression classifier
for the confidence function. Features include the
frequency of the extraction pattern, the presence of
AttributedTo or ClausalModifier fields, and the po-
sition of certain words in the extraction’s context,
such as function words or the communication and
cognition verbs used for the AttributedTo field. For
example, one highly predictive feature tests whether
or not the word ‘if’ comes before the extraction
when no ClausalModifier fields are attached. Our
training set was 1000 extractions drawn evenly from
Wikipedia, News, and Biology sentences.

5 Experiments

Our experiments evaluate three main questions. (1)
How does OLLIE’s performance compare with exis-
ting state-of-the-art open extractors? (2) What are
the contributions of the different sub-components
within OLLIE? (3) How do OLLIE’s extractions com-
pare with semantic role labeling argument identifi-
cation?

5.1 Comparison of Open IE Systems

Since Open IE is designed to handle a variety of
domains, we create a dataset of 300 random sen-
tences from three sources: News, Wikipedia and Bi-
ology textbook. The News and Wikipedia test sets
are a random subset of Wu and Weld’s test set for
WOEP*"%¢, We ran three systems, OLLIE, REVERB
and WOEP?"*¢ on this dataset resulting in a total of
1,945 extractions from all three systems. Two an-
notators tagged the extractions as correct if the sen-
tence asserted or implied that the relation was true.
Inter-annotator agreement was 0.96, and we retained
the subset of extractions on which the two annotators
agree for further analysis.

All systems associate a confidence value with an
extraction — ranking with these confidence values
generates a precision-yield curve for this dataset.
Figure 5 reports the curves for the three systems.

We find that OLLIE has a higher performance, ow-
ing primarily to its higher yield at comparable preci-
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Figure 5: Comparison of different Open IE systems. OL-
LIE achieves substantially larger area under the curve
than other Open IE systems.

sion. OLLIE finds 4.4 times more correct extractions
than REVERB and 4.8 times more than WOEP?"5¢ at
a precision of about 0.75. Overall, OLLIE has 2.7
times larger area under the curve than REVERB and
1.9 times larger than WOEP*"*¢® We use the Boot-
strap test (Cohen, 1995) to find that OLLIE’s better
performance compared to the two systems is highly
statistically significant.

We perform further analysis to understand the rea-
sons behind the high yield from OLLIE. We find that
40% of the OLLIE extractions that REVERB misses
are due to OLLIE’s use of parsers — REVERB misses
those because its shallow syntactic analysis cannot
skip over the intervening clauses or prepositional
phrases between the relation phrase and the argu-
ments. About 30% of the additional yield is those
extractions where the relation is not between its ar-
guments (see instance #1 in Figure 1). The rest are
due to other causes such as OLLIE’s ability to handle
relationships mediated by nouns and adjectives, or
REVERB’s shallow syntactic analysis, efc. In con-
trast, OLLIE misses very few extractions returned by
REVERB, mostly due to parser errors.

We find that WOEP?"*¢ misses extractions found
by OLLIE for a variety of reasons. The primary
cause is that WOEP?"*¢ does not include nouns in re-
lation phrases. It also misses some verb-based pat-
terns, probably due to training noise. In other cases,
WOEP*"*¢ misses extractions due to ill-formed rela-
tion phrases (as in the example of Section 3.4: ‘di-
vorced was pursuing’ instead of the correct relation
‘was pursuing’).

While the bulk of OLLIE’s extractions in our test

SEvaluating recall is difficult at this scale — however, since
yield is proportional to recall, the area differences also hold for
the equivalent precision-recall curves.
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Relation OLLIE |REVERB|incr.

is capital of | 8,566 146 59x
is president of| 21,306 1,970 | 11x
is professor at| 8,334 400 21x
is scientist of 730 5 146x

Figure 6: OLLIE finds many more correct extractions for
relations that are typically expressed by noun phrases —
up to 146 times that of REVERB. WOEP“"%¢ outputs no
instances of these, because it does not allow nouns in the
relation. These results are at point of maximum yield
(with comparable precisions around 0.66).

set were verb-mediated, our intuition suggests that
there exist many relationships that are most natu-
rally expressed via noun phrases. To demonstrate
this effect, we chose four such relations — is capi-
tal of, is president of, is professor at, and is scientist
of. We ran our systems on 100 million random sen-
tences from the ClueWeb corpus. Figure 6 reports
the yields of these four relations.”

OLLIE found up to 146 times as many extrac-
tions for these relations than REVERB. Because
WOEP"%¢ does not include nouns in relation phrases,
it is unable to extract any instance of these relations.
We examine a sample of the extractions to verify that
noun-mediated extractions are the main reason for
this large yield boost over REVERB (73% of OLLIE
extractions were noun-mediated). High-frequency
noun patterns like “Obama, the president of the US”,
“Obama, the US president”, “US President Obama”
far outnumber sentences of the form “Obama is the
president of the US”. These relations are seldom the
primary information in a sentence, and are typically
mentioned in passing in noun phrases that express
the relation.

For some applications, noun-mediated relations
are important, as they associate people with work
places and job titles. Overall, we think of the results
in Figure 6 as a “best case analysis” that illustrates
the dramatic increase in yield for certain relations,
due to syntactic scope expansion in Open IE.

5.2 Analysis of OLLIE

We perform two control experiments to understand
the value of semantic/lexical restrictions in pattern
learning and precision boost due to context analysis
component.

"We multiply the total number of extractions with precision
on a sample for that relation to estimate the yield.
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Figure 7: Results on the subset of extractions from pat-
terns with semantic/lexical restrictions. Ablation study
on patterns with semantic/lexical restrictions. These pat-
terns without restrictions (OLLIE[syn]) result in low pre-
cision. Type generalization improves yield compared to
patterns with only lexical constraints (OLLIE[lex]).

Are semantic restrictions important for open pat-
tern learning? How much does type generalization
help? To answer these questions we compare three
systems — OLLIE without semantic or lexical restric-
tions (OLLIE[syn]), OLLIE with lexical restrictions
but no type generalization (OLLIE[lex]) and the full
system (OLLIE). We restrict this experiment to the
patterns where OLLIE adds semantic/lexical restric-
tions, rather than dilute the result with patterns that
would be unchanged by these variants.

Figure 7 shows the results of this experiment on
our dataset from three domains. As the curves
show, OLLIE was correct to add lexical/semantic
constraints to these patterns — precision is quite low
without the restrictions. This matches our intuition,
since these are not completely general patterns and
generalizing to all unseen relations results in a large
number of errors. OLLIE[lex] performs well though
at lower yield. The type generalization helps the
yield somewhat, without hurting the precision. We
believe that a more data-driven type generalization
that uses distributional similarity (e.g., (Ritter et al.,
2010)) may help much more. Also, notice that over-
all precision numbers are lower, since these are the
more difficult relations to extract reliably. We con-
clude that lexical/semantic restrictions are valuable
for good performance of OLLIE.

We also compare our full system to a version that
does not use the context analysis of Section 4. Fig-
ure 8 compares OLLIE to a version (OLLIE[pat]) that
does not add the AttributedTo and ClausalModifier
fields, and, instead of context-sensitive confidence
function, uses the pattern frequency in the training
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Figure 8: Context analysis increases precision, raising the
area under the curve by 19%.

set as a ranking function. 10% of the sentences have
an OLLIE extraction with ClausalModifier and 6%
have AttributedTo fields. Adding ClausalModifier
corrects errors for 21% of extractions that have a
ClausalModifier and does not introduce any new er-
rors. Adding AttributedTo corrects errors for 55%
of the extractions with AttributedTo and introduces
an error for 3% of the extractions. Overall, we find
that OLLIE gives a significant boost to precision over
OLLIE[pat] and obtains 19% additional AUC.

Finally, we analyze the errors made by OLLIE.
Unsurprisingly, because of OLLIE’s heavy reliance
on the parsers, parser errors account for a large part
of OLLIE’s errors (32%). 18% of the errors are due
to aggressive generalization of a pattern to all un-
seen relations and 12% due to incorrect application
of lexically annotated patterns. About 14% of the er-
rors are due to important context missed by OLLIE.
Another 12% of the errors are because of the limita-
tions of binary representation, which misses impor-
tant information that can only be expressed in n-ary
tuples.

We believe that as parsers become more robust
OLLIE’s performance will improve even further. The
presence of context-related errors suggests that there
is more to investigate in context analysis. Finally, in
the future we wish to extend the representation to
include n-ary extractions.

5.3 Comparison with SRL

Our final evaluation suggests answers to two im-
portant questions. First, how does a state-of-the-art
Open IE system do in terms of absolute recall? Sec-
ond, how do Open IE systems compare against state-
of-the-art SRL systems?

SRL, as discussed in Section 2, has a very dif-
ferent goal — analyzing verbs and nouns to identify



their arguments, then mapping the verb or noun to
a semantic frame and determining the role that each
argument plays in that frame. These verbs and nouns
need not make the full relation phrase, although, re-
cent work has shown that they may be converted
to Open IE style extractions with additional post-
processing (Christensen et al., 2011).

While a direct comparison between OLLIE and
a full SRL system is problematic, we can compare
performance of OLLIE and the argument identifica-
tion step of an SRL system. We set each system the
following task — “based on a sentence, find all noun-
pairs that have an asserted relationship.” This task is
permissive for both systems, as it does not require
finding an exact relation phrase or argument bound-
ary, or determining the argument roles in a relation.

We create a gold standard by tagging a random
50 sentences of our test set to identify all pairs of
NPs that have an asserted relation. We only counted
relation expressed by a verb or noun in the text, and
did not include relations expressed simply with “of”
or apostrophe-s. Where a verb mediates between an
argument and multiple NPs, we represent this as a
binary relation for all pairs of NPs.

For example the sentence, ‘“Macromolecules
translocated through the phloem include proteins
and various types of RNA that enter the sieve tubes
through plasmodesmata.” has five binary relations.

argl: arg2: relation term
Macromolecules phloem translocated
Macromolecules proteins include
Macromolecules types of RNA include
types of RNA sieve tubes enter

types of RNA plasmodesmata  enter

We find an average of 4.0 verb-mediated relations
and 0.3 noun-mediated relations per sentence. Eval-
uating OLLIE against this gold standard helps to an-
swer the question of absolute recall: what percent-
age of binary relations expressed in a sentence can
our systems identify.

For comparison, we use a state-of-the-art SRL
system from Lund University (Johansson and
Nugues, 2008), which is trained on PropBank
(Martha and Palmer, 2002) for its verb-frames and
NomBank (Meyers et al., 2004) for noun-frames.
The PropBank version of the system won the very
competitive 2008 CONLL SRL evaluation.

We conduct this experiment by manually compar-
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LUND OLLIE union
Verb relations 0.58 (0.69) | 0.49 (0.55) | 0.71 (0.83)
Noun relations | 0.07 (0.33) | 0.13 (0.13) | 0.20 (0.33)
All relations 0.54 (0.67) | 0.47 (0.52) | 0.67 (0.80)

Figure 9: Recall of LUND and OLLIE on binary relations.
In parentheses is recall with oracle co-reference. Both
systems identify approximately half of all argument pairs,
but have lower recall on noun-mediated relations.

ing the outputs of LUND and OLLIE against the gold
standard. For each pair of NPs in the gold standard
we determine whether the systems find a relation
with that pair of NPs as arguments. Recall is based
on the percentage of NP pairs where the head nouns
matches head nouns of two different arguments in an
extraction or semantic frame. If the argument value
is conjunctive, we count a match against the head
noun of each item in the list. We also count cases
where system output would match the gold standard,
given perfect co-reference.

Figure 9 shows the recall for OLLIE and LUND,
with recall based on oracle co-referential matches
in parentheses. Our analysis shows strong recall
for both systems for verb-mediated relations: LUND
finding about two thirds of the argument pairs and
OLLIE finding over half. Both systems have low
recall for noun-mediated relations, with most of
LUND’s recall requiring co-reference. We observe
that a union of the two systems raises recall to
0.71 for verb-mediated relations and 0.83 with co-
reference, demonstrating that each system is identi-
fying argument pairs that the other missed.

It is not surprising that OLLIE has recall of ap-
proximately 0.5, since it is tuned for high precision
extraction, and avoids less reliable extractions from
constructions such as reduced relative clauses and
gerunds, or from noun-mediated relations with long-
range dependencies. In contrast, SRL is tuned to
identify the argument structure for nearly all verbs
and nouns in a sentence. The missing recall from
SRL is primarily where it does not identify both ar-
guments of a binary relation, or where the correct
argument is buried in a long argument phrase, but is
not its head noun.

It is surprising that LUND, trained on Nom-
Bank, identifies so few noun-mediated argument
pairs without co-reference. An example will make
this clear. For the sentence, “Clarcor, a maker of
packaging and filtration products, said ...”, the tar-



get relation is between Clarcor and the products it
makes. LUND identifies a frame maker.01 in which
argument AQ has head noun ‘maker’ and Al is a PP
headed by ‘products’, missing the actual name of the
maker without co-reference post-processing. OLLIE
finds the extraction (Clarcor; be a maker of; packag-
ing and filtration products) where the heads of both
arguments matched those of the target. In another
example, LUND identifies “his” and “brother” as the
arguments of the frame brother.01, rather than the
actual names of the two brothers.

We can draw several conclusions from this exper-
iment. First, nouns, although less frequently mediat-
ing relations, are much harder and both systems are
failing significantly on those — OLLIE is somewhat
better. Two, neither systems dominates the other;
in fact, recall is increased significantly by a union
of the two. Three, and probably most importantly,
significant information is still being missed by both
systems, and more research is warranted.

6 Related Work

There is a long history of bootstrapping and pat-
tern learning approaches in traditional informa-
tion extraction, e.g., DIPRE (Brin, 1998), Snow-
Ball (Agichtein and Gravano, 2000), Espresso (Pan-
tel and Pennacchiotti, 2006), PORE (Wang et al.,
2007), SOFIE (Suchanek et al., 2009), NELL (Carl-
son et al.,, 2010), and PROSPERA (Nakashole et
al., 2011). All these approaches first bootstrap data
based on seed instances of a relation (or seed data
from existing resources such as Wikipedia) and then
learn lexical or lexico-POS patterns to create an ex-
tractor. Other approaches have extended these to
learning patterns based on full syntactic analysis of
a sentence (Bunescu and Mooney, 2005; Suchanek
et al., 2006; Zhao and Grishman, 2005).

OLLIE has significant differences from the previ-
ous work in pattern learning. First, and most impor-
tantly, these previous systems learn an extractor for
each relation of interest, whereas OLLIE is an open
extractor. OLLIE’s strength is its ability to gener-
alize from one relation to many other relations that
are expressed in similar forms. This happens both
via syntactic generalization and type generalization
of relation words (sections 3.2.1 and 3.2.2). This ca-
pability is essential as many relations in the test set
are not even seen in the training set — in early exper-
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iments we found that non-generalized pattern learn-
ing (equivalent to traditional IE) had significantly
less yield at a slightly higher precision.

Secondly, previous systems begin with seeds that
consist of a pair of entities, whereas we also in-
clude the content words from REVERB relations in
our training seeds. This results in a much higher
precision bootstrapping set and high rule preci-
sion while still allowing morphological variants that
cover noun-mediated relations. A third difference is
in the scale of the training — REVERB yields millions
of training seeds, where previous systems had orders
of magnitude less. This enables OLLIE to learn pat-
terns with greater coverage.

The closest to our work is the pattern learning
based open extractor WOEP*"*¢,  Section 3.4 de-
tails the differences between the two extractors. An-
other extractor, StatSnowBall (Zhu et al., 2009), has
an Open IE version, which learns general but shal-
low patterns. Preemptive IE (Shinyama and Sekine,
2006) is a paradigm related to Open IE that first
groups documents based on pairwise vector cluster-
ing, then applies additional clustering to group en-
tities based on document clusters. The clustering
steps make it difficult for it to scale to large corpora.

7 Conclusions

Our work describes OLLIE, a novel Open IE ex-
tractor that makes two significant advances over
the existing Open IE systems. First, it expands
the syntactic scope of Open IE systems by identi-
fying relationships mediated by nouns and adjec-
tives. Our experiments found that for some rela-
tions this increases the number of correct extrac-
tions by two orders of magnitude. Second, by an-
alyzing the context around an extraction, OLLIE is
able to identify cases where the relation is not as-
serted as factual, but is hypothetical or conditionally
true. OLLIE increases precision by reducing con-
fidence in those extractions or by associating addi-
tional context in the extractions, in the form of at-
tribution and clausal modifiers. Overall, OLLIE ob-
tains 1.9 to 2.7 times more area under precision-
yield curves compared to existing state-of-the-art
open extractors. OLLIE is available for download at
http://openie.cs.washington.edu.
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