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Abstract

We describe a nonparametric model
and corresponding inference algorithm
for learning Synchronous Context Free
Grammar derivations for parallel text. The
model employs a Pitman-Yor Process prior
which uses a novel base distribution over
synchronous grammar rules. Through both
synthetic grammar induction and statistical
machine translation experiments, we show
that our model learns complex translational
correspondences— including discontiguous,
many-to-many alignments—and produces
competitive translation results. Further,
inference is efficient and we present results on
significantly larger corpora than prior work.

1 Introduction

In the twenty years since Brown et al. (1992) pio-
neered the first word-based statistical machine trans-
lation (SMT) models substantially more expressive
models of translational equivalence have been devel-
oped. The prevalence of complex phrasal, discon-
tiguous, and non-monotonic translation phenomena
in real-world applications of machine translation has
driven the development of hierarchical and syntac-
tic models based on synchronous context-free gram-
mars (SCFGs). Such models are now widely used in
translation and represent the state-of-the-art in most
language pairs (Galley et al., 2004; Chiang, 2007).
However, while the models used for translation have
evolved, the way in which they are learnt has not:
näıve word-based models are still used to infer trans-
lational correspondences from parallel corpora.

In this work we bring the learning of the minimal
units of translation in step with the representational
power of modern translation models. We present a
nonparametric Bayesian model of translation based
on SCFGs, and we use its posterior distribution to
infer synchronous derivations for a parallel corpus
using a novel Gibbs sampler. Our model is able
to: 1) directly model many-to-many alignments,
thereby capturing non-compositional and idiomatic
translations;2) align discontiguous phrases in both
the source and target languages;3) have no restric-
tions on the length of a rule, the number of nonter-
minal symbols per rule, or their configuration.

Learning synchronous grammars is hard due to
the high polynomial complexity of dynamic pro-
gramming and the exponential space of possible
rules. As such most prior work for learning SCFGs
has relied on inference algorithms that were heuristi-
cally constrained or biased by word-based alignment
models and small experiments (Wu, 1997; Zhang et
al., 2008; Blunsom et al., 2009; Neubig et al., 2011).
In contrast to these previous attempts, our SCFG
model scales to large datasets (over1.3M sentence
pairs) without imposing restrictions on the form of
the grammar rules or otherwise constraining the set
of learnable rules (e.g., with a word alignment).

We validate our sampler by demonstrating its
ability to recover grammars used to generate
synthetic datasets. We then evaluate our model by
inducing word alignments for SMT experiments
in several typologically diverse language pairs and
across a range of corpora sizes. Our results attest to
our model’s ability to learn synchronous grammars
encoding complex translation phenomena.
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2 Prior Work

The goal of directly inducing phrasal translation
models from parallel corpora has received a lot of
attention in the NLP and SMT literature. Marcu
and Wong (2002) presented an ambitious maximum
likelihood model and EM inference algorithm for
learning phrasal translation representations. The
first issue this model faced was a massive parameter
space and intractable inference. However a more
subtle issue is that likelihood based models of this
form suffer from a degenerate solution, resulting
in the model learning whole sentences as phrases
rather than minimal units of translation. DeNero
et al. (2008) recognised this problem and proposed
a nonparametric Bayesian prior for contiguous
phrases. This had the dual benefits of biasing the
model towards learning minimal translation units,
and integrating out the parameters such that a much
smaller set of statistics would suffice for inference
with a Gibbs sampler. However this work fell short
by not evaluating the model independently, instead
only presenting results in which it was combined
with a standard word-alignment initialisation, thus
leaving open the question of its efficacy.

The fact that flat phrasal models lack a structured
approach to reordering has led many researchers to
pursue SCFG induction instead (Wu, 1997; Cherry
and Lin, 2007; Zhang et al., 2008; Blunsom et
al., 2009). The asymptotic time complexity of
the inside algorithm for even the simplest SCFG
models isO(|s|3|t|3), too high to be practical for
most real translation data. A popular solution to
this problem is to heuristically restrict inference
to derivations which agree with an independent
alignment model (Cherry and Lin, 2007; Zhang et
al., 2008). However this may have the unintended
effect of biasing the model back towards the initial
alignments that they attempt to improve upon.
More recently Neubig et al. (2011) reported a
novel Bayesian model for phrasal alignment and
extraction that was able to model phrases of multiple
granularities via a synchronous Adaptor Grammar.
However this model suffered from the common
problem of intractable inference and results were
presented for a very small number of samples from
a heuristically pruned beam, making interpreting
the results difficult.

Blunsom et al. (2009) presented an approach
similar to ours that implemented a Gibbs sampler
for a nonparametric Bayesian model of ITG. While
that work managed to scale to a non-trivially sized
corpus, like other works it relied on a state-of-the-art
word alignment model for initialisation. Our model
goes further by allowing discontiguous phrasal
translation units. Surprisingly, the freedom
that this extra power affords allows the Gibbs
sampler we propose to mix more quickly, allowing
state-of-the-art results from a simple initialiser.

3 Model

We use a nonparametric generative model based on
the 2-parameter Pitman-Yor process (PYP) (Pitman
and Yor, 1997), a generalisation of the Dirichlet Pro-
cess, which has been used for various NLP modeling
tasks with state-of-the-art results such as language
modeling, word segmentation, text compression and
part of speech induction (Teh, 2006; Goldwater et
al., 2006; Wood et al., 2011; Blunsom and Cohn,
2011). In this section we first provide a brief defi-
nition of the SCFG formalism and then describe our
PYP prior for them.

3.1 Synchronous Context-Free Grammar

An synchronous context-free grammar (SCFG) is a
5-tuple〈Σ, ∆, V, S, R〉 that generalises context-free
grammar to generate strings concurrently in two lan-
guages (Lewis and Stearns, 1968).Σ is a finite set of
source language terminal symbols,∆ is a finite set
of target language terminal symbols,V is a set of
nonterminal symbols, with a designated start sym-
bol S, andR is a set of synchronous rewrite rules.
A string pair is generated by starting with the pair
〈S1 | S1〉 and recursively applying rewrite rules of
the form X → 〈s, t, a〉 where the left hand side
(LHS) X is a nonterminal inV , s is a string in
(Σ ∪ V )∗, t is a string in(∆ ∪ V )∗ anda specifies
a one-to-one mapping (bijection) between nontermi-
nal symbols ins andt. The following are examples:1

VP → 〈 schlage NP1 NP2 vor | suggest NP2 to NP1 〉

NP→ 〈 die Kommission | the commission 〉

1The nonterminal alignmenta is indicated through sub-
scripts on the nonterminals.
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In a probabilistic SCFG, rules are associated with
probabilities such that the probabilities of all
rewrites of a particular LHS category sum to 1.

Translation with SCFGs is carried out by parsing
the source language with the monolingual source
language projection of the grammar (using standard
monolingual parsing algorithms), which induces
a parallel tree structure and translation in the
target language (Chiang, 2007). Alignment or
synchronous parsing is the process of concurrently
parsing both the source and target sentences,
uncovering the derivation or derivations that give
rise to a string pair (Wu, 1997; Dyer, 2010).

Our goal is to infer the most probable SCFG
derivations that explain a corpus of parallel sen-
tences, given a nonparametric prior over probabilis-
tic SCFGs. In this work we will consider grammars
with a single nonterminal category X.

3.2 Pitman-Yor Process SCFG

Before training we have no way of knowing how
many rules will be needed in our grammar to ade-
quately represent the data. By using the Pitman-
Yor process as a prior on the parameters of a syn-
chronous grammar we can formulate a model which
prefers smaller numbers of rules that are reused
often, thereby avoiding degenerate grammars con-
sisting of large, overly specific rules. However, as
the data being fit grows, the model can become more
complex. The PYP is parameterised by adiscount
parameterd, a strength parameterθ, and the base
distribution G0, which gives the prior probability
of an event (in our case, events are rules) before
any observations have occurred. The discount is
subtracted from each positive rule count and damp-
ens the rich get richer effect where frequent rules
are given higher probability compared to infrequent
ones. The strength parameter controls the variance,
or concentration, about the base distribution.

In our model, a draw from a PYP is a distribution
over SCFG rules with a particular LHS (in fact, it is
a distribution over all well-formed rules). From this
distribution we can in turn draw individual rules:

GX ∼ PY(d, θ,G0),
X → 〈s, t, a〉 ∼ GX .

Although the PYP has no known analytical form,
we can marginalise out theGX ’s and reason about

Step 1: Generate source side length.

Step 2: Generate source side configuration of 

terminals (and non-terminal placeholders).

Step 3: Generate target length.

Step 4. Generate target side configuration of 

terminals (and non-terminal placeholders).

Step 5. Generate the words.

X < _ _ _  ||| ? >

X < X1 _ X2 ||| ? >

X < X1 _ X2 ||| _ _ _  >

X < X1 _ X2 ||| _ X1 X2  >

X < X1 你 X2 ||| you X1 X2  >

Figure 1: Example generation of a synchronous
grammar rule in ourG0.

individual rules directly using the process described
by Teh (2006). In this process, at timen a rulern
is generated by stochastically deciding whether to
make another copy of a previously generated rule
or to draw a new one from the base distribution,G0.
Letϕ = (ϕ1, ϕ2, . . .) be the sequence of draws from
G0; thus|ϕ| is the total number of draws fromG0. A
rule rn corresponds to a selection of aϕk. Let ck
be a counter indicating the number of timesϕk has
been selected. In particular, we setrn to ϕk with
probability

ck − d

θ + n
,

and incrementck, or with probability

θ + d · |ϕ|

θ + n
,

we draw a new rule fromG0, append it toϕ, and use
it for rn.

3.3 Base Distribution

The base distributionG0 for the PYP assigns prob-
ability to a rule based our belief about what consti-
tutes a good rule independent of observing any of
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the data. We describe a novel generative process for
all rulesX → 〈s, t, a〉 that encodes these beliefs.

We describe the generative process generally here
in text, and readers may refer to the example in Fig-
ure 1. The process begins by generating the source
length (total number of terminal and nonterminal
symbols, written|s|) by drawing from a Poisson dis-
tribution with mean1:

|s| ∼ Poisson(1) .

This assigns high probability to shorter rules,
but arbitrarily long rules are possible with a low
probability. Then, for every position ins, we decide
whether it will contain a terminal or nonterminal
symbol by repeated, independent draws from a
Bernoulli distribution. Since we believe that shorter
rules should be relatively more likely to contain
terminal symbols than longer rules, we define the
probability of a terminal symbol to beφ|s| where
0 < φ < 1 is a hyperparameter.

si ∼ Bernoulli(φ|s|) ∀ i ∈ [1, |s|] .

We next generate the length of the target side of
the rule. Let#NT(s) denote the number of nonter-
minal symbols we generated ins, i.e., the arity of
the rule. Our intuition here is that source and target
lengths should be similar. However, to ensure that
the rule is well-formed,t must contain exactly as
many nonterminal symbols as the source does. We
therefore draw the number of target terminal sym-
bols from a Poisson whose mean is the number of
terminal symbols in the source, plus a small constant
λ0 to ensure that it is greater than zero:

|t| −#NT(s) ∼ Poisson (|s| −#NT(s) + λ0) .

We then determine whether each position int is
a terminal or nonterminal symbol by drawing uni-
formly from the bag of#NT(s) source nontermi-
nals and|t| − #NT(s) terminal indicators, with-
out replacement. At this point we have created a
rule template which indicates how large the rule is,
whether each position contains a terminal or non-
terminal symbol, and the reordering of the source
nonterminalsa. To conclude the process we must
select the terminal types from the source and target

vocabularies. To do so, we use the following distri-
bution:

Pterminals(s, t) =
PM1←(s, t) + PM1→(s, t)

2

wherePM1←(s, t) (PM1→(s, t)) first generates the
source (target) terminals from uniform draws from
the vocabulary, then generates the string in the other
language according to IBM MODEL 1, marginaliz-
ing over the alignments (Brown et al., 1993).

4 Gibbs Sampler

In this section we introduce a Gibbs sampler that
enables us to perform posterior inference given a
corpus of sentence pairs. Our innovation is to repre-
sent the synchronous derivation of a sentence pair in
a hierarchical 4-dimensional binary alignment grid,
with elementsz[s,t,u,v] ∈ {0, 1}.

The settings of the grid variables completely
determine the SCFG rules in the current derivation.
A setting of a binary variablez[s,t,u,v] = 1 represents
a constituent linking the source span[s, t] and the
target span[u, v] in the current derivation; variables
with a value of0 indicate no link between spans
[s, t] and [u, v].2 This relationship from our grid
representation is illustrated in Figure 2a.

Our Gibbs sampler operates over the space of all
the random variablesz[s,t,u,v], resampling one at a
time. Changes to a single variable imply that at most
two additional rules must be generated, as illustrated
in Figure 2b. The probability of choosing a binary
setting of0 or 1 for a variable is proportional to the
probability of generating the two derivations under
the model described in the previous section. Note
that for a given sentence, most of the bispan vari-
ables must be set to0 otherwise they would violate
thestrict nesting constraint required for valid SCFG
derivations. We discuss below how to exploit this
fact to limit the number of binary variables that must
be resampled for each sentence.

To be valid, a Gibbs sampler must beergodic and
satisfy detailed balance. Ergodicity requires that
there is non-zero probability that any state in the
sampler be reachable from any other state. Clearly

2Our grid representation is the synchronous generalisation
of the well-known correspondence between CFG derivations
and Boolean matrices; see Lee (2002) for an overview.
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Amna will

{mna

succeed

kAmyAb

hw

gy

AMNA

SUCCESSFUL

BE

WILL

(a) An example grid representation of a syn-
chronous derivation. The SCFG rules (annotated
with their bispans) that correspond to this setting
of the grid are:

X[0,4,0,3] →

〈 X[0,1,0,1] X[1,4,1,3] | X[0,1,0,1] X[1,4,1,3] 〉

X[0,1,0,1] → 〈 {mna | Amna 〉

X[1,4,1,3] → 〈 kAmyAb hw gy | will succeed 〉

Amna will

{mna

succeed

kAmyAb

hw

gy

AMNA

SUCCESSFUL

BE

WILL

(b) The toggle operator resamples a bispan vari-
able (here,z[1,3,2,3], shown in blue) to determine
whether it should be subtracted from the immedi-
ately dominating rule (bispan in red) and made into
a child rule in the derivation. This would require
the addition of the following two rules:

X[1,4,1,3] → 〈 X[1,3,2,3] gy | will X[1,3,2,3]〉

X[1,3,2,3] → 〈 kAmyAb hw | succeed 〉

Alternatively, the active bispan variable can be set
so it isnot a constituent, which would require the
single rule:

X[1,4,1,3] → 〈 kAmyAb hw gy | will succeed 〉

Figure 2: A single operation of the Gibbs sampler for a binary alignment grid.

our operator satisfies this since given any configu-
ration of the alignment grid we can use the toggle
operator to flatten the derivation to a single rule and
then break it back down to reach any derivation.

Detailed balance requires that the probability of
transitioning between two possible adjacent sampler
states respects their joint probabilities in the station-
ary distribution. One way to ensure this is to make
the order in which bispan variables are visited deter-
ministic and independent of the variables’ current
settings. Then, the probability of the sampler tar-
geting any bispan in the grid is equal regardless of
the current configuration of the alignment grid.

A naive instantiation of this strategy is to visit all
|s|2|t|2 bispans in some order. However, since we
wish to be able to draw many samples, this is not
computationally feasible. A much more efficient
approach avoids resampling variables that would
result in violations without visiting each of them
individually. However, to ensure detailed balanced
is maintained, the order that we resample bispans
has to match the order we would sample them using

any exhaustive approach. We achieve this by always
checking a derivation top-down, from largest to
smallest bispan. Under this ordering, whether or not
a smaller bispan is visited will be independent of
how the larger ones were resampled. Furthermore,
the set of variables that may be resampled is fixed
given this ordering. Therefore, the probability of
sampling any possible bispan in the sentence pair is
still uniform (ensuring detailed balance), while our
sampler remains fast.

5 Evaluation

The preceding sections have introduced a model,
and accompanying inference technique, designed to
induce a posterior distribution over SCFG deriva-
tions containing discontiguous and phrasal transla-
tion rules. The evaluation that follows aims to deter-
mine our models ability to meet these design goals,
and to do so in a range of translation scenarios.

In order to validate both the model and the sam-
pler’s ability to learn an SCFG we first conduct a
synthetic experiment in which the true grammar is
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known. Subsequently we conduct a series of experi-
ments on real parallel corpora of increasing sizes to
explore the empirical properties of our model.

5.1 Synthetic Data Experiments

Prior work on SCFG induction for SMT has val-
idated modeling claims by reporting BLEU scores
on real translation tasks. However, the combination
of noisy data and the complexity of SMT pipelines
conspire to obscure whether models actually achieve
their design goals, normally stated in terms of an
ability to induce SCFGs with particular properties.

Here we include a small synthetic data experiment
to clearly validate our models ability to learn an
SCFG that includes discontiguous and phrasal trans-
lation rules with non-monotonic word order.

Using the probabilistic SCFG shown in the top
half of Table 1 we stochastically generated three
thousand parallel sentence pairs as training data for
our model. We then ran the Gibbs sampler for fifty
iterations through the data.

The bottom half of Table 1 lists the five rules
with the highest marginal probability estimated by
the sampler. Encouragingly our model was able to
recover a grammar very close to the original. Even
for such a small grammar the space of derivations
is enormous and the task of recovering it from a
data sample is non-trivial. The divergence from the
true probabilities is due to the effect of the prior
assigning shorter rules higher probability. With a
larger data sample we would expect the influence of
the prior in the posterior to diminish.

5.2 Machine Translation Evaluation

Ultimately the efficacy of a model for SCFG induc-
tion will be judged on its ability to underpin a state-
of-the-art SMT system. Here we evaluate our model
by applying it to learning word alignments for par-
allel corpora from which SMT systems are induced.
We train models across a range of corpora sizes and
for language pairs that exhibit the type of complex
alignment phenomena that we are interested in mod-
eling: Chinese→ English (ZH-EN), Urdu→ English
(UR-EN) and German→ English (DE-EN).

Data and Baselines

TheUR-EN corpus is the smallest of those used in
our experiments and is taken from the NIST 2009

GRAMMAR RULE TRUE PROBABILITY

X→ 〈 X1 a X2 |X1 X2 1 〉 0.2
X→ 〈 b c d | 3 2 〉 0.2

X→ 〈 b d | 3 〉 0.2
X→ 〈 d | 3 〉 0.2

X→ 〈 c d | 3 1 〉 0.2

SAMPLED RULE SAMPLED PROBABILITY

X→ 〈 d | 3 〉 0.25
X→ 〈 b d | 3 〉 0.24
X→ 〈 c d | 3 1 〉 0.24

X→ 〈 b c d | 3 2 〉 0.211
X→ 〈 X1 a X2 |X1 X2 1 〉 0.012

Table 1: Manually created SCFG used to generate
synthetic data, and the five most probable inferred
rules by our model.

ZH-EN

NIST
UR-EN

NIST
DE-EN

EUROPARL

TRAIN (SRC) 8.6M 1.2M 34M
TRAIN (TRG) 9.5M 1.0M 36M
DEV (SRC) 22K 18K 26K

DEV (TRG) 27K 16K 28K

Table 2: Corpora statistics (in words).

translation evaluation.3 The ZH-EN data is of a
medium scale and comes from the FBIS corpus.
The DE-EN pair constitutes the largest corpus and
is taken from Europarl, the proceedings of the Euro-
pean Parliament (Koehn, 2003). Statistics for the
data are shown in Table 2. We measure translation
quality via the BLEU score (Papineni et al., 2001).

All translation systems employ a Hiero
translation model during decoding. Baseline
word alignments were obtained by running
GIZA ++ in both directions and symmetrizing using
thegrow-diag-final-and heuristic (Och and
Ney, 2003; Koehn et al., 2003). Decoding was
performed with thecdec decoder (Dyer et al.,
2010) with the synchronous grammar extracted
using the techniques developed by Lopez (2008).
All translation systems include a5-gram language
model built from a five hundred million token subset

3http://www.itl.nist.gov/iad/mig/tests/
mt/2009/
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LANGUAGE TEST MODEL 4 MODEL 1 PYP-SCFG
PAIR SET BASELINE INITIALISATION WEAK M1 INIT. STRONG HMM I NIT.

UR-EN MT09 23.1 18.5 23.7 24.0

ZH-EN MT03-08 29.4 19.8 28.3 29.8

DE-EN EUROPARL 28.4 25.5 27.8 29.2

Table 3: Results for the SMT experiments in BLEU . The baseline is produced using a full GIZA ++ run. The
MODEL 1 INITIALISATION column is from the initialisation alignments using MODEL 1 and no sampling.
The PYP-SCFG columns show results for the500th sample for both MODEL 1 and HMM initialisations.

of all the English data made available for the NIST
2009 shared task (Graff, 2003).

Experimental Setup

To obtain the PYP-SCFG word alignments we
ran the sampler for five hundred iterations for each
of the language pairs and experimental conditions
described below. We used the approach of Newman
et al. (2007) to distribute the sampler across multi-
ple threads. The strengthθ and discountd hyper-
parameters of the Pitman-Yor Processes, and the ter-
minal penaltyφ (Section 3.3), were inferred using
slice sampling (Neal, 2000).

The Gibbs sampler requires an initial set of
derivations from which to commence sampling. In
our experiments we investigated bothweak and
a strong initialisations, the former based on word
alignments from IBM Model 1 and the latter on
alignments from an HMM model (Vogel et al.,
1996). For decoding we used the word alignments
implied by the derivations in the final sample to
extract a Hiero grammar with the same standard set
of relative frequency, length, and language model
features used for the baseline.

Weak Initialisation

Our first translation experiments ascertain the
degree to which our proposed Gibbs sampling
inference algorithm is able to learn good
synchronous derivations for the PYP-SCFG model.
A number of prior works on alignment with Gibbs
samplers have only evaluated models initialised
with the more complex GIZA ++ alignment models
(Blunsom et al., 2009; DeNero et al., 2008), as a
result it can be difficult to separate the performance
of the sampler from that of the initialisation.
In order to do this, we initialise the sampler

PYP-SCFG
LANGUAGE PAIR MODEL 1 INIT. HMM I NIT.

UR-EN 1.93/2.08 1.45/1.58
ZH-EN 3.47/4.28 1.69/2.37
DE-EN 4.05/4.77 1.50/2.04

Table 4: Average source/target rule lengths in the
PYP-SCFG models after the 500th sample for the
different initialisations.

using just the MODEL 1 distribution used in the
PYP-SCFG model’s base distribution. We denote
this a weak initialisation as no alignment models
outside of those included in the PYP-SCFG model
influence the resulting word alignments. The
BLEU scores for translation systems built from the
five hundredth sample are show in the WEAK M1
INIT. column of Table 3. Additionally we build a
translation system from the MODEL 1 alignment
used to initialise the sampler without using using our
PYP-SCFG model or sampling. BLEU scores are
shown in the MODEL 1 INITIALISATION column
of Table 3. Firstly it is clear MODEL 1 is indeed a
weak initialiser as the resulting translation systems
achieve uniformly low BLEU scores. In contrast, the
models built from the output of the Gibbs sampler
for the PYP-SCFG model achieve BLEU scores
comparable to those of the MODEL 4 BASELINE.
Thus the sampler has moved a good distance from
its initialisation, and done so in a direction that
results in better synchronous derivations.

Strong Initialisation

Given we have established that the sampler can
produce state-of-the-art translation results from a
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weak initialisation, it is instructive to investigate
whether initialising the model with a strong
alignment system, the GIZA ++ HMM (Vogel et
al., 1996), leads to further improvements. Column
HMM INIT. of Table 3 shows the results for
initialising with the HMM word alignments and
sampling for 500 iterations. Starting with a stronger
initial sample results in both quicker mixing and
better translation quality for the same number of
sampling iterations.

Table 4 compares the average lengths of the rules
produced by the sampler with both the strong and
weak initialisers. As the size of the training corpora
increases (UR-EN → ZH-EN → DE-EN) we see that
the average size of the rules produced by the weakly
initialised sampler also increases, while that of the
strongly initialised model stays relatively uniform.
Initially both samplers start out with a large num-
ber of long rules and as the sampling progresses
the rules are broken down into smaller, more gen-
eralisable, pieces. As such we conclude from these
metrics that after five hundred samples the strongly
initialised model has converged to sampling from a
mode of the distribution while the weakly initialised
model converges more slowly and on the longer cor-
pora is still travelling towards a mode. This sug-
gests that longer sampling runs, and Gibbs operators
that make simultaneous updates to multiple parts
of a derivation, would enable the weakly initialised
model to obtain better translation results.

Grammar Analysis

The BLEU scores are informative as a measure of
translation quality but we also explored some of the
differences in the grammars obtained from the PYP-
SCFG model compared to the standard approach. In
Figures 3 and 4 we show some basic statistics of
the grammars our model produces. From Figure 3
we see that the number of unique rules in the PYP-
SCFG grammar decreases steadily as the sampler
iterates through the data, so the model is finding an
increasingly sparser distribution with fewer but bet-
ter quality rules as sampling progresses. Note that
the gradient of the curves appears to be a function of
the size of the corpus and suggests that the model
built from the largeDE-EN corpus would benefit
from a longer sampling run. Figure 4 shows the dis-
tribution of rules with a given arity as a percentage
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Figure 3: Unique grammar rules for each language
pair as a function of the number of samples. The
number of rule types decreases monotonically as
sampling continues. Rule counts are displayed by
normalised corpus size (see Table 2).

X→ 〈底 | end of〉
X→ 〈届全 | ninth 〉*
X→ 〈运作 X | charter X〉
X→ 〈信心 | confidence in〉
X→ 〈中国政府 X | the chinese government X〉

X→ 〈都是 | are〉
X→ 〈新华社北京 X | beijing , X 〉*
X→ 〈有关部门 | departments concerned〉
X→ 〈新华社华盛顿 X | washington , X〉*
X→ 〈鲍威尔 X1了 X2 , | he X1 X2 , 〉*

Table 5: The five highestZH-EN probability rules in
the Hiero grammar built from the PYP-SCFG that
are not in the baseline Hiero grammar (top), and the
top five rules in the baseline Hiero grammar that
are not in the PYP-SCFG grammar (bottom). An
* indicates a bad translation rule.

of the full grammar after the final sampling iteration.
The model prior biases the results to shorter rules as
the vast majority of the model probability mass is on
rules with zero, one or two nonterminals.

Tables 5 and 6 show the most probable rules in the
Hiero translation system obtained using the PYP-
SCFG alignments that are not present in the TM
from the GIZA ++ alignments and visa versa. For
both language pairs, four of the top five rules in
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X→ 〈 yh | it is 〉
X→ 〈 zmyn| the earth〉
X→ 〈 yhy X | the same X〉
X→ 〈 X1 nhyN X2 gy | X2 not be X1 〉
X→ 〈 X1 gY kh X2 | recommend that X2 X1 〉*

X→ 〈 hwN gY | will 〉
X→ 〈 Gyr mlky | international〉*
X→ 〈 X1 *rAye kY X 2 | X2 to X1 sources〉*
X→ 〈 nY X1 nhyN kyA X2 | did not X1 X2 〉*
X→ 〈 xAtwn X1 ky X2 | woman X2 the X1〉

Table 6: Five of the top scoring rules in theUR-EN

Hiero grammar from sampled PYP-SCFG align-
ments (top) versus the baselineUR-EN Hiero gram-
mar rules not in the sampled grammar (bottom). An
* indicates a bad translation rule.
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Figure 4: The percentage of rules with a given arity
in the final grammar of the PYP-SCFG model.

the PYP-SCFG grammar that are not in the heuris-
tically extracted grammar are correct and minimal
phrasal units of translation, whereas only two of the
top probability rules in the GIZA ++ grammar are of
good translation quality.

6 Conclusion and Further Work

In this paper we have presented a nonparametric
Bayesian model for learning SCFGs directly
from parallel corpora. We have also introduced
a novel Gibbs sampller that allows for efficient
posterior inference. We show state-of-the-art
results and learn complex translation phenomena,
including discontiguous and many-to-many

phrasal alignments, without applying any heuristic
restrictions on the model to make learning tractable.
Our evaluation shows that we can use a principled
approach to induce SCFGs designed specifically
to utilize the full power of grammar based SMT
instead of relying on complex word alignment
heuristics with inherent bias.

Future work includes the obvious extension to
learning SCFGs that contain multiple nonterminals
instead of a single nonterminal grammar. We also
expect that expanding our sampler beyond strict
binary sampling may allow us to explore the space
of hierarchical word alignments more quickly
allowing for faster mixing. We expect with these
extensions our model of grammar induction may
further improve translation output.
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