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Abstract 

Active learning is a promising way for 
sentiment classification to reduce the 
annotation cost. In this paper, we focus on 
the imbalanced class distribution scenario 
for sentiment classification, wherein the 
number of positive samples is quite 
different from that of negative samples. 
This scenario posits new challenges to 
active learning. To address these 
challenges, we propose a novel active 
learning approach, named co-selecting, by 
taking both the imbalanced class 
distribution issue and uncertainty into 
account. Specifically, our co-selecting 
approach employs two feature subspace 
classifiers to collectively select most 
informative minority-class samples for 
manual annotation by leveraging a 
certainty measurement and an uncertainty 
measurement, and in the meanwhile, 
automatically label most informative 
majority-class samples, to reduce human-
annotation efforts. Extensive experiments 
across four domains demonstrate great 
potential and effectiveness of our proposed 
co-selecting approach to active learning for 
imbalanced sentiment classification. 1 

1 Introduction 

Sentiment classification is the task of identifying 
the sentiment polarity (e.g., positive or negative) of 

                                                           
*1 Corresponding author 

a natural language text towards a given topic (Pang 
et al., 2002; Turney, 2002) and has become the 
core component of many important applications in 
opinion analysis (Cui et al., 2006; Li et al., 2009; 
Lloret et al., 2009; Zhang and Ye, 2008). 

Most of previous studies in sentiment 
classification focus on learning models from a 
large number of labeled data. However, in many 
real-world applications, manual annotation is 
expensive and time-consuming. In these situations, 
active learning approaches could be helpful by 
actively selecting most informative samples for 
manual annotation. Compared to traditional active 
learning for sentiment classification, active 
learning for imbalanced sentiment classification 
faces some unique challenges.  

As a specific type of sentiment classification, 
imbalanced sentiment classification deals with the 
situation in which there are many more samples of 
one class (called majority class) than the other 
class (called minority class), and has attracted 
much attention due to its high realistic value in 
real-world applications (Li et al., 2011a). In 
imbalanced sentiment classification, since the 
minority-class samples (denoted as MI samples) 
are normally much sparse and thus more precious 
and informative for learning compared to the 
majority-class ones (denoted as MA samples), it is 
worthwhile to spend more on manually annotating 
MI samples to  guarantee both the quality and 
quantity of MI samples. Traditionally, uncertainty 
has been popularly used as a basic measurement in 
active learning (Lewis and Gale, 2004). Therefore, 
how to select most informative MI samples for 
manual annotation without violating the basic 
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uncertainty requirement in active learning is 
challenging in imbalanced sentiment classification. 

In this paper, we address above challenges in 
active learning for imbalanced sentiment 
classification. The basic idea of our active learning 
approach is to use two complementary classifiers 
for collectively selecting most informative MI 
samples: one to adopt a certainty measurement for 
selecting most possible MI samples and the other 
to adopt an uncertainty measurement for selecting 
most uncertain MI samples from the most possible 
MI samples returned from the first classifier. 
Specifically, the two classifiers are trained with 
two disjoint feature subspaces to guarantee their 
complementariness. This also applies to selecting 
most informative MA samples. We call our novel 
active learning approach co-selecting due to its 
collectively selecting informative samples through 
two disjoint feature subspace classifiers. To further 
reduce the annotation efforts, we only manually 
annotate those most informative MI samples while 
those most informative MA samples are 
automatically labeled using the predicted labels 
provided by the first classifier.  

In principle, our active learning approach differs 
from existing ones in two main aspects. First, a 
certainty measurement and an uncertainty 
measurement are employed in two complementary 
subspace classifiers respectively to collectively 
select most informative MI samples for manual 
annotation. Second, most informative MA samples 
are automatically labeled to further reduce the 
annotation cost. Evaluation across four domains 
shows that our active learning approach is effective 
for imbalanced sentiment classification and 
significantly outperforms the state-of-the-art active 
learning alternatives, such as uncertainty sampling 
(Lewis and Gale, 2004) and co-testing (Muslea et 
al., 2006). 

The remainder of this paper is organized as 
follows. Section 2 overviews the related work on 
sentiment classification and active learning. 
Section 3 proposes our active learning approach 
for imbalanced sentiment classification. Section 4 
reports the experimental results. Finally, Section 5 
draws the conclusion and outlines the future work. 

2 Related Work 

In this section, we give a brief overview on 
sentiment classification and active learning. 

2.1 Sentiment Classification 

Sentiment classification has become a hot research 
topic in NLP community and various kinds of 
classification methods have been proposed, such as 
unsupervised learning methods (Turney, 2002), 
supervised learning methods (Pang et al., 2002), 
semi-supervised learning methods (Wan, 2009; Li 
et al., 2010), and cross-domain classification 
methods (Blitzer et al., 2007; Li and Zong, 2008; 
He et al., 2011). However, imbalanced sentiment 
classification is relatively new and there are only a 
few studies in the literature. 

Li et al. (2011a) pioneer the research in 
imbalanced sentiment classification and propose a 
co-training algorithm to perform semi-supervised 
learning for imbalanced sentiment classification 
with the help of a great amount of unlabeled 
samples. However, their semi-supervised approach 
to imbalanced sentiment classification suffers from 
the problem that their balanced selection strategy 
in co-training would generate many errors in late 
iterations due to the imbalanced nature of the 
unbalanced data. In comparison, our proposed 
active learning approach can effectively avoid this 
problem. By the way, it is worth to note that the 
experiments therein show the superiority of under-
sampling over other alternatives such as cost-
sensitive and one-class classification for 
imbalanced sentiment classification. 

Li et al. (2011b) focus on supervised learning 
for imbalanced sentiment classification and 
propose a clustering-based approach to improve 
traditional under-sampling approaches. However, 
the improvement of the proposed clustering-based 
approach over under-sampling is very limited. 

Unlike all the studies mentioned above, our 
study pioneers active learning on imbalanced 
sentiment classification. 

2.2 Active Learning 

Active leaning, as a standard machine learning 
problem, has been extensively studied in many 
research communities and several approaches have 
been proposed to address this problem (Settles, 
2009). Based on different sample selection 
strategies, they can be grouped into two main 
categories: (1) uncertainty sampling (Lewis and 
Gale, 2004) where the active learner iteratively 
select most uncertain unlabeled samples for 
manual annotation; and (2) committee-based 
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sampling where the active learner selects those 
unlabeled samples which have the largest 
disagreement among several committee classifiers. 
Besides query by committee (QBC) as the first of 
such type (Freund et al., 1997), co-testing learns a 
committee of member classifiers from different 
views and selects those contention points (i.e., 
unlabeled examples on which the views predict 
different labels) for manual annotation (Muslea et 
al., 2006). 

However, most previous studies focus on the 
scenario of balanced class distribution and only a 
few recent studies address the active learning issue 
on imbalanced classification problems including 
Yang and Ma (2010), Zhu and Hovy (2007), 
Ertekin et al. (2007a) and Ertekin et al. (2007b)2. 
Unfortunately, they straightly adopt the uncertainty 
sampling as the active selection strategy to address 
active learning in imbalanced classification, which 
completely ignores the class imbalance problem in 
the selected samples.  

Attenberg and Provost (2010) highlights the 
importance of selecting samples by considering the 
proportion of the classes. Their simulation 
experiment on text categorization confirms that 
selecting class-balanced samples is more important 
than traditional active selection strategies like 
uncertainty. However, the proposed experiment is 
simulated and non real strategy is proposed to 
balance the class distribution of the selected 
samples. 

Doyle et al. (2011) propose a real strategy to 
select balanced samples. They first select a set of 
uncertainty samples and then randomly select 
balanced samples from the uncertainty-sample set. 
However, the classifier used for selecting balanced 
samples is the same as the one for supervising 
uncertainty, which makes the balance control 
unreliable (the selected uncertainty samples take 
very low confidences which are unreliable to 
correctly predict the class label for controlling the 
balance). Different from their study, our approach 
possesses two merits: First, two feature subspace 
classifiers are trained to finely integrate the 
certainty and uncertainty measurements. Second, 
the MA samples are automatically annotated, 

                                                           
2  Ertekin et al. (2007a) and Ertekin et al. (2007b) select 
samples closest to the hyperplane provided by the SVM 
classifier (within the margin). Their strategy can be seen as a 
special case of uncertainty sampling. 

which reduces the annotation cost in a further 
effort.  

3 Active Learning for Imbalanced 
Sentiment Classification 

Generally, active learning can be either stream-
based or pool-based (Sassano, 2002). The main 
difference between the two is that the former scans 
through the data sequentially and selects 
informative samples individually, whereas the 
latter evaluates and ranks the entire collection 
before selecting most informative samples at batch. 
As a large collection of samples can easily 
gathered once in sentiment classification, pool-
based active learning is adopted in this study. 

Figure 1 illustrates a standard pool-based active 
learning approach, where the most important issue 
is the sampling strategy, which evaluates the 
informativeness of one sample. 
 

Input: 
       Labeled data L; 
       Unlabeled pool U; 
Output: 
    New Labeled data L 
Procedure: 
Loop for N iterations: 
(1). Learn a classifier using current L  
(2). Use current classifier to label all unlabeled 

samples 
(3). Use the sampling strategy to select n most 

informative samples for manual annotation 
(4). Move newly-labeled samples from U to L 
 

 
Figure 1: Pool-based active learning 

3.1 Sampling Strategy: Uncertainty vs. 
Certainty 

As one of the most popular selection strategies in 
active learning, uncertainty sampling depends on 
an uncertainty measurement to select informative 
samples. Since sentiment classification is a binary 
classification problem, the uncertainty 
measurement of a document d can be simply 
defined as follows: 

{ , }
( ) min ( | )

y pos neg
Uncer d P y d


  

Where ( | )P y d denotes the posterior probability of 
the document d belonging to the class y and {pos, 
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neg} denotes the class labels of positive and 
negative. 

In imbalanced sentiment classification, MI 
samples are much sparse yet precious for learning 
and thus are believed to be more valuable for 
manual annotation. The key in active learning for 
imbalanced sentiment classification is to guarantee 
both the quality and quantity of newly-added MI 
samples. To guarantee the selection of MI samples, 
a certainty measurement is necessary. In this study, 
the certainty measurement is defined as follows: 

{ , }
( ) max ( | )

y pos neg
Cer d P y d


  

Meanwhile, in order to balance the samples in 
the two classes, once an informative MI sample is 
manually annotated, an informative MA sample is 
automatically labeled. In this way, the annotated 
data become more balanced than a random 
selection strategy.  

However, the two sampling strategies discussed 
above are apparently contradicted: while the 
uncertainty measurement is prone to selecting the 
samples whose posterior probabilities are nearest 
to 0.5, the certainty measurement is prone to 
selecting the samples whose posterior probabilities 
are nearest to 1. Therefore, it is essential to find a 
solution to balance uncertainty sampling and 
certainty sampling in imbalanced sentiment 
classification,  

3.2 Co-selecting with Feature Subspace 
Classifiers 

In sentiment classification, a document is 
represented as a feature vector generated from the 
feature set  1,..., mF f f . When a feature subset, 

i.e.,  1 ,...,S S S
rF f f  ( r m ), is used, the 

original m-dimensional feature space becomes an 
r-dimensional feature subspace. In this study, we 
call a classifier trained with a feature subspace a 
feature subspace classifier. 

Our basic idea of balancing both the uncertainty 
measurement and the certainty measurement is to 
train two subspace classifiers to adopt them 
respectively. In our implementation, we randomly 
select two disjoint feature subspaces, each of 
which is used to train a subspace classifier. On one 
side, one subspace classifier is employed to select 
some certain samples; on the other side, the other 
classifier is employed to select the most uncertain 
sample from those certain samples for manual 

annotation. In this way, the selected samples are 
certain in terms of one feature subspace for 
selecting more possible MI samples. Meanwhile, 
the selected sample remains uncertain in terms of 
the other feature subspace to introduce uncertain 
knowledge into current learning model. We name 
this approach as co-selecting because it 
collectively selects informative samples by two 
separate classifiers. Figure 2 illustrates the co-
selecting algorithm. In our algorithm, we strictly 
constrain the balance of the samples between the 
two classes, i.e., positive and negative. Therefore, 
once two samples are annotated with the same 
class label, they will not be added to the labeled 
data, as shown in step (7) in Figure 2. 

 
Input: 

Labeled data L with balanced samples over the 
two classes 

Unlabeled pool U  
Output: 
    New Labeled data L 
Procedure: 
Loop for N iterations: 
(1). Randomly select a feature subset SF  with 

size r (with the proportion /r m  ) from F  
(2). Generate a feature subspace from SF  and 

train a corresponding feature subspace 
classifier CerC  with L 

(3). Generate another feature subspace from the 
complement set of SF , i.e., SF F  and train 
a corresponding feature subspace classifier 

UncerC  with L 

(4). Use CerC  to select top certain k positive and k 
negative samples, denoted as a sample set 

1CER  

(5). Use UncerC  to select the most uncertain 
positive sample and negative sample from 

1CER   
(6). Manually annotate the two selected samples 
(7). If the annotated labels of the two selected 

samples are different from each other: 
      Add the two newly-annotated samples into L 

 
Figure 2: The co-selecting algorithm 

 
There are two parameters in the algorithm: the 

size of the feature subspace for training the first 
subspace classifier, i.e.,   and the number of 
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selected certain samples, i.e., k. Both of the two 
parameters will be empirically studied in our 
experiments. 

3.3 Co-selecting with Selected MA Samples 
Automatically Labeled 

 
Input: 

Labeled data L with balanced samples over the 
two classes 

Unlabeled pool U 
MA and MI Label (positive or negative) 

Output: 
    New Labeled data L 
Procedure: 
Loop for N iterations: 
(1). Randomly select a proportion of features 

(with the proportion  ) from F to get a 
feature subset SF  

(2). Generate a feature subspace from SF  and 
train a corresponding subspace classifier CerC  
with L 

(3). Generate another feature subspace from the 
complement set of SF , i.e., SF F  and train 
a corresponding subspace classifier UncerC  
with L 

(4). Use CerC  to select top certain k positive and k 
negative samples, denoted as a sample set 

1CER  

(5). Use UncerC  to select the most uncertain 
positive sample and negative sample from 

1CER  
(6). Manually annotate the sample that is predicted 

as a MI sample by CerC  and automatically 
annotate the sample that is predicted as 
majority class 

(7). If the annotated labels of the two selected 
samples are different from each other: 

          Add the two newly-annotated samples into L 

Figure 3: The co-selecting algorithm with selected 
MA samples automatically labeled 

 
To minimize manual annotation, it is a good choice 
to automatically label those selected MA samples. 
In our co-selecting approach, automatically 
labeling those selected MA samples is easy and 

straightforward: the subspace classifier for 
monitoring the certainty measurement provides an 
ideal solution to annotate the samples that have 
been predicted as majority class. Figure 3 shows 
the co-selecting algorithm with those selected MA 
samples automatically labeled. The main 
difference from the original co-selecting is shown 
in Step (6) in Figure 3. Another difference is the 
input where a prior knowledge of which class is 
majority class or minority class should be known. 
In real applications, it is not difficult to know this. 
We first use a classifier trained with the initial 
labeled data to test all unlabeled data. If the 
predicted labels in the classification results are 
greatly imbalanced, we can assume that the 
unlabeled data is imbalanced, and consider the 
dominated class as majority class.  

4 Experimentation 

In this section, we will systematically evaluate our 
active learning approach for imbalanced sentiment 
classification and compare it with the state-of-the-
art active learning alternatives. 

4.1 Experimental Setting 

Dataset 
We use the same data as used by Li et al. (2011a). 
The data collection consists of four domains: Book, 
DVD, Electronic, and Kitchen （Blitzer et al., 
2007). For each domain, we randomly select an 
initial balanced labeled data with 50 negative 
samples and 50 positive samples. For the unlabeled 
data, we randomly select 2000 negative samples, 
and 14580/12160/7140/7560 positive samples from 
the four domains respectively, keeping the same 
imbalanced ratio as the whole data. For the test 
data in each domain, we randomly extract 800 
negative samples and 800 positive samples.  
 
Classification algorithm 
The Maximum Entropy (ME) classifier 
implemented with the Mallet 3  tool is mainly 
adopted, except that in the margin-based active 
learning approach (Ertekin et al., 2007a) where 
SVM is implemented with light-SVM 4 . The 
features for classification are unigram words with 
Boolean weights. 

                                                           
3 http://mallet.cs.umass.edu/  
4 http://www.cs.cornell.edu/people/tj/svm_light/ 
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Figure 4: Performance comparison of different active learning approaches on imbalanced sentiment 

classification 
 

Evaluation metrics 
The popular geometric mean 

= rate rateG - mean TP TN  is adopted, where rateTP  

is the true positive rate (also called positive recall 
or sensitivity) and rateTN  is the true negative rate 
(also called negative recall or specificity) (Kubat 
and Matwin, 1997). 

4.2 Experimental Results 

For thorough comparison, various kinds of active 
learning approaches are implemented including: 
 Random: randomly select the samples from the 

unlabeled data for manual annotation; 
 Margin-based: iteratively select samples 

closest to the hyperplane provided by the SVM 
classifier, which is suggested by Ertekin et al. 
(2007a) and Ertekin et al. (2007b). One sample 
is selected in each iteration; 

 Uncertainty: iteratively select samples using 
the uncertainty measurement according to the 
output of ME classifier. One sample is selected 
in each iteration; 

 Certainty: iteratively select class-balanced 
samples using the certainty measurement 
according to the output of ME classifier. One 
positive and negative sample (the positive and 
negative label is provided by the ME classifier) 
are selected in each iteration; 

 Co-testing: first get contention samples (i.e., 
unlabeled examples on which the member 

classifiers predict different labels) and then 
select the least confidence one among the 
hypotheses of different member classifiers, i.e., 
the aggressive strategy as described Muslea et 
al. (2006). Specifically, the member classifiers 
are two subspace classifiers trained by splitting 
the whole feature space into two disjoint 
subspaces of same size; 

 Self-selecting: first select k uncertainty samples 
and then randomly select a positive and 
negative sample from the uncertainty-sample 
set, which is suggested by Doyle et al. (2011). 
We call it self-selecting since only one 
classifier is involved to measure uncertainty 
and predict class labels. 

 
For those approaches involving random 

selection of features, we run 5 times for them and 
report the average results. Note that the samples 
selected by these approaches are imbalanced. To 
address the problem of classification on 
imbalanced data, we adopt the under-sampling 
strategy which has been shown effective for 
supervised imbalanced sentiment classification (Li 
et al., 2011a). Our active learning approach 
includes two versions: the co-selecting algorithm 
as described in Section 3.2 and the co-selecting 
with selected MA samples automatically labeled as 
described in Section 3.3. For clarity, we refer the 
former as co-selecting-basic and the latter as co-
selecting-plus in the following. 

144



 

Comparison with other active learning 
approaches 
Figure 4 compares different active learning 
approaches to imbalanced sentiment classification 
when 600 unlabeled samples are selected for 
annotation. Specifically, the parameters  and k is 
set to be 1/16 and 50 respectively. Figure 4 
justifies that it is challenging to perform active 
learning in imbalanced sentiment classification: the 
approaches of margin-based, uncertainty-based 
and self-selecting perform no better than random 
selection while co-testing only outperforms 
random selection in two domains: DVD and 
Electronic with only a small improvement (about 
1%). In comparison, our approaches, both co-
selecting-basic and co-selecting-plus significantly 
outperform the random selection approach on all 
the four domains. It also shows that co-selecting-
plus is preferable over co-selecting-basic. This 
verifies the effectiveness of automatically labeling 
those selected MA samples in imbalanced 
sentiment classification.  

Specifically, we notice that only using the 
certainty measurement (i.e., certainty) performs 
worst, which reflects that only considering sample 

balance factor in imbalanced sentiment 
classification is not helpful. 

Figure 5 compares our approach to other active 
learning approaches by varying the number of the 
selected samples for manually annotation. For 
clarity, we only include random selection and co-
testing in comparison and do not show the 
performances of the other active learning 
approaches due to their similar behavior to random 
selection. From this figure, we can see that co-
testing is effective on Book and Electronic when 
less than 1500 samples are selected for manual 
annotation but it fails to outperform random 
selection in the other two domains. In contract, our 
co-selecting-plus approach is apparently more 
advantageous and significantly outperforms 
random selection across all domains (p-value<0.05) 
when less than 4800 samples are selected for 
manual annotation. 
 
Sensitiveness of the parameters    
The size of the feature subspace is an important 
parameter in our approach. Figure 6 shows the 
performance of co-selecting-plus with varying 
sizes of the feature subspaces for the first subspace 
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Figure 5:  Performance comparison of three active learning approaches:  random selection, co-testing 
and co-selecting-plus, by varying the number of the selected samples for manually annotation 
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classifier CerC . From Figure 6, we can see that a 
choice of the proportion   between 1/8 and 1/32 is 
recommended. This result also shows that the size 
of the feature subspace for selecting certain 
samples should be much less than that for selecting 
uncertain samples, which indicates the more 
important role of the uncertainty measurement in 
active learning. 
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Figure 6: Performance of co-selecting-plus over 

varying sizes of feature subspaces ( ) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 7: Performance of co-selecting-plus over 
varying numbers of the selected certain samples (k) 

 
Sensitiveness of parameter k 
Figure 7 presents the performance of co-selecting-
plus with different numbers of the selected certain 
samples in each iteration, i.e., parameter k. 
Empirical studies suggest that setting k between 20 
and 100 could get a stable performance. Also, this 
figure demonstrates that using certainty as the only 
query strategy is much less effective (see the result 
when k=1). This once again verifies the importance 
of the uncertainty strategy in active learning. 

Number of MI samples selected for manual 
annotation 
In Table 1, we investigate the number of the MI 
samples selected for manual annotation using 
different active learning approaches when a total of 
600 unlabeled samples are selected for annotation. 
From this table, we can see that almost all the 
existing active learning approaches can only select 
a small amount of MI samples, taking similar 
imbalanced ratios as the whole unlabeled data. 
Although the certainty approach could select 
many MI samples for annotation, this approach 
performs worst due to its totally ignoring the 
uncertainty factor. When our approach is applied, 
especially co-selecting-plus, more MI samples are 
selected for manual annotation and finally included 
to learn the models. This greatly improves the 
effectiveness of our active learning approach.  
 

Table 1: The number of MI samples selected for 
manual annotation when 600 samples are 

annotated on the whole. 
 

 Book DVD Electronic Kitchen
Random 71 82 131 123 

SVM-based 65 72 135 106 
Uncertainty 78 93 137 136 
Certainty 160 200 236 227 
Co-testing 89 84 136 109 

Self-selecting 87 95 141 126 
Co-selecting-

basic 
101 112 179 174 

Co-selecting-
plus 

161 156 250 272 

 
Precision of automatically labeled MA samples 
In co-selecting-plus, all the added MA samples are 
automatically labeled by the first subspace 
classifier. It is encouraging to observe that 92.5%, 
91.25%, 92%, and 93.5% of automatically labeled 
MA samples are correctly annotated in Book, DVD, 
Electronic, and Kitchen respectively. This suggests 
that the subspace classifiers are able to predict the 
MA samples with a high precision. This indicates 
the rationality of automatically annotating MA 
samples. 

5 Conclusion  

In this paper, we propose a novel active learning 
approach, named co-selecting, to reduce the 
annotation cost for imbalanced sentiment 
classification. It first trains two complementary 
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classifiers with two disjoint feature subspaces and 
then uses them to collectively select most 
informative MI samples for manual annotation, 
leaving most informative MA samples for 
automatic annotation. Empirical studies show that 
our co-selecting approach is capable of greatly 
reducing the annotation cost and in the meanwhile, 
significantly outperforms several active learning 
alternatives 

For the future work, we are interested in 
applying our co-selecting approach to active 
learning for other imbalanced classification tasks, 
especially those with much higher imbalanced ratio. 
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