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Abstract

Incremental processing allows system design-
ers to address several discourse phenomena
that have previously been somewhat neglected
in interactive systems, such as backchannels
or barge-ins, but that can enhance the re-
sponsiveness and naturalness of systems. Un-
fortunately, prior work has focused largely
on deterministic incremental decision mak-
ing, rendering system behaviour less flexible
and adaptive than is desirable. We present a
novel approach to incremental decision mak-
ing that is based omierarchical Reinforce-
ment Learningto achieve an interactive op-
timisation of Information Presentation (IP)
strategies, allowing the system to generate
and comprehend backchannels and barge-ins,
by employing the recent psycholinguistic hy-
pothesis ofinformation density (ID)Jaeger,
2010). Results in terms of average rewards
and a human rating study show that our learnt
strategy outperforms several baselines that are
not sensitive to ID by more that8%.

Introduction

v.t.rieser |

0.l enon@w. ac. uk

update and revise input hypotheses, it is affected
by a number of drawbacks, shared by determinis-
tic models of decision making in general: they rely
on hand-crafted rules which can be time-consuming
and expensive to produce, they do not provide a
mechanism to deal with uncertainty introduced by
varying user behaviour, they are unable to gener-
alise and adapt flexibly to unseen situations, and
they do not use automatic optimisation. Statisti-
cal approaches to incremental processing that ad-
dress some of these problems have been suggested
by Raux and Eskenazi (2009), who use a cost matrix
and decision theoretic principles to optimise turn-
taking in a dialogue system under the constraint that
users prefer no gaps and no overlap at turn bound-
aries. Also, DeVault et al. (2009) use maximum en-
tropy classification to support responsive overlap in
an incremental system by predicting the completions
of user utterances. Selfridge et al. (2011) use logis-
tic regression models to predict the stability and ac-
curacy of incremental speech recognition results to
enhance performance without causing delay. For re-
lated work on (deterministic) incremental language

Recent work on incremental systems has ShoV\ﬁ]eneration, please see (Kilger and Finkler, 1995;

that adapting a system’s turn-taking behaviour to blgurver and Otsuka, 2003).

more human-like can improve the user’s experience Recent years have seen a humber of data-driven
significantly, based on incremental models of autcapproaches to interactive systems that automatically
matic speech recognition (ASR) (Baumann et aladapt their decisions to the dialogue context us-
2011), dialogue management (Buss et al., 2010), amy Reinforcement Learning (Levin et al., 2000;
speech generation (Skantze and Hjalmarsson, 201®alker, 2000; Young, 2000; Singh et al., 2002;
All of these approaches are based on the same gd?tietquin and Dutoit, 2006; Henderson et al., 2008;
eral abstract architecture of incremental processir@uayahuitl et al., 2010; Thomson, 2009; Young et
(Schlangen and Skantze, 2011). While this archal., 2010; Lemon, 2011; Janarthanam and Lemon,
tecture offers inherently incremental mechanisms t8010; Rieser et al., 2010; Cuayuitl and Dethlefs,
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2011, Dethlefs and Cuapuitl, 2011). While these put, so that our system only needs to choose a strat-

approaches have been shown to enhance the perfegy for presenting its results. Attributes inclucie-

mance and adaptivity of interactive systems, unfoisine, food quality, location, price rangadservice

tunately none of them has yet been combined witQuality of a restaurant. The system then performs a

incremental processing. database lookup and chooses among three main IP
In this paper, we present a novel approach to irstrategiessummary, comparison, recommendation

cremental decision making for output planning thaand several ordered combinations of these. Please

is based on Hierarchical Reinforcement Learningee Rieser et al. (2010) for details. Table 1 shows

(HRL). In particular, we address the problem of opexamples of the main types of IP strategies that we

timising IP strategies while allowing the system tagenerate.

generate and comprehend backchannels and barge-

ins based on a partially data-driven reward func-

tion. Generating backchannels can be beneficial for

grounding in interaction. Similarly, barge-ins can?-2 Backchannelsand Barge-ins

lead to more efficient interactions, e.g. when a sys-

tem can clarify a bad recognition result immediatelyy , important advantage of incremental processing

before acting based on a misrecognition. ~can be the increased reactiveness of systems. In this
A central concept to our approach is Informationyaper, we focus on the phenomena of backchannels
Density (ID) (Jaeger, 2010), a psycholinguistic hyznq harge-ins that can act as feedback in an interac-
pothesis that human utterance production is sensitiy@, for both user and system. Figure 1 shows some
to a uniform distribution of information across theexamplesBackchannelsan often be interpreted as
utterance. This hypoth_esis has also been adoptt_—zd g?@nals of grounding. Coming from the user, the sys-
low level output planning recently, see e.9. RajkUgem may infer that the user is following the presenta-
mar and White (2011). Our results in terms of avgon of information or is confirming a piece of infor-
erage rewards and a human rating study show thajion without trying to take the turn. Similarly, we
learning agent that is sensitive to ID can learn whegy gliow a system to generate backchannels to the
it is most beneficial to generate feedback t0 a Usfger to confirm that it understands the user’s prefer-

and outperforms several other agents that are nghces j.e. receives high confidence scores from the

sensitive to ID. ASR module. An important decision for a dialogue

. . system is themvhen to generate a backchannel?
2 Incremental Information Presentation

Barge-instypically occur in different situations.
The user may barge-in on the system to correct an
Our example domain of application is the Infor-ASR error (such as ‘ltalian’ instead of ‘Indian’ in
mation Presentation phase in an interactive systeRigure 1) or the system may want to barge-in on the
for restaurant recommendations, extending previousser to confirm a low-confidence ASR hypothesis so
work by Rieser et al. (2010). This previous workas to be able to start an immediate database look up
incrementally constructs IP strategies according tfor results. In the former case, the user barging-in
the predicted user reaction, whereas our approaohn the system, we assume that the system has two
focuses on whether and when to generate backchahoices: yielding the turnto the user, otrying to
nels and barge-ins and how to react to user bargkeepthe turn. In the latter case, the system barging-
ins in the context of dynamically changing input hy-in on the user, the system would have to dedidad
potheses. We therefore implement a simplified vemwhen it would be beneficial to barge-am a user ut-
sion of Rieser et al's model. Their system distinterance. In the following sections, we will develop
guished two steps: the selection of an IP strategy model of dialogue optimisation that can address
and the selection of attributes to present to the usehese question based on Hierarchical RL that opti-
We assume here that the choice of attributes is detenises system behaviour based on trade-offs defined
mined by matching the types specified in the user inn terms of ID.

2.1 Information Presentation Strategies
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Type Example

Comparison The restauraniRomais in the medium price range, but does not serve excellert foo
The restaurantSirenzeandVeronaboth have great food but are more expensive. The
restauranveronahas good service, too.

Recommendation Restauranteronahas the best overall match with your query. It is a bit moresexp
sive, but has great food and service.
Summary | found 24 Italian restaurants in the city centre that matochryquery. 11 of them are

in the medium price range, 5 are cheap and 8 are expensive.

Table 1: Examples of IP as@mparison, recommendati@mdsummaryfor a user looking for Italian restaurants in
the city centre that have a good price for value.

Backchannel 1 (the system backchannels) municate according to the channel’s capacity, which
USR | want Italian food [500 ms] in the city centre...

avs uh-huh corresponds to the hearer’s capacity in terms of cog-

SYS OK. I found 24 Italian restaurants in the city centre. Thehitive load. If they go beyond that, the cognitive load
restaurantRomais in the medium price range, but does notof the listener gets too high. If they stay (far) below,

have great food. The restaurafiteenzeandVverona. .. too little information is transferred per bit (i.e., the
Backchannl 2 (the user backchannels) utterar_\ce is _|neff|C|ent or unlnfo_rma}tlv_e)._ The in-
USRI want Italian food in the centre of town . .. formation gain of each word, which is |nd|_cat|ve of
SYS OK. | found 35 central ltalian restaurants ... how close we are to the channel’'s capacity, can be
USR OK. computed using entropy measures.

SYS The restauranVeronahas great food but is also a bit
expensive. Th&omais cheaper, butnotas centraNesona... 3.1 |nformation Density

Barge-ins 1 (the user barges-in on system) Psycholinguistic research has presented evidence for
USR T want Italian food in the centre of town ... users distributing information across utterances uni-
SYS Ifound 35 Indian... _ formly, so that each word is carrying roughly the
gfz Not Indian, I want Igl}ganénan same amount of information. This has been ob-
SYS | have 24 Italian restaurants . .. ’ served for phonetic phenomena based on words
(Bell et al., 2003) and syllables (Aylett and Turk,

Barge-ins 2 (the system barges-in on user) 2004), and for syntactic phenomena (Levy and
USR | need an ltalian restaurant that is located . .. Jaeger 2007: Jaeger 2010). Relating ID to likeli-
SYS I'm sorry. Did you say ’ ' ’ .

Indian or Italian? hood, we can say that the less frequent a word is, the
USR | said Italian. And in the centre of town please. more information it is likely to carry (Jaeger, 2010).
SYS OK, let me see. | have 24 Italian restaurants . .. For example the wortthe’ often has a high corpus

frequency but a low ID.

Figure 1. Example phenomena generated with the learnt The _ID is defined as the log-probability of an
policy. The agent has learnt to produce backchannefYent (i.e. aword) (Shannon, 1948; Levy and Jaeger,
and barge-ins at the appropriate moment and alternati¢®07), so that for an utteraneeconsisting of the
strategies to deal with user barge-ins. word sequence ... w;_1, we can compute the ID

at each point during the utterance as:

3 Information Theory 1

1 n
Information Theory as introduced by Shannon log% - ; logP(w,-]wl W)
(1948) is based on two main conceptscammuni- =
cation channethrough which information is trans-  While typically the context of a word is given by
ferred in bits and thénformation gain i.e. the in- all preceding words of the utterance, we follow Gen-
formation load that each bit carries. For natural lanzel and Charniak (2002) in restricting our computa-
guage, the assumption is that people aim to contion to tri-grams for computability reasons. Given a

(1)
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language model of the domain, we can therefore 0| T wanttaian food in e oy centre,

timise ID in system-generated discourse, where w L et e adcrens of a vt vostmant | Creseren e,
treat ID as “an optimal solution to the problem of
rapid yet error-free communicatioim a noisy envi-
ronment” (Levy and Jaeger (2007), p.2). We will
now transfer the notion of ID to IP and investigate
the distribution of information over user restaurant

queries. Figure 2: Information Density for example utterances,
where peaks indicate places of high density.

| == need the address of a Thai restaurant.

Information Density

3.2 Information Density in User Utterances

We aim to use ID for incremental IP in two ways: = _ _ o
(1) to estimate the best moment for generaﬂngﬁls information to consider the trade-off of yielding
backchannels or barge-ins to the user, and (2) to d&-current turn to the user or trying to keep it, €.g., in
cide whether to yield or keep the current system turR@S€ Of & user barge-in given the ID of its own turn
in case of a user barge-in. While we do not have spé‘-nd of the user’s incoming turn. Such decisions will

cific data on human barge-in behaviour, we kno/#f€ Made incrementally in our domain given dynam-

from the work of (Jaeger, 2010), e.g., that ID influ/c@lly changing hypotheses of user input.

ences human language production. We therefore hx—
pothesise a relationship between ID and incremen-

tal phenomena. A human-human data collection i, optimise incremental decision making for an in-
planned for the near future. teractive system given the optimisation measure of
To compute the ID of user and system utterancgg) e formalise the dialogue module as a Hierar-
at each time step, we estimated argram lan- chjcal Reinforcement Learning agent and learn an
guage model (using Kneser-Ney smoothing) basgshtimal action policy by mapping states to actions
on a transcribed corpus of human subjects interaciyq optimising a long-term reward signal. The di-
ing with a system for restaurant recommendations %flogue states can be seen as representing the sys-
Rieser et al. (2011).The corpus contained user Ut-tam's knowledge about the task, the user and the
terances as exemplified in Figure 1 and allowed us {@yironment. The dialogue actions correspond to
compute the ID at any point during a user utterahcehe system’s capabilities, such psesent the re-
In this way, we can estimate points of low densityitsor barge-in on the userThey also handle in-
which may be eligible for a barge-in or a backchangremental updates in the system. In addition, we
nel. Figure 2 shows some example utterances draed a transition function that specifies the way
from the corpus and their ID including the first senynat actions change the environment (as expressed
tence from Figure 1. These examples were typicgh the state representation) and a reward function
for what could generally be observed from the coryhich specifies a numeric value for each action
pus. We see that while information is transmitteqaken. In this way, decision making can be seen
with varying amounts of density, the main bits of in-55 5 finite sequence of states, actions and rewards
formation are transmitted at a scale betweeand {s0,a0,71,51,a1, ...,7e—1, ¢}, where the goal is to
7. induce an optimal strategy automatically using Rein-
Due to a lack of human data for the system utteffprcement Learning (RL) (Sutton and Barto, 1998).
ances, we use the same corpus data to compute th§ye ysed Hierarchical RL, rather than flat RL, be-
ID of system utterancesThe learning agent can usecayse the latter is affected by toarse of dimen-
T iavalabe | at htt p: / / waw, macs. hw ac. uk/ sionglity, the fac_t that the state spgce grows ex_po-
i | abar chi ve/ cl assi cpr oj ect/ dat a/ | ogi n. php. nentially according to the state variables taken into

“Note that our model does not currently handle out-ofaccount. This affects the scalability of flat RL agents
domain words. In future work, we will learn when to seek clar-
ification. but for now make the assumption that using the corpus data is
3We plan a data collection of such utterances for the futurénformative since they are from the same domain.

Incremental Utter ance Optimisation
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and limits their application to small-scale problemsdecide to do nothing. The goal of each SMDP is to
Since timing is crucial for incremental approachedijnd an optimal policyr* that maximises the reward
where processing needs to be fast, we choose a for each visited state, according to

erarchical setting for better scalability. We denote ,

the hierarchy of RL agents a&/! where the in- T™i(s) = arg max Q; i(s,a), (2)
dexesi and j only identify an agent in a unique

way, they do not specify the execution sequence QfhereQ’ (s, a) specifies the expected cumulative re-
subtasks, which is subject to optimisation. Eactyard for executmg action in states and then fol-
agent of the h|erarChy is defined as a Semi- MarkON)W|ng *. We use HSMQ Learn”']g to induce dia-

Decision Process (SMDP) consisting of a 4-tuplgggue poI|C|es see (Cuafuitl, 2009), p. 92.
< SZ A;,T;,R’ >. Here, Sl denotes the set of
states ,AL denotes the set of actions, affgl is a 5 Experimental Setting
probabilistic state transition function that determine
the next state’ from the current state and the per-
formed action. R’ (s',7|s,a) is a reward function The HRL agent in Figure 3 shows how the tasks of
that specifies the Yeward that an agent receives fok) dealing with incrementally changing input hy-
taking an actiors in states lasting 7 time steps Potheses, (2) choosing a suitable IP strategy and (3)
(Dietterich, 1999). Since actions in SMDPs maypresenting information, are connected. Note that
take a variable number of time steps to completave focus on a detailed description of modalg_,
the variabler represents this number of time stepshere, which deal with barge-ins and backchannels
The organisation of the learning process into disand are the core of this paper. Please see Dethlefs et
crete time steps allows us to define incremental hyal. (2012) for details of an RL model that deals with
pothesis updates as state updates and transitiongh& remaining decisions.
an SMDP. Whenever conditions in the learning en- Briefly, modelM/{ deals with dynamic input hy-
vironment change, such as the recogniser’s best hgotheses. It chooses when to listen to an incoming
pothesis of the user input, we represent them as trauiser utterance)(3) and when and how to present
sitions from one state to another. At each time stefformation (V3 ,) by calling and passing control
the agent checks for changes in its state represdf-a child subtask. The variable ‘incrementalStatus’
tation and takes the currently best action accordingharacterises situations in which a particular (incre-
to the new state. The best action in an incrementatental) action is triggered, such as a floor holtedr
framework can also include generatingpackchan- me seg’a correction or self-correction. The variable
nel to the user to indicate the status of groundingoresStrategy’ indicates whether a strategy for IP has
or barging-into confirm an uncertain piece of infor- been chosen or not, and the variable ‘userReaction’
mation. Once information has been presented to tigows the user's reaction to an IP episode. The
user, it iscommittedor realised Realised informa- ‘userSilence’ variable indicates whether the user is
tion is represented in the agent’s state, so that it capeaking or not. The detailed state and action space
monitor its own output. of the agents is given in Figure 4. We distinguish ac-
tions for Information Presentation (IP), actions for
Actions in a Hierarchical Reinforcement learnemttribute presentation and ordering (Slot-ordering),
can be either primitive or composite. The formemnd incremental actions (Incremental).
are single-step actions that yield single rewards, and Models M3 , correspond to different ways of
the latter are multi-step actions that correspond tpresenting information to the user. They perform
SMDPs and yield cumulative rewards. Decisiorattribute selection and ordering and then call the
making occurs at any time step of an SMDP: aftechild agentsM , for attribute realisation. When-
each single-step action, we check for any updatever a user barges in over the system, these agents
of the environment that require a system reaction avill decide to either yield the turn to the user or to
change of strategy. If no system action is requiretty and keep the turn based on information density.
(e.g. because the user is speaking), the system chlne variables representing the status of the cuisine,

g.l Hierarchy of Learning Agents
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States MY
incrementalStatus0=none,1=holdFloor,2=correct,3=selfCorrect
observeUsefO=unfilled,1=filled

presStrategy O=unfilled,1=filled

M} userReactiod 0=none,1=select,2=askMore,3=other
userSilencefO=false,1=tru¢
Actions M
IP: compare M1, recommendM2, summariseM{, sum-
Present Present Present . . .
mariseCompare, summariseRecommend, summariseCompar-
Mg M? M3 M3 M} eRecommend,

Incrementalcorrect, selfCorrect, holdFloor, observeUser
Figure 3: Hierarchy of learning agent for incremental InGoal State Mg 0, 1, 1,0, ?

formation Presentation and Slot Ordering.
States M.

IDSystem={ 0=low,1=medium, 2=high
) . ) . statusCuisin¢0=unfilled,1=low,2=medium,3=high,4=realised
food, location, price and service of restaurants inditatusQualityf 0=unfilled, 1=low,2=medium,3=high,4=realised

cate whether the slot is of interest to the user (we astatusLocatiof 0=unfilled, 1=low,2=medium,3=high,4=realised
sume thad means that the user does not care abogtatusPricg0=unfilled,1=low,2=medium,3=high 4=realised
this slot), and what input confidence score is cuftatusServicgo=unfiled,1=low,2=medium,3=high,4=realised
. . turnType{0=holding, 1=resuming, 2=keeping, 3=yielding
rently associated with the value of the slot. For eXgsergargei{o=faise, 1=trug
ample, if our current best hypothesis is that the userctions 3.,
is interested in Indian restaurants, the variable st&lot-ordering: presentCuisine Mg, presentQuality M7,
tusCuisine’ will have a value between 1-3 indicatingresentLocation/3, presentPricé/;, presentService/s,
. . ncrementalyieldTurn, keepTurn
the strength of this hypothesis. ane slots have be al State M , 2.V 4 0V 4,0V 4,0V 4,0V 42,2
presented to the user, they aealisedand can only
be changed through a correction or self-correction States M3
Model M is called whenever the user is speakPargelnOnUsert0=undecided,1=yes, 2=jo N
. IDUser={0=low,1=medium, 2=high, 3=falling, 4=risirig

Ing. The system's main choice here is to remalgtatusCuisinéO:um‘illed,1:I0w,2:medium,3:high,4:reali§ed

silent and listen to the user or barge-in to requestatusLocatiof0=unfilled, 1=low,2=medium,3=high,4=realised
the desired cuisine, location, or price range of atatusPricg0=unfilled,1=low,2=medium,3=high,4=realised
restaurant. This can be beneficial in certain situgbctions M;

tions, such as when the system is able to increase !}Qgrementgl:doNotBargeIn, bargelnCuisine, bargelnLocation,
argelnPrice, backchannel

confidence for a slot from ‘low’ to ‘high’ through Gog state 172 >0, 2, 0v 4, 0v 4, 0v 4
barging-in with a direct clarification request, e.qg.
‘Did you say Indian?’ (and thereby saving sev- Stat%Mc?.%l | . high
DSystem= 0=low,1=medium, 2=hig
er"f" turns .that may be based on ?‘ Wrong hyPOt DUser={0=low,1=medium, 2=high, 3=falling, 4=rising
esis). This can also be harmful in certain situasrtaceForm{0=unrealised, 1=realis¢d
tions, though, assuming that users have a genewdtions M3 ,
preference for not being barged-in on. The learnin§urface Realisatiorfalternative surface realisations]
agent will need to learn to distinguish these situag:9: ‘$number$ restaurants serve $cuisine$ food', ‘$number$
tions. This agent is also responsible for generatinpéﬁ;e;;rzB%atf%'rffrea& ete.
backchannels and will over time learn the best mo-
ments to do this. Figure 4: The state and action space of the HRL agent.
ModelsMZ , choose surface forms for presenta’he g_oal state is reached when all items (that the user
tion to the user from hand-crafted templates. The?pecn‘led in the search query) have been presented. Ques-
are not the focus of this paner. however. and therd®" marks mean that a variable does not affect the goal
. p_ Per, T State, which can be reached regardless of the variable’s
fore not presented in detail. The state-action spacge.

size of this agent is roughly.5 million.* The agent

“Note that a flat RL agent, in contrast, would n&ed 10%° _ _ _
million state-actions to represent this problem. reaches its goal state (defined w.r.t. the state vari-
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ables in Fig. 4) when an IP strategy has been chosshown in Table 2. A score d@f means that the user

and all information has been presented. does not care about the attributemeans that the
_ _ system’s confidence in the attribute’s value is l@w,
5.2 The Simulated Environment that the confidence is medium, aBdneans that the

For a policy to converge, a learning agent typicallconfidence is high. A value of means that the at-
needs several thousand interactions in which it is extibute has already beewgalised i.e. communicated
posed to a multitude of different circumstances. Fadio the user. At the beginning of a learning episode,
our domain, we designed a simulated environmente assign each attribute a possible value and con-
with three main components addressing IP, incrdidence score with equal probability. For food and
mental input hypotheses and ID. Using this simulaservice quality, we assume that the user is never in-
tion, we trained the agent fa thousand episodes, terested in bad food or service. Subsequently, con-
where one episode corresponds to one recommendi@ence scores can change at each time step. In fu-
tion dialogue. ture work these transition probabilities will be esti-
mated from a data collection, though the following
assumptions are realistic based on our experience.
To learn a good IP strategy, we use a user simulgve assume that a confidence scoré ahanges to
tion> by Rieser et al. (2010) which was estimateciny other value with a likelihood df.05. A confi-
from human data and uses bi-grams of the forrdence score of changes with a probability df.3,
P(aut|IPsys), wherea, , is the predicted user reac-a confidence score of with a probability of0.1
tion at timet to the system’s IP stratedyP, ; in state  and a confidence score 6fwith a probability of
s at timet. We distinguish the user reactionss#- ().03. Once slots have been realised, their value is
lecta restauranaddMorelnfato the current query to set to4. They cannot be changed then without an ex-
constrain the search, ather. The last category is plicit correction. We also assume that realised slots
usually considered an undesirable user reaction thefiange with a probability 06.1. If they change,
the system should learn to avoid. The simulatiove assume that half of the time, the user is the ori-
uses linear smoothing to account for unseen situgin of the change (because they changed their mind)
tions. In this way, we can predict the most likelyand half of the time the system is the origin of the
user reaction to each system action. Even thougihange (because of an ASR or interpretation error).
previous work has shown thatgram-based simu- Each time a confidence score is changed, it has a
lations can lead to dialogue inconsistencies, we agrobability of 0.5 for also changing its value. The
sume that for the present study this does not presemisulting input to the system are data structures of
a problem, since we focus on generating single uttethe form present(cuisine=Indian), confidence=low
ances and on obtaining user judgements for singl&éhe probability of observing this data structure in
independent utterances. our simulation is0.1 (for Indian) x 0.2 (for low
. confidence)= 0.02. Its probability of changing
52:2 Input Hypothesis Updates to present(cuisine=italian), confidence=higs 0.1

While the IP strategies can be used for incremeqfOr changing from low to medium) 0.05 (for
tal and non-incremental dialogue, the second part %anging from Indian to Italiany 0.005.

the simulation deals explicitly with the dynamic en-
vironment updates that the system will need to bb6.2.3 Information Density Updates

sensitive to in an incremental setting. We assume \ve simulate ID of user utterances based on proba-
that for each restaurant recommendation, the USBiiistic context-free grammars (PCFG) that were au-
has the option of filling any or all of the attributesomatically induced from the corpus data in Section
cuisine, food quality, location, price rangmdser- 3 o using the ABL algorithm (van Zaanen, 2000).

vice quality The possible values of each attributeryg algorithm takes a set of strings as input and
and possible confidence scores for each value Bmputes a context-free grammar as output by align-

5The simulaion data are available fromww. NG Strings based on Minimum Edit Distance. We
cl assi c- proj ect.org. use then—gram language models trained earlier to

5.2.1 Information Presentation
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Attribute  Values Confidence 89€Nt receives

Cuisine  Chinese, French, German,In-, 0,1,2,3,4
dian, Italian, Japanese, Mexi-
can, Scottish, Spanish, Thai

Quality  bad, adequate, good, verygood 0,1,2,3,4

+100 if the user selects an item,
0 if the user adds further con-
straints to the search,
R= -100  if the user does something else

Location 7 distinct areas of the city 0,1,23,4 .
Price cheap, good-price-for-value or a self-correction,
P g P o -0.5  for the system holding a turn,
expensive, very expensive 0,1,2,3,4

-1 therwise.
Service  bad, adequate, good, very good 0, 1,2, 3,4 otherwise

Table 2: User goal slots for restaurant queries with possi-N€ agent is encouraged to choose those sequences
ble values and confidence scores. of actions that lead to the user selecting a restaurant

as quickly as possible. If the agent is not sure what to

say (because planning has not finished), it can gen-

erate a floor holding marker, but should in any case
add probabilities to grammar rules. We use thesavoid a self-correction due to having started speak-
PCFGs to simulate user utterances to which the sysg too early.
tem has to react. They can be meaningful utter- The remaining rewards are based on ID scores
ances such @show me restaurants nearbgt less computed incrementally during an interaction. The
meaningful fragments such asm let me see, do agent receives the following rewards, where info-
you...hm! The former type is more frequent in Density(Usr) and infoDensity(Sys) refer to the ID of
the data, but both types can be simulated along withe current user and system utterance, respectively,
their ID (clearly, the first type is more dense than thes defined in Equation 1.
second).

-infoDensity(Usr)  for keeping a turn,

barging-in or
a backchannel,
for yielding a turn.

In addition to simulating user utterances, we
hand-crafted context-free grammars of system utlR =
terances and augmented them with probabilities es- -infoDensity(Sys)
timated using the same user corpus data as above

(where again, we make the assumption that this #ghese two measures encourage the agent to consider
to some extent feasible given the shared domairnthe trade-offs between its own ID and the one trans-
We use the simulated system utterances to COMPWgitted by an incoming user utterance. Barging-in
varying degrees of ID for the system. on a user utterance at a low ID point then yields a

small negative reward, whereas barging-in on a user
Both measures, the ID of user and system utt(;F

. , : tterance at a high ID point yields a high negative
ances, can inform the system during learmning to bag ward. Both rewards are negative because barging-
ance the trade-off between them for generating an

- i on the user always contains some risk. Similarly,
receiving backchannels and barge-ins. keeping a turn over a non-dense user utterance re-
ceives a smaller negative reward than keeping it over
a dense user utterance. A reward-of is assigned
for barging-in over a user utterance fragment with a
5.3 A Reward Function for Incremental falling ID to reflect results from a qualitative study

Dialogue Based on Information Density of our corpus data: humans tend to bargbetween
information peaks, so that a barge-in to clarify a low-
confidence slot appears immediately before the ID is

To train the HRL agent, we use a partially datarising again for a new slot. The exact best moment
driven reward function. For incremental IP, we usdor barge-ins and backchannels to occur will be sub-
rewards that are based on human intuition. Thgct to optimisation.
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6 Experimental Results

The agent learns to barge-in or generate backchan ]
nels to users at points where the ID is low but rising.
In particular, the agent learns to bargeight before

information density peaks in an incoming user utter-
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Average Reward

-601

ance to clarify or request slots that are still open from -y — e

. . . . -100f + = = = Baselinel |
the previous information density peak. If a user has .- | ||
specified their desired cuisine type but the system 0 e 10t

has received a low ASR confidence score for it, it

may barge-in to clarify the slot. This case was illusFigure 5: Performance in terms of rewards (averaged over
trated in the last example in Figure 1, where the syd0 runs) for the HRL agent and its baselines.

tem clarified the previous (cuisine) slot (which is as-

sociated with a high ID) just before the user specifies

the location slot (which again would have a high ID) g its are summarised in Table 3.

The main benefit the system can gain through clar-

ification barge-ins is to avoid self-corrections when

having acted based on a low ASR confidence, lea@-1 Average Rewardsover Time

ing to more efficient interactions.

The system learns to generate backchanaféés Figure 5 shows the performance of all systems in
information peaks to confirm newly acquired slot§erms of average rewards in simulation. The learnt
that have a high confidence. An example is showRolicy outperforms both baselines. While the learnt
in the first dialogue fragment in Figure 1. policy and Baseline 1 appear to achieve similar per-

In addition, the system learns to yield its currenformance, an absolute comparison of the [E&10
turn to a user that is barging-in if its own ID is low, episodes of each behaviour shows that the improve-

falling or rising, or if the ID of the incoming user Ment of the HRL agent over Baseline 1 corresponds

utterance is high. If the system’s own ID is high, buf® 23.42%. The difference between the learnt policy
the user’s is not, it will try to keep the tufnThis is and its baselines is significantat 0.0001 accord-

exemplified in the third dialogue fragment in Figurdnd t0 a paired t-test and has a high effect size of
1. r = 0.85.

The main reason for these different performances
We compare our learnt policy against two baseis the moment each system will barge-in. Since
lines. Baseline 1 was designed to always generatBaseline 1 barges-in on users after an information
barge-insafter an information peak in a user utter-peak, when ID may still be high, it continuously re-
ance, i.e. when ID has just switched frdmghto ceives a negative reward reflecting the user prefer-
falling. We chose this baseline to confirm that userence for late barge-ins. As a result of this contin-
indeed prefer barge-ins before information peaksous negative reward, the agent will then learn to
rather than at any point of low ID. Baseline 1 yieldsavoid barge-ins altogether, which may in turn lead
aturn to a user barge-in if its own ID is low and triesto less efficient interactions because low confidence
to keep it otherwiseBaseline 2 generates barge-ins ASR scores are clarified only late in the interaction.
and backchannels randomly and a_t any pointdur_ing The main problem of the random barge-ins of
a user utterance. The decision of yielding or keepingseline 2 is that users may often have to restart

aturnin case of a user barge-inis also random. Both  ,/n because the system barged-in too early or
baselines also use HRL to optimise their IP strategy, the middle of an information peak. In addition

We do not compare different IP strategies, which hagasejine 2 needs to occasionally self-correct its own
been done in detail by Rieser et al. (2010). All réygerances because it started to present information

SIncidentally, this also helps to prevent the system yieldind0O €arly, when input hypotheses were not yet stable
its turn to a user backchannel; cf. Example 2 in Fig. 1. enough to act upon them.
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Regarding user ratings however, Baseline 2 was pre-

Policy Average Reward User Rating) i o i
— = ferred over Baseline 1. This is most likely due to the
Learnt 55.54*% 43% o L .
. - timing of barge-ins: since Baseline 2 has a chance
Baseline1 45.0 26% L . . :
. of barging-in at earlier occasions than Baseline 1,
Baseline 2 1.47 31%

it may have received better ratings. The evaluation

Table 3: Comparison of policies in terms of average reShows that humans care about timing of a barge-in
wards and user ratings.indicates a significant improve- regarding the density of information that is currently

ment over Baseline 1 and over Baseline 2. conveyed and dislike late barge-ins. ID is then useful
in determining when to barge-in. We can therefore
6.2 Human Rating Study further conclude that ID can be a feasible optimisa-

, : . tion criterion for incremental decision making.
To confirm our simulation-based results, we con-

ducted a user rating study on the CrowdFlowey Conclusion and Future Work

crowd sourcing platforrd.  Participants were

shown user utterances along with three options V& have presented a novel approach to incremen-
barging-in over them. For example} | want (@l dialogue decision making based drerarchical

[OPTION 1] Italian food [OPTION 2] in the RL combined with the notion oihformation den-

city [OPTION 3] centre|, whereoPTION 1 cor- Sity. We presented a learning agent in the domain of
responds to the learnt poliogeTi N 2 to Baseline P for restaurant recommendations that was able to
2 andoPTI ON 3 to Baseline 1. generate backchannels and barge-ins for higher re-

Users were asked to choose one option which thaponsiveness in interaction. Results in terms of av-
considered the best moment for a barge-in. Partickage rewards and a human rating study have shown
pants in the study rated altogether 144 utterancé§@t @ learning agent that is optimised based on a
They preferred thdearnt system 63 times (43%), partially data-driven reward functiothat addresses
Baseline 1 37 times (26%) and Baseline 2 44 time&formation density can learn to decide when and if

(31%). This is statistically significant at < 0.02 It is beneficial to barge-in or backchannel on user
according to a Chi-Square test( = 7.542, df = utterances and to deal with backchannels and barge-

9). In a separate test, directly comparing tearnt NS from the user. Future work can take several di-

policy and Baseline 1llearnt was chosen signifi- "€ctions. Given that ID is a measure influencing
cantly more often than Baseline 1; i.e. 79% of théluman language production, we could replace our
time (for 127 utterances, using a 1-tailed Sign testémplate-based surface realiser by an agent that op-
p < 0.0001). Finally, learntwas directly compared timises the information density of its output. Cur-
to Baseline 2 and shown to be significantly more off€ntly we learn the agent's behaviour offline, be-
ten chosen; i.e. 59% of the time (138 utterances, fore the interaction, and then execute it statistically.
tailed Sign testp < 0.025). These results provide More adaptivity towards individual users and situa-
evidence that an optimisation of the timing of genertions could be achieved if the agent was able to learn
ating barge-ins and backchannels in incremental dito™ ongoing interactions. Finally, we can confirm
alogue can be sensitive to fine-grained cues in evol{2€ human results obtained from an overhearer-style
ing ID and therefore achieve a high level of adaptivévaluation in a real interactive setting and explicitly
ity. Such sensitivity is difficult to hand-craft as caneXtend our language model to discourse phenomena

be concluded w.r.t. the performance of Baseline BUch as pauses or hesitations to take them into ac-

which received similar rewards tearntin simula- countin measuring ID.

tion, but is surprisingly beaten by the random Base-
line 2 here. This indicates a strong human dis.likeACknOWIedgements

for late barge-ins. The bad performance of Basérhe research leading to this work has received funding

line 2 in terms of average rewards was due to thom EC's FP7 programmes: (FP7/2011-14) under grant

random barge-ins leading to less efficient dialogue&dreementno. 287615 (PARLANCE); (FP7/2007-13) un-
der grant agreement no. 216594 (CLASSIC); (FP7/2011-

"ww. cr owdf | ower . com 14) under grant agreement no. 270019 (SPACEBOOK);
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