
Proceedings of the 2012 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural
Language Learning, pages 12–23, Jeju Island, Korea, 12–14 July 2012. c©2012 Association for Computational Linguistics

Regularized Interlingual Projections:
Evaluation on Multilingual Transliteration

Jagadeesh Jagarlamudi
University of Maryland

College Park, USA, 20742
jags@umiacs.umd.edu

Hal Daumé III
University of Maryland

College Park, USA, 20742
hal@umiacs.umd.edu

Abstract

In this paper, we address the problem of build-
ing a multilingual transliteration system using
an interlingual representation. Our approach
uses international phonetic alphabet (IPA) to
learn the interlingual representation and thus
allows us to use any word and its IPA repre-
sentation as a training example. Thus, our ap-
proach requires only monolingual resources: a
phoneme dictionary that lists words and their
IPA representations.1 By adding a phoneme
dictionary of a new language, we can readily
build a transliteration system into any of the
existing previous languages, without the ex-
pense of all-pairs data or computation. We
also propose a regularization framework for
learning the interlingual representation, which
accounts for language specific phonemic vari-
ability, and thus it can find better mappings
between languages. Experimental results on
the name transliteration task in five diverse
languages show a maximum improvement of
29% accuracy and an average improvement of
17% accuracy compared to a state-of-the-art
baseline system.

1 Introduction

Because of the wide usage of English, many natu-
ral language processing (NLP) tasks have bilingual
resources from English into other languages. For ex-
ample, significantly larger parallel texts are available

1It is arguable that getting words and their IPA representa-
tion require knowledge about both words and IPA symbols, but
it still is specific to one language and, in this sense, we refer to
it as a monolingual resource.

between English and other languages. Similarly,
bilingual dictionaries and transliteration data sets are
more accessible from a language into English than
into a different language. This situation has caused
the NLP community to develop approaches which
use a resource rich language (Q say English) as pivot
to build resources/applications between a new lan-
guage pair P and R. Previous studies in machine
translation (Utiyama and Isahara, 2007; Paul and
Sumita, 2011), transliteration (Khapra et al., 2010),
and dictionary mining (Saralegi et al., 2011) show
that these bridge language approaches perform com-
petitively with approaches that use resources be-
tween P and R. In this paper, we propose a regular-
ization framework for bridge language approaches
and show its effectiveness for name transliteration
task. The key idea of our approach is that it accounts
for language specific variation in the bridge lan-
guage resources (i.e. between P ↔ Q and Q↔ R)
and aims to minimize this variation as much as pos-
sible. Though our technique is general, for clarity
we describe it in the context of named entity (NE)
transliteration.

Named entity (NE) transliteration involves
transliterating a name in one language into another
language and is shown to be crucial for machine
translation (MT) (Knight and Graehl, 1998; Al-
Onaizan and Knight, 2002; Hermjakob et al.,
2008; Li et al., 2009) and cross-lingual information
retrieval (CLIR) (AbdulJaleel and Larkey, 2003;
Mandl and Womser-Hacker, 2005; Udupa et al.,
2009). There exists a large body of literature in
transliteration, especially in the bilingual setting,
well summarized by Ravi and Knight (2009). We

12

English Bulgarian
Word IPA Word IPA
bashful /ˈbæʃfəl/ шибам /ˈʃibəm/
tuesday /ˈtuːzdeɪ/ лук /luk/
craft /kɹæft/ как /kak/
book /bʊk/ музей /mʊˈzej/
head /hɛd/ спека /spɛˈkɤ/

Table 1: Example phoneme dictionaries in English and
Bulgarian. The English translations for the Bulgarian
words are switch, onion, how, museum, and spekle.

summarize the approaches that are most relevant to
us in Sec. 5. In this paper, we operate in the context
of transliteration mining (Klementiev and Roth,
2006; Sproat et al., 2006) where we assume that we
are given a source language name and a list of target
language candidate transliterations and the task is to
identify the correct transliteration.

Given a set of l languages, we address the prob-
lem of building a transliteration system between
every pair of languages. A straight forward su-
pervised learning approach would require training
data of name pairs between every pair of languages
(Knight and Graehl, 1998) or a set of common
names transliterated from every language into a
pivot language. Though it is relatively easy to ob-
tain names transliterated into a pivot language (such
as English), it is unlikely that such data sets contain
the same names. Bridge language approaches over-
come the need for common names and build translit-
eration systems for resource poor languages (Khapra
et al., 2010). However, such approaches still require
training data consisting of bilingual name translit-
erations (orthographic name-to-name mappings). In
this paper, we relax the need for name translitera-
tions by using international phonetic alphabet (IPA)
in a manner akin to a “bridge language.”

2 IPA for Transliteration

We assume that we have a list of words and their
IPA representations in each of the l languages. The
words in different languages need not have any rela-
tionship to each other. Table 1 shows few words and
their IPA representations in English and Bulgarian
languages. We refer to the set of (word, IPA) pairs
as phoneme dictionary in this paper. Notice that the
common symbols in the IPA sequences indicate a

vague phonetic correspondence between the charac-
ter sequences of English and Bulgarian. For exam-
ple, both the words ‘bashful’ and ‘шибам’ have the
symbol ‘ʃ’ in their IPA sequences which indicate a
possible mapping between the character sequences
‘sh’ and ‘ш’.

The use of IPA as the bridge language offers mul-
tiple advantages. As shown in Table 1, it allows us
to include any (word, IPA) pair in the training data
and thus it relaxes the need for name pairs as the
training data. Since we only need a phoneme dic-
tionary in each language, our approach does not re-
quire any bilingual resources to build the transliter-
ation system. Moreover, since our training data can
contain any word (not only the NEs), it is easier to
obtain such a resource, for e.g. the phoneme dic-
tionaries obtained from Wiktionary contain at least
2000 words in 21 languages and we will see in Sec. 6
that we can build a decent transliteration system with
2000 words.2 Finally, unlike other transliteration ap-
proaches, by simply adding a phoneme dictionary of
(l+1)st language we can readily get a transliteration
system into any of the existing l languages and thus
avoid the need for all-pairs data or computation.

Using IPA as the bridge language poses some
new challenges such as the language specific phone-
mic inventory. For example, Mandarin doesn’t
have /v/, so it is frequently substituted with /w/ or
/f/. Similarly, !Xóõ (Southern Khoisan, spoken in
Botswana) has 122 consonants, mostly consisting
of a large inventory of different word-initial click
sounds (Haspelmath et al., 2005), many of which
do not exist in any other documented languages.
Besides this language specific phonemic inventory,
names have different IPA representations in differ-
ent languages. For example, as shown in Table 2,
the IPA sequences for ‘China’ in English and Dutch
have common IPA symbols but the English IPA se-
quence has additional symbols. Moreover, a name
can have multiple pronunciations with in a language,
e.g. ‘France’ has two different IPA sequences in En-
glish (Table 2).

In order to handle this phonemic diversity, our
method explicitly models language-specific variabil-
ity and attempts to minimize this phonemic variabil-

2In our experiments, we consider languages with small
(2000) and big (>30K) phoneme dictionaries.

13

Word IPA sequence
China /ˈtʃaɪ.nə/ (En), /ˈʃina/ (Du), /ˈçiːnaː/ (De)
America /əˈmɛrɪkə/ (En), /aˈme.ri.ka/ (Ro)
France /ˈfɹɑːns/ (En), /ˈfɹænts/ (En), /fʁɑ̃s/ (Fr)

Table 2: IPA sequences of few words in different lan-
guages indicated using language codes in the parenthesis
(‘En’ for English, ‘Du’ for Dutch, ‘De’ for German, ‘Ro’
for Romanian, and ‘Fr’ for French).

ity as much as possible. At a high level, our ap-
proach uses the phoneme dictionaries of each lan-
guage to learn mapping functions into an interlin-
gual representation (also referred as common sub-
space). Subsequently, given a pair of languages, a
query name in one of the languages and a list of
candidate transliterations in the other language, we
use the mapping functions of those two language to
identify the correct name transliteration. The map-
ping functions explicitly model the language specific
variability and thus account for fine grained differ-
ences. Our experimental results on four language
pairs from two different language families show a
maximum improvement of 29% accuracy and an av-
erage improvement of 17% accuracy compared to
a state-of-the-art baseline approach. An important
advantage of our approach is that, it extends eas-
ily to more than two languages and in fact adding
phoneme dictionary from a different, but related,
language improves the accuracies of a given lan-
guage pair. Our main contributions are: 1) build-
ing a transliteration system using (word, IPA) pairs
and hence using only monolingual resources and 2)
proposing a regularization framework which is more
general and applies to other bridge language applica-
tions such as lexicon mining (Mann and Yarowsky,
2001).

3 Low Dimensional Projections

Our approach is inspired by the Canonical Correla-
tion Analysis (CCA) (Hotelling, 1936) and its appli-
cation to transliteration mining (Udupa and Khapra,
2010).

First, we convert the phoneme dictionary of each
language into feature vectors, i.e. we convert each
word into a feature vector of n-gram character se-
quences and similarly, we also, convert the IPA
representations into feature vectors of n-gram IPA

symbol sequences. For example, if we use uni-
gram and bigram sequences as features, then the
feature vectors of ‘head’ and its IPA sequence
`hɛd' are given by {h, e, a, d, #h, he, ea, ad, d$}
and {h,ɛ, d, #h, hɛ,ɛd, d$}. For brevity, we refer
to the spaces of n-gram character and IPA symbol
sequences as character and phonemic spaces respec-
tively. The character space is specific to each lan-
guage while the phonemic space is shared across all
the languages. Since we use IPA as bridge, even
though two languages share orthography (e.g. En-
glish and French) it is irrelevant for our approach.

Then, for each language, we find mappings
(
Ai

and Ui

)
from the character and phonemic spaces

into a common k-dimensional subspace such that the
correct transliterations lie closer to each other in this
subspace. Before moving into the details of our ap-
proach, we will describe the notation and then give
an overview of the process by which our approach
finds the transliteration.

3.1 Notation
Let x(m)

i ∈ Rdi and p(m)
i ∈ Rc be the feature vec-

tors of the mth word and its IPA sequence in the
ith

(
1 · · · l

)
language, where di is the size (i.e. no. of

features) of the character space of the language and
c is the size of the common phonemic space. Let
Xi (di×ni) and Pi (c×ni) denote the ith language
data matrices with x(m)

i and p(m)
i m = 1 · · ·ni as the

columns respectively. We consistently use subscript
to indicate the language and superscript to indicate
the index of an example point.

3.2 Method Overview
During the training stage, for each language, we find
mappings (or projection directions) Ai ∈ R(di×k)

and Ui ∈ R(c×k) from the character and phonemic
spaces into a k-dimensional subspace (or an interlin-
gual representation) such that a name gets mapped
to the same k-dimensional vector irrespective of the
language. That is, given a name xi it gets mapped
to the vector AT

i xi and similarly its IPA sequence
pi gets mapped to UT

i pi. During the testing stage,
given a name xi in the source (ith) language, we find
its transliteration in the target (jth) language xj by
solving the following decoding problem:

arg min
xj

L
(
xi, xj

)
(1)

14

Figure 1: A single name (Gandhi) is shown in all the in-
put feature spaces. The alignment between the character
and phonemic space is indicated with double dimensional
arrows. Bridge-CCA uses a single mapping function U
from the phonemic space into the common subspace (the
2-dimensional green space at the top), where as our ap-
proach uses two mapping functions U1 and U2, one for
each language, to map the IPA sequences into the com-
mon subspace.

where L
(
xi, xj

)
is given by

min
p∈Rc
∥AT

i xi − UT
i p∥2 + ∥AT

j xj − UT
j p∥2 (2)

This formulation uses the source language mappings
(Ai and Ui) to find the IPA sequence p that is clos-
est to the source name and then uses it, along with
the target language mappings (Aj and Uj), to iden-
tify the correct transliteration from a list of candidate
transliterations.

At a high level, existing bridge language ap-
proaches such as Bridge-CCA (Khapra et al., 2010)
assume that Ui ≡ Uj thus ignoring the language
specific variation. To understand its implication
consider the example shown in Fig. 1. The mid-
dle portion of the Fig. shows the name Gandhi
(represented as point) in the character spaces of
English and Hindi, three-dimensional spaces, and
its IPA sequences in the phonemic space (the two-

dimensional space in the middle). Notice that, be-
cause of the phonemic variation, the same name is
represented by two distinct points in the common
phonemic space.3 Now, since Bridge-CCA uses a
single mapping function for both the IPA sequences,
it fails to map these two distinct points into a com-
mon point in the interlingual subspace.

Our new formulation, as explained above, relaxes
this hard constraint and learns different mapping
functions (Ui and Uj) and hence our approach can
potentially map both the distinct IPA sequences into
a single point. As a result our approach success-
fully handles the language specific phonemic vari-
ation. At the same time we constrain the projec-
tion directions such that they behave similarly for
the phonemic sounds that are observed in majority
of the languages. In the example shown in Fig. 1,
our model (called Regularized Projections) finds two
different mapping functions U1 and U2, one for each
language, from the phonemic space into the com-
mon two-dimensional space at the bottom.

3.3 Regularized Projections

In this section we first formulate the problem of find-
ing the mapping functions (Ai and Ui) of each lan-
guage as an optimization problem. In the following
section (Sec. 4), we develop a method for solving the
optimization problem and also derive closed form
solution for the prediction problem given in Eq. 1.
For simplicity, we describe our approach in terms of
single projection vectors, ai ∈ Rdi and ui ∈ Rc,
rather than full matrices, but the generalization is
trivial.

Inspired by the Canonical Correlation Analysis
(CCA) (Hotelling, 1936), we find projection direc-
tions in the character and phonemic spaces of each
language such that, after projection, a word is closer
to its aligned IPA sequence. To understand this, as-
sume that we have a name (say “Barack Obama”) in
all the languages4 and its feature vectors are given
by xi and pi i = 1 · · · l in the character and phone-

3In reality, as explained in the previous section, the phone-
mic variation that is commonly observed is that different fea-
tures are triggered for different languages. But for visualization
purpose, we showed the IPA sequences as if they differ in the
feature values.

4Our model does not require same names in different lan-
guages; this is used only for easier understanding.

15

mic spaces respectively. Then, we might try to find
projection directions ai in each language and u in
the common phonemic space such that:

arg min
ai,u

l∑
i=1

(
⟨xi, ai⟩ − ⟨pi, u⟩

)2
(3)

where ⟨·, ·⟩ denotes the dot product between two
vectors. This model assumes that the projection di-
rection u is same for the phonemic space of all the
languages. This is a hard constraint and does not
handle the language specific variability as discussed
in the previous section. We model the language
specificity by relaxing this hard constraint.

In our model, intuitively, the parameters corre-
sponding to the phonemic sounds that occur in ma-
jority of the languages are shared across the lan-
guages while the parameters of the language spe-
cific sounds are modeled per each language. This
is achieved by modeling the projection directions of
the ith language phonemic space ui ← u + ri. The
vector u ∈ Rc is common to the phonemic spaces
of all the languages and thus handles sounds that
are observed in multiple languages while ri ∈ Rc,
the residual vector, is specific to each language and
accounts for the language specific phonemic varia-
tions. Then the new formulation is given by:

arg min
ai,u,ri

l∑
i=1

∥⟨xi, ai⟩ − ⟨pi, u + ri⟩∥2 + λ⟨pi, ri⟩2

where λ is the residual parameter. The first term of
this summation ensures that a word and its IPA se-
quence gets mapped to closer points in the subspace
while the second term forces the residual vectors to
be as small as possible. By enforcing the residual
vectors to be small, this formulation encourages the
sounds that occur in majority of the languages to be
accounted by u and the sounds that are specific to the
given language by ri. The final optimization prob-
lem is obtained by summing these terms over all the
examples and all the languages and is given by:

min
ai,u,ri

l∑
i=1

(||XT
i ai − P T

i (u + ri)||2

ni
+ λ ∥P T

i ri∥2
)

(4)

s.t.
l∑

i=1

1

ni
∥XT

i ai∥2 = 1 and
l∑

i=1

1

ni
∥P T

i u∥2 = 1

The constraints of the above optimization problem
avoid the trivial solution of setting all the vectors to
zero and are referred to as length constraints.

4 Model Optimization

In this section, we derive the solutions for the opti-
mization problems presented in the previous section.

4.1 Training the Model

We follow the standard procedure of forming the La-
grangian and setting its derivative to zero. The La-
grangian L of the optimization problem in Eq. 4 is
given by:

L =
∑

i

1

ni
||XT

i ai−P T
i (u+ri)||2+λ

∑
i

∥P T
i ri∥2

+α
(∑

i

1

ni
∥XT

i ai∥2−1
)
+β

(∑
i

1

ni
∥P T

i u∥2−1
)

where α and β are Lagrangian multipliers corre-
sponding to the length constraints. Differentiating L
with respect to ai, ri and u and setting the derivatives
to zero yields the following equations, respectively:

(1 + α)XiX
T
i ai −XiP

T
i ri = XiP

T
i u

−PiX
T
i ai + (1 + λni)PiP

T
i ri = −PiP

T
i u

∑
i

1

ni

(
PiX

T
i ai−PiP

T
i ri

)
= (1+β)

∑
i

1

ni
PiP

T
i u

We can rewrite these equations in matrix form, as
shown in Eqs. 5 and 6, since the solution becomes
clear in this form. For brevity, let Ei = (1 +
α)XiX

T
i , Fi = −XiP

T
i and Gi = (1 + λni)PiP

T
i .

Then, u can be solved for using the generalized
eigenvalue problem shown in Eq. 7. This step in-
volves computing an inverse of a (di +c) matrix and
an eigenvalue problem of size c which can be ex-
pensive since solving each of these problems involve
cubic time. This can be reduced further into a prob-
lem of smaller size by using inverse of a partitioned
matrix as shown in Eq. 8. This identity reduces the
matrix inverse computation from a problem of size
di + c into two smaller problems of size di and c
each. This reduces the time complexity considerably
since the inverse computation is cubic in the size of
the matrix.

16

[
(1 + α)XiX

T
i −XiP

T
i

−PiX
T
i (1 + λni)PiP

T
i

] [
ai

ri

]
=

[
XiP

T
i

−PiP
T
i

]
u (5)

∑
i

1

ni

[
PiX

T
i −PiP

T
i

] [
ai

ri

]
= (1 + β)

∑
i

1

ni
PiP

T
i u (6)

∑
i

1

ni

[
−F T

i
−Gi

1+λni

] [
Ei Fi

F T
i Gi

]−1 [
−Fi
−Gi

1+λni

]
u = (1 + β)

∑
i

1

ni
PiP

T
i u (7)

If Mi =
(
Ei − FiG

−1
i F T

i

)−1
, then

[
Ei Fi

F T
i Gi

]−1

=

[
Mi −MiFiG

−1
i

−G−1
i F T

i Mi G−1
i + G−1

i F T
i MiFiG

−1
i

]
(8)

Substituting Eq. 8 into Eq. 7 and further simplify-
ing results in the following eigenvalue problem for
solving u:

∑
i

Gi + (λni)
2F T

i MiFi

ni(1 + λni)2
u = (1 + β)

∑
i

PiP
T
i

ni
u

where Mi =
(
Ei − FiG

−1
i F T

i

)−1. Notice that the
term Ei = (1+α)XiX

T
i depends on the Lagrangian

multiplier α. Because of this, we cannot solve for
both the parameters and the Lagrangian multipliers
at the same time. One possible approach is to do an
alternate optimization over the parameters and La-
grangian multipliers, but in this paper we fix α and
solve for u. The value of α denotes the correlation
and its maximum value is 1. In practice, we often
observe that the top few correlations take the value
of 1. Based on this observation we fix the value of α
to 1 (Sec. 6).

Subsequently, we use u to solve for ai and ri as
follows:

ai = −λniMiFi

1 + λni
u (9)

ri =
λniG

−1
i F T

i MiFi − I

1 + λni
u (10)

In order to increase the stability of the system we
regularize Gi and Ei by adding τI . We use the top k
eigenvectors u and their corresponding ai and ri vec-
tors as columns and form the mappings U , Ai and Ri

respectively. These mappings are used in predicting
the transliteration of a name in one language into
any other language, which will be described in the
following section.

4.2 Transliteration Mining (Prediction)
During the testing phase, given a source name and
a list of candidate transliterations, we solve the de-
coding problem shown in Eq. 1 to find the appropri-
ate target language transliteration. Formally, given
a word xi in ith language we find its transliteration
into jth language xj , by solving the optimization
problem shown in Eq. 1, where Ui = U + Ri and
Uj = U + Rj . Similar to the previous case, the
closed form solution can be found by computing the
first derivative with respect to the unknown phoneme
sequence and the target language transliteration and
setting it to zero. First, the IPA sequence p∗ that
minimizes L

(
xi, xj

)
is given by:

p∗ = C−1
ij

(
UiA

T
i xi + UjA

T
j xj

)
(11)

where Cij = UiU
T
i +UjU

T
j . We substitute this back

in Eq. 2 and then solve for xj , the best transliteration
in the jth language, as:

Aj

(
I−UT

j C−1
ij Uj

)
AT

j xj = AjU
T
j C−1

ij UiA
T
i xi (12)

Since Ui and Uj are not full rank matrices, to in-
crease the numerical stability of the prediction step,
we use Cij = UiU

T
i +UjU

T
j +0.001 I where I is an

identity matrix. Notice that this solution doesn’t de-
pend on the p∗ and hence we don’t need to compute
it explicitly.

5 Related Work

There is a large body of the literature in named entity
transliteration, so we will describe only the most rel-
evant ones to our approach. In transliteration, gener-
ative approaches aim to generate the target language

17

transliteration of a given source name (Knight and
Graehl, 1998; Jung et al., 2000; Haizhou et al., 2004;
Al-Onaizan and Knight, 2002) while discriminative
approaches assume a list of target language names,
obtained from other sources, and try to identify the
correct transliteration (Klementiev and Roth, 2006;
Sproat et al., 2006). The effectiveness of the dis-
criminative approaches depend on the list of target
language candidates. Sproat et al. (2006) report an
oracle accuracy of 85%, but it depends on the source
of the candidate transliterations. Nevertheless, all
these approaches require either bilingual name pairs
or phoneme sequences to learn to transliterate be-
tween two languages. Thus, if we want to build
a transliteration system between every pair of lan-
guages in a given set of languages then these ap-
proaches need resources between every pair of lan-
guages which can be prohibitive.

Bridge language approaches propose an alterna-
tive and use a resource rich language such as English
as common language (Khapra et al., 2010) but they
still need bilingual resources. Moreover Bridge-
CCA (Khapra et al., 2010) uses a single mapping
function for the phonemic space of all the languages
and thus it can not handle language specific variabil-
ity. In the original setting, authors use English as the
pivot and since the feature space of English is fixed,
irrespective of the target language, this may not be a
serious concern but it becomes crucial when we use
IPA as the bridge language.

Approaches that map words in different languages
into the common phonemic space have also been
well studied. But most of these approaches use lan-
guage specific resources such as CMU pronuncia-
tion dictionary (Gao et al., 2004) or a carefully con-
structed cost matrices for addition, substitution, and
deletion of phonemes between a pair of languages
(Tao et al., 2006; Yoon et al., 2007). Variants of
soundex algorithm (Odel and Russel, 1918) such as
Kodex (Kang and Choi, 2000) use hand constructed
consonant to soundex code tables for name translit-
eration. Similar to our approach these variants only
require soundex mappings of a new language to
build transliteration system, but our model does not
require explicit mapping between n-gram characters
and the IPA symbols instead it learns them auto-
matically using phoneme dictionaries. Alternatively
unsupervised approaches have also been explored

(Ravi and Knight, 2009), but their accuracies are
fairly low compared to the supervised and weekly
supervised approaches.

6 Experiments

Our experiments are designed to evaluate the follow-
ing three aspects of our model, and of our approach
to transliteration in general:
IPA as bridge: Unlike other phonemic based ap-
proaches (Sec. 5), we do not explicitly model the
phoneme modifications between pairs of languages.
Moreover, the phoneme dictionary in each language
is crawled from Wiktionary (Sec. 6.1), which is
likely to be noisy. So, the first aspect we want
to evaluate is the effectiveness of using IPA as the
bridge language. Here, we also compare our method
with other bridge language approaches and establish
the importance of modeling language specific vari-
ance.
Multilinguality: In our method, simply adding a
phoneme dictionary of a new language allows us to
extend our transliteration system into any of the ex-
isting languages. We evaluate the effect of data from
a different, but related, languages on a transliteration
system between a given pair.
Complementarity: Using IPA as bridge language
allows us to build transliteration system into re-
source poor languages. But we also want to eval-
uate whether such an approach can help improving
a transliteration system trained directly on bilingual
name-pairs.

6.1 Data Sets

We use data sets from five languages in order to eval-
uate the effectiveness of our approach. The phoneme
dictionaries (list of words and their IPA represen-
tations as shown in Table 1) are obtained from
Wiktionary. The Wiktionary dump downloaded in
October 2011 has at least 2000 (word, IPA) pairs
in 21 languages which also includes some resource
poor languages (e.g. Armenian, Taiwanese, Turkish,
etc.).

In principle, our method allows us to build
transliteration system into any of these language
pairs without any additional information. But, in this
paper, we use English (En), Bulgarian (Bg), Rus-
sian (Ru), French (Fr), and Romanian (Ro) for eval-

18

En. Bg. Ru. Fr. Ro.
Train 31K 36K 1141 36K 5211
Dev. – 1264 2000 2717 430
Test – 1264 2000 2717 431
Features 5000 3998 2900 5000 3465

Table 3: Statistics of different data sets. Training
data is monolingual phoneme dictionaries while develop-
ment/test sets are bilingual name pairs between English
and the respective language.

uation purposes, as they suffice to showcase all the
three aspects mentioned in the previous section. Ta-
ble 3 shows the sizes of phoneme dictionaries used
for training the models. The phoneme dictionar-
ies of English, Bulgarian, and Russian contain more
than 30K (word,IPA) pairs while the remaining two
languages have smaller phoneme dictionaries. The
development and test sets between English and the
remaining language pairs are obtained from geon-
ames data base.5 These are geographic location
names from different countries written in multiple
languages.

6.2 Experimental Setup

We convert the phoneme dictionaries of each lan-
guage into feature vectors. We use unigram and
bigram features in the phonemic space and uni-
gram, bigram and trigram features in the character
space. An example for feature generation is shown
in Sec. 3. After converting the data into feature vec-
tors, we retain the most frequent 5000 features. We
only keep the frequent 5000 features since we ob-
served, elsewhere, that including infrequent features
leads CCA based methods to learn projection direc-
tions with perfect correlations which are not effec-
tive for downstream applications. The last row of
Table 3 shows the number of features in the char-
acter space of each of the languages. The phone-
mic space is common to all the languages and has
3777 features. Though the phonemic features are
common to all the languages, as discussed in Sec. 2,
only a subset of features will be observed in a given
language. For example, in our data sets, of the total
3777 common phonetic features only 3312, 882, and
1009 features are observed in English, Bulgarian,

5http://www.geonames.org/

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0 10 20 30 40 50 60 70 80 90 100

lambda

Valid. Acc.
Valid. MRR

Figure 2: Performance of transliteration system with
residual parameter λ on English-Bulgarian development
data set.

and Russian languages respectively. This indicates
the diversity in the phonemic inventory of different
languages.

We compare our approach against Bridge-CCA, a
state-of-the-art bridge language transliteration sys-
tem which is known to perform competitively with
other discriminative approaches (Khapra et al.,
2010). We use the phoneme dictionaries in each lan-
guage to train our approach, as well as the baseline
system. The projection directions learnt during the
training are used to find the transliteration for a test
name as described in Sec. 4.2. We report the perfor-
mance in terms of the accuracy (exact match) of the
top ranked transliteration and the mean reciprocal
rank (MRR) of the correct transliteration. We find
transliterations in both the directions (i.e. target lan-
guage transliterations given a source name and vice
versa) and report average accuracies. The regular-
ization parameter (τ) and the size of the interlingual
representation (k) in both our approach and Bridge-
CCA are tuned on the development set.

6.3 Description of Results

In this section we report experimental results on the
three aspects mentioned above.

6.3.1 IPA as Bridge
Fig. 2 shows the performance of our system with

the residual parameter λ (in Eq. 4) on the develop-

19

En-Bg En-Ru En-Fr En-Ro
Acc. MRR Acc. MRR Acc. MRR Acc. MRR

1 Bridge-CCA 68.83 77.22 44.50 53.22 41.55 52.89 71.69 79.59
2 Ours (cosine) 67.68 76.52 45.07 53.63 42.45 53.06 74.13 81.28
3 Ours (Eq. 12) 83.70 88.32 63.47 73.01 70.68 78.13 77.38 84.22
4 Ours (cosine + Multi.) 68.91 77.44 49.15 57.20 42.55 53.02 77.49 84.04
5 Ours (Eq. 12 + Multi.) 84.45 88.43 66.70 75.85 71.09 78.43 77.49 84.04

Table 4: Results of our approach and the baseline system on the test set. The second block shows the results when our
approach is trained only on phoneme dictionaries of the language pair, the third block shows results when we include
other language data as well.

ment data set. When λ is small, the model does not
attempt to constrain the projection directions Ui’s
and hence they tend to map names to completely
unrelated vectors. As we increase the residual pa-
rameter, it forces the residual vectors (Ri) to be
smaller and thus the subspaces identified for each
language are closely tied together. Thus, it models
the commonalities across languages and also the lan-
guage specific variability. Based on the performance
curves on the development data, we fix λ = 50 in the
rest of the experiments.

Table 4 shows the results of Bridge-CCA and our
approach on the four language pairs. We report the
results of our approach with the decoding proposed
in Sec. 4.2 and a simple cosine similarity measure
in the common-subspace, i.e. cos

(
AT

i xi, A
T
j xj

)
.

Comparison of the accuracies in rows 1, 2 and 3,
shows that simply using cosine similarity performs
almost same as the Bridge-CCA approach. How-
ever, using the decoding suggested in Eq. 12 gives
significant improvements. To understand why the
cosine angle between AT

i xi and AT
j xj is not the ap-

propriate measure, assume that the vectors xi and
xj are feature vectors of same name in two lan-
guages and let p be its true IPA representation. Then,
since our model learns projection directions such
that AT

i xi ≈ UT
i p,

cos(AT
i xi, A

T
j xj) = cos

(
(U +Ri)

T p, (U +Rj)
T p

)
The additional residual matrices Ri and Rj make
the cosine measure inappropriate. At the same time,
our model forces the residual matrices to be small
and this is probably the reason why it performs
competitively with the Bridge-CCA. On the other
hand, our decoding method, as shown in Eq. 1, in-

tegrates over the best possible phoneme sequence
and thus yields significant improvements. In the rest
of the paper, we report results with the decoding
in Eq. 12 unless specified explicitly. Our approach
achieves a maximum improvement of 29.13% ac-
curacy over Bridge-CCA in English-French and on
an average it achieves 17.17% and 15.19% improve-
ment in accuracy and MRR respectively. Notice that
even though our Russian phoneme dictionary has
only 1141 (word, IPA) pairs, our approach is able
to achieve an accuracy of 63.47% and an MRR of
73% indicating that the correct name transliteration
is, on an average, at rank 1 or 2.

6.3.2 Multilinguality
The fourth and fifth rows of Table 4 also show the

multilingual results. In particular, we train our sys-
tem on data from the three languages En, Bg, and
Ru and test it on En-Bg and En-Ru test sets. Simi-
larly, we train a different system on data from En, Fr
and Ro and evaluate it on En-Fr and En-Ro test sets.
We split the languages based on the language family,
Russian and Bulgarian are Slavonic languages while
French and Romanian are Romance languages, and
expect that languages in same family have similar
pronunciations. Comparing the performance of our
system with and without the multilingual data set, it
is clear that having data from other languages helps
improve the accuracy.

6.3.3 Complementarity
In the final experiment, we want to compare

the performance of our approach, which uses only
monolingual resources, with a transliteration system
trained using bilingual name pairs. We train a CCA
based transliteration system (Udupa and Khapra,

20

En-Bg En-Fr
Acc. MRR Acc. MRR

CCA 95.57 96.76 95.82 96.67
Ours+CCA 95.69 96.90 96.14 96.90

∆ Err 2.7% 4.2% 7.5% 6.8%
Ours+CCA(t) 95.80 96.95 96.34 97.04

∆ Err 5.4% 5.8% 12.3% 11.3%

Table 5: Comparison with a system trained on bilingual
name pairs. The (t) in the third row indicates parame-
ters are tuned for test set. We also show the percentage
error reduction achieved by a linear combination of our
approach and CCA.

2010) on a training data of 3792 and 8151 location
name pairs. Notice that the training and test data for
this system are from the same domain and thus it has
an additional advantage over our approach, which is
trained on whatever happens to be on Wiktionary.

The second row of Table 5 shows the results of
CCA on English-Bulgarian and English-French lan-
guage pairs. CCA achieves high accuracies even
though the training data is relatively small, most
likely because of the domain match between train-
ing and test data sets. As another baseline, we tried
using Google machine translation API to transliter-
ate the English names of the En-Bg test set. We
hoped that since these are names, the translation en-
gine would simply transliterate them and return the
result. Of the output, we observed that about 500
names are passed through the MT system unchanged
and so we ignore them. On the remaining names,
it achieved an accuracy of 76.15% and the average
string edit distance of the returned transliteration to
the true transliteration is about 3.74. These accura-
cies are not directly comparable to the results shown
in Table 5 because, presumably, it is a transliteration
generation system unlike CCA which is a transliter-
ation mining approach. For lack fair comparison, we
don’t report the accuracies of the Google transliter-
ation output in Table 5.

Table 5 also shows the results of our system when
combined with the CCA approach. For a given En-
glish word, we score the candidate transliterations
using our approach and then linearly combine their
scores with the scores assigned by CCA. We per-
form a line search between [0, 1] for the appropriate
weight combination. The third and fourth rows of

Table 5 show the results of the linear combination
when the weight is tuned for the development and
test sets respectively. The improvements, though
not significant, are encouraging and suggest that a
sophisticated way of combining these different sys-
tems may yield significant improvements. This ex-
periment shows that a transliteration system trained
on word and IPA representations can actually aug-
ment a system trained on bilingual name pairs lead-
ing to an improved performance.

7 Conclusion

In this paper we proposed a regularization technique
for the bridge language approaches and showed
its effectiveness on the name transliteration task.
Our approach learns interlingual representation us-
ing only monolingual resources and hence can be
used to build transliteration system between re-
source poor languages. We show that, by account-
ing the language specific phonemic variation, we
can get a significant improvements. Our experimen-
tal results suggest that a transliteration system built
using IPA data can also help improve the accuracy
of a transliteration system trained on bilingual name
pairs.

Thought we used IPA as a bridge language there
are other viable options. For example, as shown
in Khapra et al. (2010) we can use English as the
bridge language. Since name transliteration prob-
lem is being studied for a considerable time, many
resources already exist between English and other
languages. So, one can argue the appropriateness of
IPA as bridge language compared to, say, English.
While this is an important question, in this paper,
we are primarily interested in showing the impor-
tance of handling language specific phenomenon in
the bridge language approaches. In future, we would
like to study the appropriateness of IPA vs. English
as the bridge language and also the generalizability
of our technique to other scenarios.

Acknowledgements

This work is partially funded by NSF grant IIS-
1153487 and the BOLT program of the Defense
Advanced Research Projects Agency, Contract No.
HR0011-12-C-0015.

21

References
Nasreen AbdulJaleel and Leah S. Larkey. 2003. Statis-

tical transliteration for english-arabic cross language
information retrieval. In Proceedings of the twelfth in-
ternational conference on Information and knowledge
management, CIKM ’03, pages 139–146, New York,
NY, USA. ACM.

Yaser Al-Onaizan and Kevin Knight. 2002. Machine
transliteration of names in arabic text. In Proceed-
ings of the ACL-02 workshop on Computational ap-
proaches to semitic languages, SEMITIC ’02, pages
1–13, Stroudsburg, PA, USA. ACL.

Wei Gao, Kam fai Wong, and Wai Lam. 2004. Phoneme-
based transliteration of foreign names for OOV prob-
lem. In Proceedings of the 1st International Joint Con-
ference on Natural Language Processing (IJCNLP),
pages 374–381.

Li Haizhou, Zhang Min, and Su Jian. 2004. A joint
source-channel model for machine transliteration. In
Proceedings of the 42nd Annual Meeting on Associa-
tion for Computational Linguistics, ACL ’04, Strouds-
burg, PA, USA. ACL.

Martin Haspelmath, Matthew Dryer, David Gil, and
Bernard Comrie, editors. 2005. The World Atlas of
Language Structures. Oxford University Press.

Ulf Hermjakob, Kevin Knight, and Hal Daumé III. 2008.
Name translation in statistical machine translation -
learning when to transliterate. In Proceedings of ACL-
08: HLT, pages 389–397, Columbus, Ohio, June.
ACL.

Harold Hotelling. 1936. Relation between two sets of
variables. Biometrica, 28:322–377.

Sung Young Jung, SungLim Hong, and Eunok Paek.
2000. An english to korean transliteration model of
extended markov window. In Proceedings of the 18th
conference on Computational linguistics - Volume 1,
COLING ’00, pages 383–389, Stroudsburg, PA, USA.
ACL.

Byung-Ju Kang and Key-Sun Choi. 2000. Two ap-
proaches for the resolution of word mismatch prob-
lem caused by english words and foreign words in ko-
rean information retrieval. In Proceedings of the 5th
international workshop on on Information retrieval
with Asian languages, IRAL ’00, pages 133–140, New
York, NY, USA. ACM.

Mitesh M. Khapra, Raghavendra Udupa, A. Kumaran,
and Pushpak Bhattacharyya. 2010. Pr + rq ≈ pq:
Transliteration mining using bridge language. In Pro-
ceedings of the Twenty-Fourth AAAI Conference on
Artificial Intelligence, AAAI 2010, Atlanta, Georgia,
USA, July. AAAI Press.

Alexandre Klementiev and Dan Roth. 2006. Weakly
supervised named entity transliteration and discovery

from multilingual comparable corpora. In Proceed-
ings of the 21st International Conference on Compu-
tational Linguistics and the 44th Annual Meeting of
the Association for Computational Linguistics, ACL-
44, pages 817–824, Stroudsburg, PA, USA. ACL.

Kevin Knight and Jonathan Graehl. 1998. Machine
transliteration. Computational Linguistics, 24(4):599–
612.

Haizhou Li, A. Kumaran, Vladimir Pervouchine, and
Min Zhang. 2009. Report of news 2009 machine
transliteration shared task. In Proceedings of the 2009
Named Entities Workshop: Shared Task on Transliter-
ation, NEWS ’09, pages 1–18, Stroudsburg, PA, USA.
ACL.

Thomas Mandl and Christa Womser-Hacker. 2005. The
effect of named entities on effectiveness in cross-
language information retrieval evaluation. In Proceed-
ings of the 2005 ACM symposium on Applied comput-
ing, SAC ’05, pages 1059–1064, New York, NY, USA.
ACM.

Gideon S. Mann and David Yarowsky. 2001. Multipath
translation lexicon induction via bridge languages. In
Proceedings of the 2nd meeting of the North American
Chapter of the Association for Computational Linguis-
tics on Language technologies, NAACL ’01, pages 1–
8, Stroudsburg, PA, USA. ACL.

M. K. Odel and R. C. Russel. 1918. U.s. patent numbers,
1,261,167 (1918) and 1,435,663(1922).

Michael Paul and Eiichiro Sumita. 2011. Translation
quality indicators for pivot-based statistical mt. In
Proceedings of 5th International Joint Conference on
Natural Language Processing, pages 811–818, Chiang
Mai, Thailand, November. AFNLP.

Sujith Ravi and Kevin Knight. 2009. Learning phoneme
mappings for transliteration without parallel data. In
Proceedings of Human Language Technologies: The
2009 Annual Conference of the North American Chap-
ter of the Association for Computational Linguistics,
pages 37–45, Boulder, Colorado, June. ACL.

Xabier Saralegi, Iker Manterola, and Iñaki San Vicente.
2011. Analyzing methods for improving precision of
pivot based bilingual dictionaries. In Proceedings of
the 2011 Conference on Empirical Methods in Natu-
ral Language Processing, pages 846–856, Edinburgh,
Scotland, UK., July. ACL.

Richard Sproat, Tao Tao, and ChengXiang Zhai. 2006.
Named entity transliteration with comparable corpora.
In Proceedings of the 21st International Conference on
Computational Linguistics and the 44th annual meet-
ing of the Association for Computational Linguistics,
ACL-44, pages 73–80, Stroudsburg, PA, USA. ACL.

Tao Tao, Su-Youn Yoon, Andrew Fister, Richard Sproat,
and ChengXiang Zhai. 2006. Unsupervised named

22

entity transliteration using temporal and phonetic cor-
relation. In Proceedings of the 2006 Conference on
Empirical Methods in Natural Language Processing,
EMNLP ’06, pages 250–257, Stroudsburg, PA, USA.
ACL.

Raghavendra Udupa and Mitesh M. Khapra. 2010.
Transliteration equivalence using canonical correlation
analysis. In ECIR’10, pages 75–86.

Raghavendra Udupa, Saravanan K, Anton Bakalov, and
Abhijit Bhole. 2009. "they are out there, if you know
where to look": Mining transliterations of oov query
terms for cross-language information retrieval. In Pro-
ceedings of the 31th European Conference on IR Re-
search on Advances in Information Retrieval, ECIR
’09, pages 437–448, Berlin, Heidelberg. Springer-
Verlag.

Masao Utiyama and Hitoshi Isahara. 2007. A com-
parison of pivot methods for phrase-based statisti-
cal machine translation. In Proceedings of Human
Language Technologies 2007: The Conference of the
North American Chapter of the Association for Com-
putational Linguistics; Proceedings of the Main Con-
ference, pages 484–491, Rochester, New York, April.
ACL.

Su-Youn Yoon, Kyoung-Young Kim, and Richard Sproat.
2007. Multilingual transliteration using feature based
phonetic method. In Proceedings of the 45th Annual
Meeting of the Association of Computational Linguis-
tics, pages 112–119, Prague, Czech Republic, June.
ACL.

23

