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Abstract 

Mining of transliterations from comparable 

or parallel text can enhance natural 

language processing applications such as 

machine translation and cross language 

information retrieval. This paper presents 

an enhanced transliteration mining 

technique that uses a generative graph 

reinforcement model to infer mappings 

between source and target character 

sequences. An initial set of mappings are 

learned through automatic alignment of 

transliteration pairs at character sequence 

level. Then, these mappings are modeled 

using a bipartite graph. A graph 

reinforcement algorithm is then used to 

enrich the graph by inferring additional 

mappings. During graph reinforcement, 

appropriate link reweighting is used to 

promote good mappings and to demote bad 

ones. The enhanced transliteration mining 

technique is tested in the context of mining 

transliterations from parallel Wikipedia 

titles in 4 alphabet-based languages pairs, 

namely English-Arabic, English-Russian, 

English-Hindi, and English-Tamil. The 

improvements in F1-measure over the 

baseline system were 18.7, 1.0, 4.5, and 

32.5 basis points for the four language 

pairs respectively. The results herein 

outperform the best reported results in the 

literature by 2.6, 4.8, 0.8, and 4.1 basis 

points for the four language pairs 

respectively. 

Introduction 

Transliteration Mining (TM) is the process of 

finding transliterated word pairs in parallel or 

comparable corpora. TM has many potential 

applications such as mining training data for 

transliteration, improving lexical coverage for 

machine translation, and cross language retrieval 

via translation resource expansion. TM has been 

gaining some attention lately with a shared task in 

the ACL 2010 NEWS workshop (Kumaran, et al. 

2010). 

One popular statistical TM approach is performed 

in two stages. First, a generative model is trained 

by performing automatic character level alignment 

of parallel transliterated word pairs to find 

character segment mappings between source and 

target languages. Second, given comparable or 

parallel text, the trained generative model is used 

to generate possible transliterations of a word in 

the source language while constraining the 

transliterations to words that exist in the target 

language. 

However, two problems arise in this approach: 

1. Many possible character sequence mappings 

between source and target languages may not be 

observed in training data, particularly when limited 

training data is available – hurting recall. 

2. Conditional probability estimates of obtained 

mappings may be inaccurate, because some 

mappings and some character sequences may not 
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appear a sufficient number of times in training to 

properly estimate their probabilities – hurting 

precision. 

In this paper we focus on overcoming these two 

problems to improve overall TM. To address the 

first problem, we modeled the automatically 

obtained character sequence mappings (from 

alignment) as a bipartite graph and then we 

performed graph reinforcement to enrich the graph 

and predict possible mappings that were not 

directly obtained from training data. The example 

in Figure 1 motivates graph reinforcement. In the 

example, the Arabic letter ―ق‖ (pronounced as 

―qa‖) was not aligned to the English letter ―c‖ in 

training data. Such a mapping seems probable 

given that another Arabic letter, ―ك‖ (pronounced 

as ―ka‖), maps to two English letters, ―q‖ and ―k‖, 

to which ―ق‖ also maps. In this case, there are 

multiple paths that would lead to a mapping 

between the Arabic letter ―ق‖ and the English letter 

―c‖, namely ق  q  ك  c and ق  k  ك  

c. By using multiple paths as sources of evidence, 

we can infer the new mapping and estimate its 

probability.   

Another method for overcoming the missing 

mappings problem entails assigning small 

smoothing probabilities to unseen mappings. 

However, from looking at the graph, it is evident 

that some mappings could be inferred and should 

be assigned probabilities that are higher than a 

small smoothing probability. 

The second problem has to do primarily with some 

characters in one language, typically vowels, 

mapping to many character sequences in the other 

language, with some of these mappings assuming 

very high probabilities (due to limited training 

data). To overcome this problem, we used link 

reweighting in graph reinforcement to scale down 

the likelihood of mappings to target character 

sequences in proportion to how many source 

sequences map to them. 

We tested the proposed method using the ACL 

2010 NEWS workshop data for English-Arabic, 

English-Russian, English-Hindi, and English-

Tamil (Kumaran et al., 2010). For each language 

pair, the standard ACL 2010 NEWS workshop data 

contained a base set of 1,000 transliteration pairs 

for training, and set of 1,000 parallel Wikipedia 

titles for testing. 

The contributions of the paper are: 

1. Employing graph reinforcement to improve the 

coverage of automatically aligned data – as they 

apply to transliteration mining. This positively 

affects recall. 

2. Applying link reweighting to overcome 

situations where certain tokens – character 

sequences in the case of transliteration – tend to 

have many mappings, which are often erroneous. 

This positively affects precision. 

The rest of the paper is organized as follows: 

Section 2 surveys prior work on transliteration 

mining; Section 3 describes the baseline TM 

approach and reports on its effectiveness; Section 4 

describes the proposed graph reinforcement along 

with link reweighting and reports on the observed 

improvements; and Section 5 concludes the paper. 

 
Figure 1:  Example mappings seen in training 

 

Background 

Much work has been done on TM for different 

language pairs such as English-Chinese (Kuo et al., 

2006; Kuo et al., 2007; Kuo et al., 2008; Jin et al. 

2008;), English-Tamil (Saravanan and Kumaran, 

2008; Udupa and Khapra, 2010), English-Korean 

(Oh and Isahara, 2006; Oh and Choi, 2006), 

English-Japanese (Qu et al., 2000; Brill et al., 

2001; Oh and Isahara, 2006), English-Hindi (Fei et 

al., 2003; Mahesh and Sinha, 2009), and English-

Russian (Klementiev and Roth, 2006). 

TM typically involves two main tasks, namely: 

finding character mappings between two 

languages, and given the mappings ascertaining 

whether two words are transliterations or not. 

When training with a limited number of 

transliteration pairs, two additional problems 

appear: many possible character sequence 

mappings between source and target languages 

may not be observed in training data, and 

conditional probability estimates of obtained 
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mappings may be inaccurate. These two problems 

affect recall and precision respectively. 

1.1 Finding Character Mappings 

To find character sequence mappings between two 

languages, the most common approach entails 

using automatic letter alignment of transliteration 

pairs. Akin to phrasal alignment in machine 

translation, character sequence alignment is treated 

as a word alignment problem between parallel 

sentences, where transliteration pairs are treated as 

if they are parallel sentences and the characters 

from which they are composed are treated as if 

they are words. Automatic alignment can be 

performed using different algorithms such as the 

EM algorithm (Kuo et al., 2008; Lee and Chang, 

2003) or HMM based alignment (Udupa et al., 

2009a; Udupa et al., 2009b). In this paper, we use 

automatic character alignment between 

transliteration pairs using an HMM aligner. 

Another method is to use automatic speech 

recognition confusion tables to extract phonetically 

equivalent character sequences to discover 

monolingual and cross lingual pronunciation 

variations (Kuo and Yang, 2005). Alternatively, 

letters can be mapped into a common character set 

using a predefined transliteration scheme (Oh and 

Choi, 2006). 

1.2 Transliteration Mining 

For the problem of ascertaining if two words can 

be transliterations of each other, a common 

approach involves using a generative model that 

attempts to generate all possible transliterations of 

a source word, given the character mappings 

between two languages, and restricting the output 

to words in the target language (Fei et al., 2003; 

Lee and Chang, 2003, Udupa et al., 2009a). This is 

similar to the baseline approach that we used in 

this paper. Noeman and Madkour (2010) 

implemented this technique using a finite state 

automaton by generating all possible 

transliterations along with weighted edit distance 

and then filtered them using appropriate thresholds 

and target language words. They reported the best 

TM results between English and Arabic with F1-

measure of 0.915 on the ACL-2010 NEWS 

workshop standard TM dataset. A related 

alternative is to use back-transliteration to 

determine if one sequence could have been 

generated by successively mapping character 

sequences from one language into another (Brill et 

al., 2001; Bilac and Tanaka, 2005; Oh and Isahara, 

2006). 

Udupa and Khapra (2010) proposed a method in 

which transliteration candidates are mapped into a 

―low-dimensional common representation space‖. 

Then, similarity between the resultant feature 

vectors for both candidates can be computed. 

Udupa and Kumar (2010) suggested that mapping 

to a common space can be performed using context 

sensitive hashing. They applied their technique to 

find variant spellings of names. 

Jiampojamarn et al. (2010) used classification to 

determine if a source language word and target 

language word are valid transliterations. They used 

a variety of features including edit distance 

between an English token and the Romanized 

versions of the foreign token, forward and 

backward transliteration probabilities, and 

character n-gram similarity. They reported the best 

results for Russian, Tamil, and Hindi with F1-

measure of 0.875, 0.924, and 0.914 respectively on 

the ACL-2010 NEWS workshop standard TM 

datasets. 

1.3 Training with Limited Training Data 

When only limited training data is available to 

train a character mapping model, the resultant 

mappings are typically incomplete (due to 

sparseness in the training data). Further, resultant 

mappings may not be observed a sufficient of 

times and hence their mapping probabilities may 

be inaccurate. 

Different methods were proposed to solve these 

two problems. These methods focused on making 

training data less sparse by performing some kind 

of letter conflation. Oh and Choi (2006) used a 

SOUNDEX like scheme. SOUNDEX is used to 

convert English words into a simplified phonetic 

representation, in which vowels are removed and 

phonetically similar characters are conflated. A 

variant of SOUNDEX along with iterative training 

was proposed by Darwish (2010). Darwish (2010) 

reported significant improvements in TM recall at 

the cost of limited drop in precision. Another 

method involved expanding character sequence 

maps by automatically mining transliteration pairs 

and then aligning these pairs to generate an 

expanded set of character sequence maps (Fei et 

al., 2003). In this work we proposed graph 
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reinforcement with link reweighting to address this 

problem. Graph reinforcement was used in the 

context of different problems such as mining 

paraphrases (Zhao et al., 2008; Kok and Brockett, 

2010; Bannard and  Callison-Burch 2005) and 

named entity translation extraction (You et al., 

2010). 

Baseline Transliteration Mining 

1.4 Description of Baseline System 

The basic TM setup that we employed in this 

work used a generative transliteration model, 

which was trained on a set of transliteration pairs. 

The training involved automatically aligning 

character sequences. The alignment was performed 

using a Bayesian learner that was trained on word 

dependent transition models for HMM based word 

alignment (He, 2007). Alignment produced 

mappings of source character sequences to target 

character sequences along with the probability of 

source given target and vice versa. Source 

character sequences were restricted to be 1 to 3 

characters long. 

For all the work reported herein, given an 

English-foreign language transliteration candidate 

pair, English was treated as the target language and 

the foreign language as the source.  Given a 

foreign source language word sequence   
  and an 

English target word sequence   
 ,      

   could 

be a potential transliteration of      
 .  An 

example of word sequences pair is the Tamil-

English pair:  (முதலாம் ஹைலி செலாெி, 
Haile Selassie I of Ethiopia), where ―முதலாம்” 

could be transliteration for any or none of the 

English words {―Haile‖, ―Selassie‖, ―I‖, ―of‖, 

―Ethiopia‖}.  The pseudo code below describes 

how transliteration mining generates candidates. 

Basically, given a source language word, all 

possible segmentations, where each segment has a 

maximum length of 3 characters, are produced 

along with their associated mappings into the 

target language. Given all mapping combinations, 

combinations producing valid target words are 

retained and sorted according to the product of 

their mapping probabilities. If the product of the 

mapping probabilities for the top combination is 

above a certain threshold, then it is chosen as the 

transliteration candidate. Otherwise, no candidate 

is chosen. To illustrate how TM works, consider 

the following example: Given the Arabic word 

 .(من) and (م ، ن) all possible segmentations are ,‖من―

Given the target words {the, best, man} and the 

possible mappings for the segments and their 

probabilities: 

ـم  = {(m, 0.7), (me, 0.25), (ma, 0.05)} 

 {n, 0.7), (nu, 0.2), (an, 0.1)} = ن

 {(mn, 0.3) ,(man, 0.3) ,(men, 0.4)} = من

The only combinations leading valid target 

words would be: 

  {(man: 0.3)} (من)

( ، ن ـم )  {(m,an: 0.07), (ma, n: 0.035)} 

Consequently, the algorithm would produce the 

tuple with the highest probability: (من , man, 0.3). 

As the pseudo code suggests, the actual 

implementation is optimized via: incremental left 

to right processing of source words; the use of a 

Patricia trie to prune mapping combinations that 

don’t lead to valid words; and the use of a priority 

queue to insure that the best candidate is always at 

the top of the queue. 

1.5 Smoothing and Thresholding  

We implemented the baseline system with and 

without assigning small smoothing probabilities 

for unseen source character to target character 

mappings. Subsequent to training, the smoothing 

probability was selected as the smallest observed 

mapping probability in training.   

We used a threshold on the minimum acceptable 

transliteration score to filter out unreliable 

transliterations. We couldn’t fix a minimum score 

for reliable transliterations to a uniform value for 

all words, because this would have caused the 

model to filter out long transliterations. Thus, we 

tied the threshold to the length of transliterated 

words. We assumed a threshold d for single 

character mappings and the transliteration 

threshold for a target word of length l was 

computed as    . We selected d by sorting the 

mapping probabilities, removing the lowest 10% of 

mapping probabilities (which we assumed to be 

outliers), and then selecting the smallest observed 

probability to be the character threshold d. The 

choice of removing the lowest ranking 10% of 

mapping probabilities was based on intuition, 

because we did not have a validation set. The 

threshold was then applied to filter out 

transliteration with                         . 
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1.6 Effectiveness of Baseline System 

To test the effectiveness of the baseline system, we 

used the standard TM training and test datasets 

from the ACL-2010 NEWS workshop shared task. 

The datasets are henceforth collectively referred to 

as the NEWS dataset. The dataset included 4 

alphabet-based language pairs, namely English-

Arabic, English-Russian, English-Hindi, and 

English-Tamil. For each pair, a dataset included a 

list of 1,000 parallel transliteration word pairs to 

train a transliteration model, and a list of 1,000 

parallel word sequences to test TM. The parallel 

sequences in the test sets were extracted titles from 

Wikipedia article for which cross language links 

exist between both languages. 

We preprocessed the different languages as 

follows: 

 Russian: characters were case-folded 

 Arabic: the different forms of alef (alef, alef 

maad, alef with hamza on top, and alef with 

hamza below it) were normalized to alef, ya 

and alef maqsoura were normalized to ya, and 

ta marbouta was mapped to ha. 

 English: letters were case-folded and the 

following letter conflations were performed: 

ž, ż  z  á, â, ä, à, ã, ā, ą, æ  a 

é, ę, è  e  ć, č, ç c 

ł l  ï, í, ì, î  i 

ó, ō, ö, õ  o ń, ñ, ṅ  n 

ş, ś, ß, š  s ř  r 

ý  y  ū, ü, ú, û  u 

 Tamil and Hindi: no preprocessing was 

performed.  
 

English/ P R F 

Arabic 0.988 0.983 0.583 0.603 0.733 0.748 

Russian 0.975 0.967 0.831 0.862 0.897 0.912 

Hindi 0.986 0.981 0.693 0.796 0.814 0.879 

Tamil 0.984 0.981 0.274 0.460 0.429 0.626 

 

Table 1:  Baseline results for all language pairs.  

Results with smoothing are shaded. 
 

Table 1 reports the precision, recall, and F1-

measure results for using the baseline system in 

TM between English and each of the 4 other 

languages in the NEWS dataset with and without 

smoothing.  As is apparent in the results, without 

smoothing, precision is consistently high for all 

languages, but recall is generally poor, particularly 

for Tamil. When smoothing is applied, we 

observed a slight drop in precision for Arabic, 

Hindi, and Tamil and a significant drop of 5.6 

1: Input:  Mappings, set of source given target mappings with associated Prob.  
2: Input:  SourceWord (    1

 ), Source language word 
3: Input:  TargetWords, Patricia trie containing all target language words ( 1

𝑚 ) 
4: Data Structures:  DFS, Priority queue to store candidate transliterations pair ordered by their transliteration 

score – Each candidate transliteration tuple = (SourceFragment, TargetTransliteration, TransliterationScore). 
5: StartSymbol = (“”, “”, 1.0) 
6: DFS={StartSymbol}  
7: While(DFS is not empty) 
8:  SourceFragment= DFS.Top().SourceFragment 
9:  TargetFragment= DFS.Top().TargetTransliteration 
10:  FragmentProb=DFS.Top().TransliterationScore 
11:  If (SourceWord == SourceFragment ) 
12:   If(FragmentScore > Threshold) 
13:    Return (SourceWord, TargetTransliteration, TransliterationScore) 
14:   Else 
15:    Return Null 
16:  DFS.RemoveTop() 
17:  For SubFragmentLength=1 to 3 
18:   SourceSubString= SubString( SourceWord, SourceFragment.Length , SubFragmentLength) 
19:   Foreach mapping in Mappings[SourceSubString]  
20:    If( (TargetFragment + mapping)  is a sub-string in TargetWords) 
21:     DFS.Add(SourceFragment + SourceSubString, Mapping.Score * FragmentScore) 
22:  DFS.Remove(SourceFragment) 
23: End While 
24: Return Null 

Figure 2:  Pseudo code for transliteration mining 

 

1388



basis points for Russian. However, the application 

of smoothing increased recall dramatically for all 

languages, particularly Tamil. For the remainder of 

the paper, the results with smoothing are used as 

the baseline results. 

Background 

1.7 Description of Graph Reinforcement 

In graph reinforcement, the mappings deduced 

from the alignment process were represented using 

a bipartite graph G = (S, T, M), where S was the 

set of source language character sequences, T was 

the set of target language character sequences, and 

M was the set of mappings (links or edges) 

between S and T. The score of each mapping 

m(v1|v2), where m(v1|v2)  M, was initially set to 

the conditional probability of target given source 

p(v1|v2). Graph reinforcement was performed by 

traversing the graph from S  T  S  T in 

order to deduce new mappings. Given a source 

sequence s'  S and a target sequence t' T, the 

deduced mapping probabilities were computed as 

follows (Eq.1):  

𝑚(  |  )    ∏ (  𝑚(  | )𝑚( | )𝑚( |  ))
        

 

where the term (  𝑚(  | )𝑚( | )𝑚( |  )) 

computed the probability that a mapping is not 

correct. Hence, the probability of an inferred 

mapping would be boosted if it was obtained from 

multiple paths. Given the example in Figure 1, 

m(c|ق) would be computed as follows:  

  (  𝑚( |ك)𝑚(ك| )𝑚( |ق))  

(  𝑚( |ك)𝑚(ك| )𝑚( |ق)) 

We were able to apply reinforcement iteratively on 

all mappings from S to T to deduce previously 

unseen mappings (graph edges) and to update the 

probabilities of existing mappings. 

1.8 Link Reweighting  

The basic graph reinforcement algorithm is prone 

to producing irrelevant mappings by using 

character sequences with many different possible 

mappings as a bridge. Vowels were the most 

obvious examples of such character sequences. For 

example, automatic alignment produced 26 Hindi 

character sequences that map to the English letter 

―a‖, most of which were erroneous such as the 

mapping between ―a‖ and ―व” (pronounced va). 

Graph reinforcement resulted in many more such 

mappings. After successive iterations, such 

character sequences would cause the graph to be 

fully connected and eventually the link weights 

will tend to be uniform in their values. To illustrate 

this effect, we experimented with basic graph 

reinforcement on the NEWS dataset. The figures of 

merit were precision, recall, and F1-measure. 

Figures 3, 4, 5, and 6 show reinforcement results 

for Arabic, Russian, Hindi, and Tamil respectively. 

The figures show that: recall increased quickly and 

nearly saturated after several iterations; precision 

continued to drop with more iterations; and F1-

measure peaked after a few iterations and began to 

drop afterwards. This behavior was undesirable 

because overall F1-measure values did not 

converge with iterations, necessitating the need to 

find clear stopping conditions. 

To avoid this effect and to improve precision, we 

applied link reweighting after each iteration. Link 

reweighting had the effect of decreasing the 

weights of target character sequences that have 

many source character sequences mapping to them 

and hence reducing the effect of incorrectly 

inducing mappings. Link reweighting was 

performed as follows (Eq. 2): 

  𝑚 ( | )   

 ( | )

∑  (  | )    
 

Where si  S is a source character sequence that 

maps to t. So in the case of ―a‖ mapping to the ―व‖ 

character in Hindi, the link weight from ―a‖ to ―व‖ 

is divided by the sum of link weights from ―a‖ to 

all 26 characters to which ―a‖ maps. 

We performed multiple experiments on the NEWS 

dataset to test the effect of graph reinforcement 

with link reweighting with varying number of 

reinforcement iterations. Figures 7, 8, 9, and 10 

compare baseline results with smoothing to results 

with graph reinforcement at different iterations. 

As can be seen in the figures, the F1-measure 

values stabilized as we performed multiple graph 

reinforcement iterations. Except for Russian, the 

results across different languages behaved in a 

similar manner. 

For Russian, graph reinforcement marginally 

affected TM F1-measure, as precision and recall 
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marginally changed. The net improvement was 1.1 

basis points. English and Russian do not share the 

same alphabet, and the number of initial mappings 

was bigger compared to the other language pairs.  

Careful inspection of the English-Russian test set, 

with the help of a Russian speaker, suggests that:  

1) the test set reference contained many false 

negatives;  

2) Russian names often have multiple phonetic 

forms (or spellings) in Russian with a single 

standard transliteration in English. For example, 

the Russian name ―Olga‖ is often written and 

pronounced as ―Ola‖ and ―Olga‖ in Russian; and  

3) certain English phones do not exist in Russian, 

leading to inconsistent character mappings in 

Russian.  For example, the English phone for ―g‖, 

as in ―George‖, does not exist in Russian. 
 

For the other languages, graph reinforcement 

yielded steadily improving recall and consequently 

steadily improving F1-measure. Most 

improvements were achieved within the first 5 

iterations, and improvements beyond 10 iterations 

were generally small (less than 0.5 basis points in 

F1-measure). After 15 iterations, the improvements 

in overall F1-measure above the baseline with 

smoothing were 19.3, 5.3, and 32.8 basis points for 

Arabic, Tamil, and Hindi respectively. The F1-

measure values seemed to stabilize with successive 

iterations. The least improvements were observed 

for Hindi. This could be attributed to the fact that 

Hindi spelling is largely phonetic, making letters in 

words pronounceable in only one way. This fact 

makes transliteration between Hindi and English 

easier than Arabic and Tamil. In the case of Tamil, 

the phonetics of letters change depending on the 

position of letters in words. As for Arabic, multiple 

letters sequences in English can map to single 

letters in Arabic and vice versa. Also, Arabic has 

diacritics which are typically omitted, but 

commonly transliterate to English vowels. Thus, 

the greater the difference in phonetics between two 

languages and the greater the phonetic complexity 

of either, the more TM can gain from the proposed 

technique. 

1.9 When Graph Reinforcement Worked  

An example where reinforcement worked entails 

the English-Arabic transliteration pair (Seljuq, 

 In the baseline runs with 1,000 training .(سلاجقه

examples, both were not mapped to each other 

because there were no mappings between the letter 

―q‖ and the Arabic letter sequence ―قه‖ 

(pronounced as ―qah‖). The only mappings that 

were available for ―q‖ were ―كه‖ (pronounced as 

―kah‖), ―ق‖ (pronounced as ―q‖), and ―ك‖ 

(pronounced as ―k‖) with probabilities 54.0, 0.10, 

and 5452 respectively. Intuitively, the third 

mapping is more likely than the second. After 3 

graph reinforcement iterations, the top 5 mappings 

for ―q‖ were ―ق‖ (pronounced as ―q‖), ―قه‖ 

(pronounced as ―qah‖), ―كه‖ (pronounced as 

―kah‖), ―ك‖ (pronounced as ―k‖), and ―الق‖ 

(pronounced as ―alq‖) with mapping probabilities 

of 0.22, 0.19, 0.15, 0.05, and 0.05 respectively. In 

this case, graph reinforcement was able to find the 

missing mapping and properly reorder the 

mappings.  Performing 10 iterations with link 

reweighting for Arabic led to 17 false positives. 

Upon examining them, we found that: 9 were 

actually correct, but erroneously labeled as false in 

the test set; 6 were phonetically similar like ―اسبانيا‖ 

(pronounced espanya) and ―Spain‖ and ―التكنولوجيا‖ 

(pronounced alteknologya) and ―technology‖; and 

the remaining 2 were actually wrong, which were 

 and ―medici‖ and (pronounced beatchi) ‖بيتشي―

― ديسي ‖ (pronounced sidi) and ―taya‖. This seems to 

indicate that graph reinforcement generally 

introduced more proper mappings than improper 

ones. 

1.10 Comparing to the State-of-the-Art  

Table 2 compares the best reported results in ACL-

2010 NEWS TM shared task for Arabic (Noeman 

and Madkour, 2010) and for the other languages 

(Jiampojamarn et al. 2010) and the results obtained 

by the proposed technique using 10 iterations, with 

link reweighting. The comparison shows that the 

proposed algorithm yielded better results than the 

best reported results in the literature by 2.6, 4.8, 

0.8 and 4.1 F1-measure points in Arabic, Russian, 

Hindi and Tamil respectively. For Arabic, the 

improvement over the previously reported result 

was due to improvement in precision, while for the 

other languages the improvements were due to 

improvements in both recall and precision. 
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Figure 3: Graph reinforcement w/o link reweighting 

for Arabic 

 
Figure 4: Graph reinforcement w/o link reweighting 

for Russian 

 
Figure 5: Graph reinforcement w/o link reweighting 

for Hindi 

 
Figure 6: Graph reinforcement w/o link reweighting 

for Tamil 

 
Figure 7:  Graph reinforcement results for Arabic 

 
Figure 8: Graph reinforcement results for Russian 

 
Figure 9:  Graph reinforcement results for Hindi 

 
Figure 10:  Graph reinforcement results for Tamil 
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 Shared Task Proposed Algorithm 

English/ P R F P R F 

Arabic 0.887 0.945 0.915 0.979 0.905 0.941 

Russian 0.880 0.869 0.875 0.921 0.925 0.923 

Hindi 0.954 0.895 0.924 0.972 0.895 0.932 

Tamil 0.923 0.906 0.914 0.964 0.945 0.955 

Table 2: Best results obtained in ACL-2010 NEWS TM 

shared task compared to graph reinforcement with link 

reweighting after 10 iterations 

Conclusion 

In this paper, we presented a graph reinforcement 

algorithm with link reweighting to improve 

transliteration mining recall and precision by 

systematically inferring mappings that were unseen 

in training. We used the improved technique to 

extract transliteration pairs from parallel Wikipedia 

titles. The proposed technique solves two problems 

in transliteration mining, namely: some mappings 

may not be seen in training data – hurting recall, 

and certain mappings may not be seen a sufficient 

number of times to appropriate estimate mapping 

probabilities – hurting precision. The results 

showed that graph reinforcement yielded improved 

transliteration mining from parallel Wikipedia 

titles for all four languages on which the technique 

was tested. 

Generally iterative graph reinforcement was able to 

induce unseen mappings in training data – 

improving recall. Link reweighting favored 

precision over recall counterbalancing the effect of 

graph reinforcement. The proposed system 

outperformed the best reported results in the 

literature for the ACL-2010 NEWS workshop 

shared task for Arabic, Russian, Hindi and Tamil.  

To extend the work, we would like to try 

transliteration mining from large comparable texts. 

The test parts of the NEWS dataset only contained 

short parallel fragments. For future work, graph 

reinforcement could be extended to MT to improve 

the coverage of aligned phrase tables. In doing so, 

it is reasonable to assume that there are multiple 

ways of expressing a singular concept and hence 

multiple translations are possible. Using graph 

reinforcement can help discover such translation 

though they may never be seen in training data. 

Using link reweighting in graph reinforcement can 

help demote unlikely translations while promoting 

likely ones. This could help clean MT phrase 

tables. Further, when dealing with transliteration, 

graph reinforcement can help find phonetic 

variations within a single language, which can 

have interesting applications in spelling correction 

and information retrieval. Applying the same to 

machine translation phrase tables can help identify 

paraphrases automatically. 
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