
Proceedings of the 2011 Conference on Empirical Methods in Natural Language Processing, pages 1384–1393,
Edinburgh, Scotland, UK, July 27–31, 2011. c©2011 Association for Computational Linguistics

Improved Transliteration Mining Using Graph Reinforcement

Ali El-Kahky
1
, Kareem Darwish

1
, Ahmed Saad Aldein

2
, Mohamed Abd El-Wahab

3
,

Ahmed Hefny
2
, Waleed Ammar

4

1
 Qatar Computing Research Institute, Qatar Foundation, Doha, Qatar
2
 Computer Engineering Department, Cairo University, Cairo, Egypt

3
Microsoft Research, Microsoft, Cairo, Egypt

4 Microsoft Research, Microsoft, Redmond, WA, US

{aelkahky,kdarwish}@qf.org.qa
1
, asaadaldien@hotmail.com

2
,

ahmed.s.hefny@gmail.com
2
, t-momah@microsoft.com

3
,

i-waamma@microsoft.com
4

Abstract

Mining of transliterations from comparable

or parallel text can enhance natural

language processing applications such as

machine translation and cross language

information retrieval. This paper presents

an enhanced transliteration mining

technique that uses a generative graph

reinforcement model to infer mappings

between source and target character

sequences. An initial set of mappings are

learned through automatic alignment of

transliteration pairs at character sequence

level. Then, these mappings are modeled

using a bipartite graph. A graph

reinforcement algorithm is then used to

enrich the graph by inferring additional

mappings. During graph reinforcement,

appropriate link reweighting is used to

promote good mappings and to demote bad

ones. The enhanced transliteration mining

technique is tested in the context of mining

transliterations from parallel Wikipedia

titles in 4 alphabet-based languages pairs,

namely English-Arabic, English-Russian,

English-Hindi, and English-Tamil. The

improvements in F1-measure over the

baseline system were 18.7, 1.0, 4.5, and

32.5 basis points for the four language

pairs respectively. The results herein

outperform the best reported results in the

literature by 2.6, 4.8, 0.8, and 4.1 basis

points for the four language pairs

respectively.

Introduction

Transliteration Mining (TM) is the process of

finding transliterated word pairs in parallel or

comparable corpora. TM has many potential

applications such as mining training data for

transliteration, improving lexical coverage for

machine translation, and cross language retrieval

via translation resource expansion. TM has been

gaining some attention lately with a shared task in

the ACL 2010 NEWS workshop (Kumaran, et al.

2010).

One popular statistical TM approach is performed

in two stages. First, a generative model is trained

by performing automatic character level alignment

of parallel transliterated word pairs to find

character segment mappings between source and

target languages. Second, given comparable or

parallel text, the trained generative model is used

to generate possible transliterations of a word in

the source language while constraining the

transliterations to words that exist in the target

language.

However, two problems arise in this approach:

1. Many possible character sequence mappings

between source and target languages may not be

observed in training data, particularly when limited

training data is available – hurting recall.

2. Conditional probability estimates of obtained

mappings may be inaccurate, because some

mappings and some character sequences may not

1384

appear a sufficient number of times in training to

properly estimate their probabilities – hurting

precision.

In this paper we focus on overcoming these two

problems to improve overall TM. To address the

first problem, we modeled the automatically

obtained character sequence mappings (from

alignment) as a bipartite graph and then we

performed graph reinforcement to enrich the graph

and predict possible mappings that were not

directly obtained from training data. The example

in Figure 1 motivates graph reinforcement. In the

example, the Arabic letter ―ق‖ (pronounced as

―qa‖) was not aligned to the English letter ―c‖ in

training data. Such a mapping seems probable

given that another Arabic letter, ―ك‖ (pronounced

as ―ka‖), maps to two English letters, ―q‖ and ―k‖,

to which ―ق‖ also maps. In this case, there are

multiple paths that would lead to a mapping

between the Arabic letter ―ق‖ and the English letter

―c‖, namely ق  q  ك  c and ق  k  ك 

c. By using multiple paths as sources of evidence,

we can infer the new mapping and estimate its

probability.

Another method for overcoming the missing

mappings problem entails assigning small

smoothing probabilities to unseen mappings.

However, from looking at the graph, it is evident

that some mappings could be inferred and should

be assigned probabilities that are higher than a

small smoothing probability.

The second problem has to do primarily with some

characters in one language, typically vowels,

mapping to many character sequences in the other

language, with some of these mappings assuming

very high probabilities (due to limited training

data). To overcome this problem, we used link

reweighting in graph reinforcement to scale down

the likelihood of mappings to target character

sequences in proportion to how many source

sequences map to them.

We tested the proposed method using the ACL

2010 NEWS workshop data for English-Arabic,

English-Russian, English-Hindi, and English-

Tamil (Kumaran et al., 2010). For each language

pair, the standard ACL 2010 NEWS workshop data

contained a base set of 1,000 transliteration pairs

for training, and set of 1,000 parallel Wikipedia

titles for testing.

The contributions of the paper are:

1. Employing graph reinforcement to improve the

coverage of automatically aligned data – as they

apply to transliteration mining. This positively

affects recall.

2. Applying link reweighting to overcome

situations where certain tokens – character

sequences in the case of transliteration – tend to

have many mappings, which are often erroneous.

This positively affects precision.

The rest of the paper is organized as follows:

Section 2 surveys prior work on transliteration

mining; Section 3 describes the baseline TM

approach and reports on its effectiveness; Section 4

describes the proposed graph reinforcement along

with link reweighting and reports on the observed

improvements; and Section 5 concludes the paper.

Figure 1: Example mappings seen in training

Background

Much work has been done on TM for different

language pairs such as English-Chinese (Kuo et al.,

2006; Kuo et al., 2007; Kuo et al., 2008; Jin et al.

2008;), English-Tamil (Saravanan and Kumaran,

2008; Udupa and Khapra, 2010), English-Korean

(Oh and Isahara, 2006; Oh and Choi, 2006),

English-Japanese (Qu et al., 2000; Brill et al.,

2001; Oh and Isahara, 2006), English-Hindi (Fei et

al., 2003; Mahesh and Sinha, 2009), and English-

Russian (Klementiev and Roth, 2006).

TM typically involves two main tasks, namely:

finding character mappings between two

languages, and given the mappings ascertaining

whether two words are transliterations or not.

When training with a limited number of

transliteration pairs, two additional problems

appear: many possible character sequence

mappings between source and target languages

may not be observed in training data, and

conditional probability estimates of obtained

1385

mappings may be inaccurate. These two problems

affect recall and precision respectively.

1.1 Finding Character Mappings

To find character sequence mappings between two

languages, the most common approach entails

using automatic letter alignment of transliteration

pairs. Akin to phrasal alignment in machine

translation, character sequence alignment is treated

as a word alignment problem between parallel

sentences, where transliteration pairs are treated as

if they are parallel sentences and the characters

from which they are composed are treated as if

they are words. Automatic alignment can be

performed using different algorithms such as the

EM algorithm (Kuo et al., 2008; Lee and Chang,

2003) or HMM based alignment (Udupa et al.,

2009a; Udupa et al., 2009b). In this paper, we use

automatic character alignment between

transliteration pairs using an HMM aligner.

Another method is to use automatic speech

recognition confusion tables to extract phonetically

equivalent character sequences to discover

monolingual and cross lingual pronunciation

variations (Kuo and Yang, 2005). Alternatively,

letters can be mapped into a common character set

using a predefined transliteration scheme (Oh and

Choi, 2006).

1.2 Transliteration Mining

For the problem of ascertaining if two words can

be transliterations of each other, a common

approach involves using a generative model that

attempts to generate all possible transliterations of

a source word, given the character mappings

between two languages, and restricting the output

to words in the target language (Fei et al., 2003;

Lee and Chang, 2003, Udupa et al., 2009a). This is

similar to the baseline approach that we used in

this paper. Noeman and Madkour (2010)

implemented this technique using a finite state

automaton by generating all possible

transliterations along with weighted edit distance

and then filtered them using appropriate thresholds

and target language words. They reported the best

TM results between English and Arabic with F1-

measure of 0.915 on the ACL-2010 NEWS

workshop standard TM dataset. A related

alternative is to use back-transliteration to

determine if one sequence could have been

generated by successively mapping character

sequences from one language into another (Brill et

al., 2001; Bilac and Tanaka, 2005; Oh and Isahara,

2006).

Udupa and Khapra (2010) proposed a method in

which transliteration candidates are mapped into a

―low-dimensional common representation space‖.

Then, similarity between the resultant feature

vectors for both candidates can be computed.

Udupa and Kumar (2010) suggested that mapping

to a common space can be performed using context

sensitive hashing. They applied their technique to

find variant spellings of names.

Jiampojamarn et al. (2010) used classification to

determine if a source language word and target

language word are valid transliterations. They used

a variety of features including edit distance

between an English token and the Romanized

versions of the foreign token, forward and

backward transliteration probabilities, and

character n-gram similarity. They reported the best

results for Russian, Tamil, and Hindi with F1-

measure of 0.875, 0.924, and 0.914 respectively on

the ACL-2010 NEWS workshop standard TM

datasets.

1.3 Training with Limited Training Data

When only limited training data is available to

train a character mapping model, the resultant

mappings are typically incomplete (due to

sparseness in the training data). Further, resultant

mappings may not be observed a sufficient of

times and hence their mapping probabilities may

be inaccurate.

Different methods were proposed to solve these

two problems. These methods focused on making

training data less sparse by performing some kind

of letter conflation. Oh and Choi (2006) used a

SOUNDEX like scheme. SOUNDEX is used to

convert English words into a simplified phonetic

representation, in which vowels are removed and

phonetically similar characters are conflated. A

variant of SOUNDEX along with iterative training

was proposed by Darwish (2010). Darwish (2010)

reported significant improvements in TM recall at

the cost of limited drop in precision. Another

method involved expanding character sequence

maps by automatically mining transliteration pairs

and then aligning these pairs to generate an

expanded set of character sequence maps (Fei et

al., 2003). In this work we proposed graph

1386

reinforcement with link reweighting to address this

problem. Graph reinforcement was used in the

context of different problems such as mining

paraphrases (Zhao et al., 2008; Kok and Brockett,

2010; Bannard and Callison-Burch 2005) and

named entity translation extraction (You et al.,

2010).

Baseline Transliteration Mining

1.4 Description of Baseline System

The basic TM setup that we employed in this

work used a generative transliteration model,

which was trained on a set of transliteration pairs.

The training involved automatically aligning

character sequences. The alignment was performed

using a Bayesian learner that was trained on word

dependent transition models for HMM based word

alignment (He, 2007). Alignment produced

mappings of source character sequences to target

character sequences along with the probability of

source given target and vice versa. Source

character sequences were restricted to be 1 to 3

characters long.

For all the work reported herein, given an

English-foreign language transliteration candidate

pair, English was treated as the target language and

the foreign language as the source. Given a

foreign source language word sequence
 and an

English target word sequence
 ,

 could

be a potential transliteration of
 . An

example of word sequences pair is the Tamil-

English pair: (முதலாம் ஹைலி செலாெி,
Haile Selassie I of Ethiopia), where ―முதலாம்”

could be transliteration for any or none of the

English words {―Haile‖, ―Selassie‖, ―I‖, ―of‖,

―Ethiopia‖}. The pseudo code below describes

how transliteration mining generates candidates.

Basically, given a source language word, all

possible segmentations, where each segment has a

maximum length of 3 characters, are produced

along with their associated mappings into the

target language. Given all mapping combinations,

combinations producing valid target words are

retained and sorted according to the product of

their mapping probabilities. If the product of the

mapping probabilities for the top combination is

above a certain threshold, then it is chosen as the

transliteration candidate. Otherwise, no candidate

is chosen. To illustrate how TM works, consider

the following example: Given the Arabic word

 .(من) and (م ، ن) all possible segmentations are ,‖من―

Given the target words {the, best, man} and the

possible mappings for the segments and their

probabilities:

ـم = {(m, 0.7), (me, 0.25), (ma, 0.05)}

 {n, 0.7), (nu, 0.2), (an, 0.1)} = ن

 {(mn, 0.3) ,(man, 0.3) ,(men, 0.4)} = من

The only combinations leading valid target

words would be:

  {(man: 0.3)} (من)

(، ن ـم)  {(m,an: 0.07), (ma, n: 0.035)}

Consequently, the algorithm would produce the

tuple with the highest probability: (من , man, 0.3).

As the pseudo code suggests, the actual

implementation is optimized via: incremental left

to right processing of source words; the use of a

Patricia trie to prune mapping combinations that

don’t lead to valid words; and the use of a priority

queue to insure that the best candidate is always at

the top of the queue.

1.5 Smoothing and Thresholding

We implemented the baseline system with and

without assigning small smoothing probabilities

for unseen source character to target character

mappings. Subsequent to training, the smoothing

probability was selected as the smallest observed

mapping probability in training.

We used a threshold on the minimum acceptable

transliteration score to filter out unreliable

transliterations. We couldn’t fix a minimum score

for reliable transliterations to a uniform value for

all words, because this would have caused the

model to filter out long transliterations. Thus, we

tied the threshold to the length of transliterated

words. We assumed a threshold d for single

character mappings and the transliteration

threshold for a target word of length l was

computed as . We selected d by sorting the

mapping probabilities, removing the lowest 10% of

mapping probabilities (which we assumed to be

outliers), and then selecting the smallest observed

probability to be the character threshold d. The

choice of removing the lowest ranking 10% of

mapping probabilities was based on intuition,

because we did not have a validation set. The

threshold was then applied to filter out

transliteration with .

1387

1.6 Effectiveness of Baseline System

To test the effectiveness of the baseline system, we

used the standard TM training and test datasets

from the ACL-2010 NEWS workshop shared task.

The datasets are henceforth collectively referred to

as the NEWS dataset. The dataset included 4

alphabet-based language pairs, namely English-

Arabic, English-Russian, English-Hindi, and

English-Tamil. For each pair, a dataset included a

list of 1,000 parallel transliteration word pairs to

train a transliteration model, and a list of 1,000

parallel word sequences to test TM. The parallel

sequences in the test sets were extracted titles from

Wikipedia article for which cross language links

exist between both languages.

We preprocessed the different languages as

follows:

 Russian: characters were case-folded

 Arabic: the different forms of alef (alef, alef

maad, alef with hamza on top, and alef with

hamza below it) were normalized to alef, ya

and alef maqsoura were normalized to ya, and

ta marbouta was mapped to ha.

 English: letters were case-folded and the

following letter conflations were performed:

ž, ż  z á, â, ä, à, ã, ā, ą, æ  a

é, ę, è  e ć, č, ç c

ł l ï, í, ì, î  i

ó, ō, ö, õ  o ń, ñ, ṅ  n

ş, ś, ß, š  s ř  r

ý  y ū, ü, ú, û  u

 Tamil and Hindi: no preprocessing was

performed.

English/ P R F

Arabic 0.988 0.983 0.583 0.603 0.733 0.748

Russian 0.975 0.967 0.831 0.862 0.897 0.912

Hindi 0.986 0.981 0.693 0.796 0.814 0.879

Tamil 0.984 0.981 0.274 0.460 0.429 0.626

Table 1: Baseline results for all language pairs.

Results with smoothing are shaded.

Table 1 reports the precision, recall, and F1-

measure results for using the baseline system in

TM between English and each of the 4 other

languages in the NEWS dataset with and without

smoothing. As is apparent in the results, without

smoothing, precision is consistently high for all

languages, but recall is generally poor, particularly

for Tamil. When smoothing is applied, we

observed a slight drop in precision for Arabic,

Hindi, and Tamil and a significant drop of 5.6

1: Input: Mappings, set of source given target mappings with associated Prob.
2: Input: SourceWord (1

), Source language word
3: Input: TargetWords, Patricia trie containing all target language words (1

𝑚)
4: Data Structures: DFS, Priority queue to store candidate transliterations pair ordered by their transliteration

score – Each candidate transliteration tuple = (SourceFragment, TargetTransliteration, TransliterationScore).
5: StartSymbol = (“”, “”, 1.0)
6: DFS={StartSymbol}
7: While(DFS is not empty)
8: SourceFragment= DFS.Top().SourceFragment
9: TargetFragment= DFS.Top().TargetTransliteration
10: FragmentProb=DFS.Top().TransliterationScore
11: If (SourceWord == SourceFragment)
12: If(FragmentScore > Threshold)
13: Return (SourceWord, TargetTransliteration, TransliterationScore)
14: Else
15: Return Null
16: DFS.RemoveTop()
17: For SubFragmentLength=1 to 3
18: SourceSubString= SubString(SourceWord, SourceFragment.Length , SubFragmentLength)
19: Foreach mapping in Mappings[SourceSubString]
20: If((TargetFragment + mapping) is a sub-string in TargetWords)
21: DFS.Add(SourceFragment + SourceSubString, Mapping.Score * FragmentScore)
22: DFS.Remove(SourceFragment)
23: End While
24: Return Null

Figure 2: Pseudo code for transliteration mining

1388

basis points for Russian. However, the application

of smoothing increased recall dramatically for all

languages, particularly Tamil. For the remainder of

the paper, the results with smoothing are used as

the baseline results.

Background

1.7 Description of Graph Reinforcement

In graph reinforcement, the mappings deduced

from the alignment process were represented using

a bipartite graph G = (S, T, M), where S was the

set of source language character sequences, T was

the set of target language character sequences, and

M was the set of mappings (links or edges)

between S and T. The score of each mapping

m(v1|v2), where m(v1|v2)  M, was initially set to

the conditional probability of target given source

p(v1|v2). Graph reinforcement was performed by

traversing the graph from S  T  S  T in

order to deduce new mappings. Given a source

sequence s'  S and a target sequence t' T, the

deduced mapping probabilities were computed as

follows (Eq.1):

𝑚(|) ∏ (𝑚(|)𝑚(|)𝑚(|))

where the term (𝑚(|)𝑚(|)𝑚(|))

computed the probability that a mapping is not

correct. Hence, the probability of an inferred

mapping would be boosted if it was obtained from

multiple paths. Given the example in Figure 1,

m(c|ق) would be computed as follows:

 (𝑚(|ك)𝑚(ك|)𝑚(|ق))

(𝑚(|ك)𝑚(ك|)𝑚(|ق))

We were able to apply reinforcement iteratively on

all mappings from S to T to deduce previously

unseen mappings (graph edges) and to update the

probabilities of existing mappings.

1.8 Link Reweighting

The basic graph reinforcement algorithm is prone

to producing irrelevant mappings by using

character sequences with many different possible

mappings as a bridge. Vowels were the most

obvious examples of such character sequences. For

example, automatic alignment produced 26 Hindi

character sequences that map to the English letter

―a‖, most of which were erroneous such as the

mapping between ―a‖ and ―व” (pronounced va).

Graph reinforcement resulted in many more such

mappings. After successive iterations, such

character sequences would cause the graph to be

fully connected and eventually the link weights

will tend to be uniform in their values. To illustrate

this effect, we experimented with basic graph

reinforcement on the NEWS dataset. The figures of

merit were precision, recall, and F1-measure.

Figures 3, 4, 5, and 6 show reinforcement results

for Arabic, Russian, Hindi, and Tamil respectively.

The figures show that: recall increased quickly and

nearly saturated after several iterations; precision

continued to drop with more iterations; and F1-

measure peaked after a few iterations and began to

drop afterwards. This behavior was undesirable

because overall F1-measure values did not

converge with iterations, necessitating the need to

find clear stopping conditions.

To avoid this effect and to improve precision, we

applied link reweighting after each iteration. Link

reweighting had the effect of decreasing the

weights of target character sequences that have

many source character sequences mapping to them

and hence reducing the effect of incorrectly

inducing mappings. Link reweighting was

performed as follows (Eq. 2):

 𝑚 (|)

 (|)

∑ (|)

Where si  S is a source character sequence that

maps to t. So in the case of ―a‖ mapping to the ―व‖

character in Hindi, the link weight from ―a‖ to ―व‖

is divided by the sum of link weights from ―a‖ to

all 26 characters to which ―a‖ maps.

We performed multiple experiments on the NEWS

dataset to test the effect of graph reinforcement

with link reweighting with varying number of

reinforcement iterations. Figures 7, 8, 9, and 10

compare baseline results with smoothing to results

with graph reinforcement at different iterations.

As can be seen in the figures, the F1-measure

values stabilized as we performed multiple graph

reinforcement iterations. Except for Russian, the

results across different languages behaved in a

similar manner.

For Russian, graph reinforcement marginally

affected TM F1-measure, as precision and recall

1389

marginally changed. The net improvement was 1.1

basis points. English and Russian do not share the

same alphabet, and the number of initial mappings

was bigger compared to the other language pairs.

Careful inspection of the English-Russian test set,

with the help of a Russian speaker, suggests that:

1) the test set reference contained many false

negatives;

2) Russian names often have multiple phonetic

forms (or spellings) in Russian with a single

standard transliteration in English. For example,

the Russian name ―Olga‖ is often written and

pronounced as ―Ola‖ and ―Olga‖ in Russian; and

3) certain English phones do not exist in Russian,

leading to inconsistent character mappings in

Russian. For example, the English phone for ―g‖,

as in ―George‖, does not exist in Russian.

For the other languages, graph reinforcement

yielded steadily improving recall and consequently

steadily improving F1-measure. Most

improvements were achieved within the first 5

iterations, and improvements beyond 10 iterations

were generally small (less than 0.5 basis points in

F1-measure). After 15 iterations, the improvements

in overall F1-measure above the baseline with

smoothing were 19.3, 5.3, and 32.8 basis points for

Arabic, Tamil, and Hindi respectively. The F1-

measure values seemed to stabilize with successive

iterations. The least improvements were observed

for Hindi. This could be attributed to the fact that

Hindi spelling is largely phonetic, making letters in

words pronounceable in only one way. This fact

makes transliteration between Hindi and English

easier than Arabic and Tamil. In the case of Tamil,

the phonetics of letters change depending on the

position of letters in words. As for Arabic, multiple

letters sequences in English can map to single

letters in Arabic and vice versa. Also, Arabic has

diacritics which are typically omitted, but

commonly transliterate to English vowels. Thus,

the greater the difference in phonetics between two

languages and the greater the phonetic complexity

of either, the more TM can gain from the proposed

technique.

1.9 When Graph Reinforcement Worked

An example where reinforcement worked entails

the English-Arabic transliteration pair (Seljuq,

 In the baseline runs with 1,000 training .(سلاجقه

examples, both were not mapped to each other

because there were no mappings between the letter

―q‖ and the Arabic letter sequence ―قه‖

(pronounced as ―qah‖). The only mappings that

were available for ―q‖ were ―كه‖ (pronounced as

―kah‖), ―ق‖ (pronounced as ―q‖), and ―ك‖

(pronounced as ―k‖) with probabilities 54.0, 0.10,

and 5452 respectively. Intuitively, the third

mapping is more likely than the second. After 3

graph reinforcement iterations, the top 5 mappings

for ―q‖ were ―ق‖ (pronounced as ―q‖), ―قه‖

(pronounced as ―qah‖), ―كه‖ (pronounced as

―kah‖), ―ك‖ (pronounced as ―k‖), and ―الق‖

(pronounced as ―alq‖) with mapping probabilities

of 0.22, 0.19, 0.15, 0.05, and 0.05 respectively. In

this case, graph reinforcement was able to find the

missing mapping and properly reorder the

mappings. Performing 10 iterations with link

reweighting for Arabic led to 17 false positives.

Upon examining them, we found that: 9 were

actually correct, but erroneously labeled as false in

the test set; 6 were phonetically similar like ―اسبانيا‖

(pronounced espanya) and ―Spain‖ and ―التكنولوجيا‖

(pronounced alteknologya) and ―technology‖; and

the remaining 2 were actually wrong, which were

 and ―medici‖ and (pronounced beatchi) ‖بيتشي―

― ديسي ‖ (pronounced sidi) and ―taya‖. This seems to

indicate that graph reinforcement generally

introduced more proper mappings than improper

ones.

1.10 Comparing to the State-of-the-Art

Table 2 compares the best reported results in ACL-

2010 NEWS TM shared task for Arabic (Noeman

and Madkour, 2010) and for the other languages

(Jiampojamarn et al. 2010) and the results obtained

by the proposed technique using 10 iterations, with

link reweighting. The comparison shows that the

proposed algorithm yielded better results than the

best reported results in the literature by 2.6, 4.8,

0.8 and 4.1 F1-measure points in Arabic, Russian,

Hindi and Tamil respectively. For Arabic, the

improvement over the previously reported result

was due to improvement in precision, while for the

other languages the improvements were due to

improvements in both recall and precision.

1390

Figure 3: Graph reinforcement w/o link reweighting

for Arabic

Figure 4: Graph reinforcement w/o link reweighting

for Russian

Figure 5: Graph reinforcement w/o link reweighting

for Hindi

Figure 6: Graph reinforcement w/o link reweighting

for Tamil

Figure 7: Graph reinforcement results for Arabic

Figure 8: Graph reinforcement results for Russian

Figure 9: Graph reinforcement results for Hindi

Figure 10: Graph reinforcement results for Tamil

0.400

0.500

0.600

0.700

0.800

0.900

1.000

b
as

el
in

e 1 2 3 4 5 6 7 8 9

1
0

Iterations

F

R

P 0.400

0.500

0.600

0.700

0.800

0.900

1.000

b
as

el
in

e 1 2 3 4 5 6 7 8 9

1
0

Iterations

F

R

P

0.400

0.500

0.600

0.700

0.800

0.900

1.000

b
as

el
in

e 1 2 3 4 5 6 7 8 9

1
0

Iterations

F

R

P 0.400

0.500

0.600

0.700

0.800

0.900

1.000

b
as

el
in

e 1 2 3 4 5 6 7 8 9

1
0

Iterations

F

R

P

0.82

0.84

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

1 2 3 4 5 6 7 8 9 101112131415

Number of Iterations

F

R

P

baseline
F = 0.748
R = 0.603
P = 0.983

0.82

0.84

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

1 2 3 4 5 6 7 8 9 101112131415

Number of Iterations

F

R

P

baseline
F = 0.912
R = 0.862
P = 0.967

0.82

0.84

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

1 2 3 4 5 6 7 8 9 101112131415

Number of Iterations

F

R

P

baseline
F = 0.879
R = 0.796
P = 0.981

0.82

0.84

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

1 2 3 4 5 6 7 8 9 101112131415

Number of Iterations

F

R

P

baseline
F = 0.626
R = 0.460
P = 0.981

1391

 Shared Task Proposed Algorithm

English/ P R F P R F

Arabic 0.887 0.945 0.915 0.979 0.905 0.941

Russian 0.880 0.869 0.875 0.921 0.925 0.923

Hindi 0.954 0.895 0.924 0.972 0.895 0.932

Tamil 0.923 0.906 0.914 0.964 0.945 0.955

Table 2: Best results obtained in ACL-2010 NEWS TM

shared task compared to graph reinforcement with link

reweighting after 10 iterations

Conclusion

In this paper, we presented a graph reinforcement

algorithm with link reweighting to improve

transliteration mining recall and precision by

systematically inferring mappings that were unseen

in training. We used the improved technique to

extract transliteration pairs from parallel Wikipedia

titles. The proposed technique solves two problems

in transliteration mining, namely: some mappings

may not be seen in training data – hurting recall,

and certain mappings may not be seen a sufficient

number of times to appropriate estimate mapping

probabilities – hurting precision. The results

showed that graph reinforcement yielded improved

transliteration mining from parallel Wikipedia

titles for all four languages on which the technique

was tested.

Generally iterative graph reinforcement was able to

induce unseen mappings in training data –

improving recall. Link reweighting favored

precision over recall counterbalancing the effect of

graph reinforcement. The proposed system

outperformed the best reported results in the

literature for the ACL-2010 NEWS workshop

shared task for Arabic, Russian, Hindi and Tamil.

To extend the work, we would like to try

transliteration mining from large comparable texts.

The test parts of the NEWS dataset only contained

short parallel fragments. For future work, graph

reinforcement could be extended to MT to improve

the coverage of aligned phrase tables. In doing so,

it is reasonable to assume that there are multiple

ways of expressing a singular concept and hence

multiple translations are possible. Using graph

reinforcement can help discover such translation

though they may never be seen in training data.

Using link reweighting in graph reinforcement can

help demote unlikely translations while promoting

likely ones. This could help clean MT phrase

tables. Further, when dealing with transliteration,

graph reinforcement can help find phonetic

variations within a single language, which can

have interesting applications in spelling correction

and information retrieval. Applying the same to

machine translation phrase tables can help identify

paraphrases automatically.

References

Colin Bannard, Chris Callison-Burch. 2005.

Paraphrasing with Bilingual Parallel Corpora. ACL-

2005, pages 597—604.

Slaven Bilac, Hozumi Tanaka. 2005. Extracting

transliteration pairs from comparable corpora. NLP-

2005.

Eric Brill, Gary Kacmarcik, Chris Brockett. 2001.

Automatically harvesting Katakana-English term

pairs from search engine query logs. NLPRS 2001,

pages 393–399.

Kareem Darwish. 2010. Transliteration Mining with

Phonetic Conflation and Iterative Training. ACL

NEWS workshop 2010.

Huang Fei, Stephan Vogel, and Alex Waibel. 2003.

Extracting Named Entity Translingual Equivalence

with Limited Resources. TALIP, 2(2):124–129.

Xiaodong He. 2007. Using Word-Dependent Transition

Models in HMM based Word Alignment for

Statistical Machine Translation. ACL-07 2nd SMT

workshop.

Sittichai Jiampojamarn, Kenneth Dwyer, Shane

Bergsma, Aditya Bhargava, Qing Dou, Mi-Young

Kim and Grzegorz Kondrak. 2010. Transliteration

Generation and Mining with Limited Training

Resources. ACL NEWS workshop 2010.

Chengguo Jin, Dong-Il Kim, Seung-Hoon Na, Jong-

Hyeok Lee. 2008. Automatic Extraction of English-

Chinese Transliteration Pairs using Dynamic

Window and Tokenizer. Sixth SIGHAN Workshop

on Chinese Language Processing, 2008.

Alexandre Klementiev and Dan Roth. 2006. Named

Entity Transliteration and Discovery from

Multilingual Comparable Corpora. HLT Conf. of the

North American Chapter of the ACL, pages 82–88.

Stanley Kok, Chris Brockett.. 2010. Hitting the Right

Paraphrases in Good Time. Human Language

Technologies: The 2010 Annual Conference of the

North American Chapter of the ACL, June 2010

A. Kumaran, Mitesh M. Khapra, Haizhou Li. 2010.

Report of NEWS 2010 Transliteration Mining Shared

Task. Proceedings of the 2010 Named Entities

1392

Workshop, ACL 2010, pages 21–28, Uppsala,

Sweden, 16 July 2010.

Jin-Shea Kuo, Haizhou Li, Ying-Kuei Yang. 2006.

Learning Transliteration Lexicons from the Web.

COLING-ACL2006, Sydney, Australia, 1129 – 1136.

Jin-shea Kuo, Haizhou Li, Ying-kuei Yang. 2007. A

phonetic similarity model for automatic extraction of

transliteration pairs. TALIP, 2007

Jin-Shea Kuo, Haizhou Li, Chih-Lung Lin. 2008.

Mining Transliterations from Web Query Results: An

Incremental Approach. Sixth SIGHAN Workshop on

Chinese Language Processing, 2008.

Jin-shea Kuo, Ying-kuei Yang. 2005. Incorporating

Pronunciation Variation into Extraction of

Transliterated-term Pairs from Web Corpora. Journal

of Chinese Language and Computing, 15 (1): (33-

44).

Chun-Jen Lee, Jason S. Chang. 2003. Acquisition of

English-Chinese transliterated word pairs from

parallel-aligned texts using a statistical machine

transliteration model. Workshop on Building and

Using Parallel Texts, HLT-NAACL-2003, 2003.

Sara Noeman and Amgad Madkour. 2010. Language

Independent Transliteration Mining System Using

Finite State Automata Framework. ACL NEWS

workshop 2010.

R. Mahesh, K. Sinha. 2009. Automated Mining Of

Names Using Parallel Hindi-English Corpus. 7th

Workshop on Asian Language Resources, ACL-

IJCNLP 2009, pages 48–54, 2009.

Jong-Hoon Oh, Key-Sun Choi. 2006. Recognizing

transliteration equivalents for enriching domain

specific thesauri. 3rd Intl. WordNet Conf. (GWC-

06), pages 231–237, 2006.

Jong-Hoon Oh, Hitoshi Isahara. 2006. Mining the Web

for Transliteration Lexicons: Joint-Validation

Approach. pp.254-261, 2006 IEEE/WIC/ACM Intl.

Conf. on Web Intelligence (WI'06), 2006.

Yan Qu, Gregory Grefenstette, David A. Evans. 2003.

Automatic transliteration for Japanese-to-English text

retrieval. SIGIR 2003:353-360

Robert Russell. 1918. Specifications of Letters. US

patent number 1,261,167.

K Saravanan, A Kumaran. 2008. Some Experiments in

Mining Named Entity Transliteration Pairs from

Comparable Corpora. The 2nd Intl. Workshop on

Cross Lingual Information Access: Addressing the

Need of Multilingual Societies, 2008.

Raghavendra Udupa, K. Saravanan, Anton Bakalov,

Abhijit Bhole. 2009a. "They Are Out There, If You

Know Where to Look": Mining Transliterations of

OOV Query Terms for Cross-Language Information

Retrieval. ECIR-2009, Toulouse, France, 2009.

Raghavendra Udupa, K. Saravanan, A. Kumaran, and

Jagadeesh Jagarlamudi. 2009b. MINT: A Method for

Effective and Scalable Mining of Named Entity

Transliterations from Large Comparable Corpora.

EACL 2009.

Raghavendra Udupa and Mitesh Khapra. 2010a.

Transliteration Equivalence using Canonical

Correlation Analysis. ECIR-2010, 2010.

Raghavendra Udupa, Shaishav Kumar. 2010b. Hashing-

based Approaches to Spelling Correction of Personal

Names. EMNLP 2010.

Gae-won You, Seung-won Hwang, Young-In Song,

Long Jiang, Zaiqing Nie. 2010. Mining Name

Translations from Entity Graph Mapping.

Proceedings of the 2010 Conference on Empirical

Methods in Natural Language Processing, pages

430–439.

Shiqi Zhao, Haifeng Wang, Ting Liu, Sheng Li. 2008.

Pivot Approach for Extracting Paraphrase Patterns

from Bilingual Corpora. Proceedings of ACL-08:

HLT, pages 780–788.

1393

