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Abstract

This paper compares several translation rep-
resentations for a synchronous context-free
grammar parse including CFGs/hypergraphs,
finite-state automata (FSA), and pushdown
automata (PDA). The representation choice is
shown to determine the form and complex-
ity of target LM intersection and shortest-path
algorithms that follow. Intersection, shortest
path, FSA expansion and RTN replacement al-
gorithms are presented for PDAs. Chinese-to-
English translation experiments using HiFST
and HiPDT, FSA and PDA-based decoders,
are presented using admissible (or exact)
search, possible for HiIFST with compact
SCFG rulesets and HiPDT with compact LMs.
For large rulesets with large LMs, we intro-
duce a two-pass search strategy which we then
analyze in terms of search errors and transla-
tion performance.

1 Introduction

Hierarchical phrase-based translation, usingya-
chronous context-free translation gramm@&CFG)

from the composition of a finite language and
the algebraic relatiog for SCFGG.

2. Applying the language model to these target
translations: £ =T N.M, a (weighted) context-
free language resulting from the intersection
of a context-free language and the regular lan-
guageM for M.

3. Searching for the translation and language
model combination with the highest-probablity
path: £ =argmax;c ;L

Of course, decoding requires explicit data represen-
tations and algorithms for combining and searching
them. In common to the approaches we will con-
sider heres is applied toG by using the CYK algo-
rithm in Step 1 andV/ is represented by a finite au-
tomaton in Step 2. The choice of the representation
of 7 in many ways determines the remaining de-
coder representations and algorithms needed. Since
{s} is a finite language and we assume through-
out that G does not allow unbounded insertions,
T and £ are, in fact, regular languages. As such,
T and £ have finite automaton representatidfis
andLy. In this case, weighted finite-state intersec-

together with ann-gram target language modeltion and single-source shortest path algorithms (us-
(LM), is a popular approach in machine translaind negative log probabilities) can be used to solve
tion (Chiang, 2007). Given a SCFG and ann- Steps 2 and 3 (Mohri, 2009). This is the approach
gram language mod@l/, this paper focuses on how taken in (Iglesias et al., 2009a; de Gispert et al.,
to decodewith them, i.e. how to apply them to the 2010). Instead/” and £ can be represented ly-
source text to generate a target translation. DecoB€rgraphsl;, and Ly, (or very similarly context-free
ing has three basic steps, which we first describ@lles, and-or trees, or deductive systems). In this
in terms of the formal languages and relations in¢@se, hypergraph intersection with a finite automa-

volved, with data representations and algorithms tPn @and hypergraph shortest path algorithms can be
follow. used to solve Steps 2 and 3 (Huang, 2008). This

is the approach taken by Chiang (2007). In this

1. Translating the source sentence with G paper, we will consider another representation for
to give target translations: 7 = {s} oG, context-free languagef and L as well,pushdown
a (weighted) context-free language resultingutomata(PDA) 7, and L,, familiar from formal
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language theory (Aho and Ullman, 1972). We will1l.1 Related Work

describe PDA intersection with a finite automaton, ... is extensive prior work on computational ef-
and PDA shortest-path algorithms in Section 2 theﬁciency and algorithmic complexity in hierarchical

can be used to solve Steps 2 and 3. |t cannot rase-based translation. The challenge is to find al-

over-empha_lsized that the CFG, hyp_ergraph and P g%rithms that can be made to work with large trans-
representations of are used for their compactness,;sion grammars and large language models.

rather than for expressing non-regular languages. Following the original algorithms and analysis of

As pre_ser_1ted so far, the search performed in St%‘niang (2007), Huang and Chiang (2007) devel-
_3 is admissible(or exac) — the true shprtest path oped the cube-growing algorithm, and more recently
is found. However, the search space in MT can IoPluang and Mi (2010) developed an incremental de-

9““9 Ia_rge. Many systems employ aggressiye Pru'}'oding approach that exploits left-to-right nature of
ing during the shortest-path computation with Il'[tlethe language models.

theoretical or empi_rical guarantees of correctness. Search errors in hierarchical translation, and in
Further, ,SUCh pruning can greatly 'compllcate aM¥-anslation more generally, have not been as exten-
complexity analysis of the underlying representag; o\ st died: this is undoubtedly due to the diffi-
thﬂS' and qlgqnthms. I'n th_'s paper, we will exCIUOIecuIties inherent in finding exact translations for use
any inadmissible pruning in the shortest-path algq;, comparison. Using a relatively simple phrase-

rithm itself. This allows us in Section 3 to compare, ;<o translation grammar, Iglesias et al. (2009b)

the computational complexity of using these dlffer—compared search via cube-pruning to an exact FST

enf[ represenf[ations. W? show that th? PDA,represefﬂﬁplementation (Kumar et al., 2006) and found that
tation is particularly suited for decoding with large . he_nrning suffered significant search errors. For
SCFGs and compqct LMs. _ _ Hiero translation, an extensive comparison of search

We present Chlnese-Engllsh_ translation re,SUItérrors between the cube pruning and FSA imple-
under the_FSA and PDA translathn representatlo.ngnen,&,ﬂtion was presented by Iglesias et al. (2009a)
We describe a two-pass translation strategy whicky,y yq Gispert et al. (2010). Relaxation techniques
we haYe c_JeveIoped ol use of the PD_A rePrerave also recently been shown to finding exact so-
sentation in large-scale translation. In the first pasg,ins in parsing (Koo et al., 2010) and in SMT
translation is done using a lattice-generating versiqg, tree-to-string translation grammars and trigram
of the shortest path algorithm. The full translatior](,jmguage models (Rush and Collins, 2011), much
grammaris used but with a compact, entropy—prune&na”er models compared to the work presented in
version (Stolcke, 1998) of the full language modely . paper

This firs_,t—step uses admissible pruning and lattice Although entropy-pruned language models have
generation under the compact language model. en used to produce real-time translation sys-

the second pass, the original, unpruned LM is simplyems (Prasad et al., 2007), we believe our use of

applied to the lattices produced in the first pass. Wgntropy-pruned language models in two-pass trans-
find that entropy-pruping and first-pass translatiof,iq, 1 he novel. This is an approach that is widely-
can be done so as to introduce very _few search €MQZed in automatic speech recognition (Ljolje et al.,
in the overall process; we can identify search €ITO%999) and we note that it relies on efficient represen-

in this experiment by comparison to exact translat—ation of very large search spac&sfor subsequent
tion under the full translation grammar and Ianguag?escoring as is possible with FSAs and PDAs.
model using the FSA representation. We then inves- ’

tigate a translation grammar which is large enough  p;shdown Automata

that exact translation under the FSA representation

is not possible. We find that translation is possiblén this section, we formally define pushdown au-

using the two-pass strategy with the PDA translatiotomata and give intersection, shortest-path and re-

representation and that gains in BLEU score resulated algorithms that will be needed later.

from using the larger translation grammar. Informally, pushdown automata are finite au-
tomata that have been augmented with a stack. Typ-
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A. Intuitively, f maps an open parenthesis to its cor-
responding close parenthesis. lzetienotef(a) if
ac Aandf!(a)if a € A. The Dyck language
D4 over the alphabeﬂ = A U A is then the lan-
guage defined by the following context-free gram-
mar: S — ¢, S — SSandS — aSa for all a € A.
We define the mapping, : A* — A* as follow.
ca(z) is the string obtained by iteratively deleting
from z all factors of the formua with a € A. Ob-
serve thatD 4 = ¢ (e).

Let A and B be two finite alphabets such that
B C A, we define the mappings : A* — B*
by rg(z1...2p)=vy1...yp With y; = x; if z; € B
andy; = € otherwise.

Figure 1: PDA Examples: (a) Non-regular PDA accept- A weighted pushdown automat¢RDA) 7" over
ing {a™b"|n € N}. (b) Regular (but not bounded-stack)the tropical semiring(R U {occ}, min, +, 00, 0) is
PDA accepting*b*. (c) Bounded-stack PDA accepting g 9-tuple(3, II,II,Q,E, I, F, p) whereX. is the fi-
a*b" and (d) its expansion as an FSA. nite input alphabet]I andII are the finite open and
close parenthesis alphabeikis a finite set of states,
ically this is done by adding a stack alphabet and laF € @ the initial state,;” C @ the set of final states,
beling each transition with a stack operation (astack € @ x (X UIIU {e}) x (R U {o0}) x Q a fi-
symbol to be pushed onto, popped or read from thaite set of transitions, and : F© — R U {oo} the
stack) in additon to the usual input label (Aho andinal weight function. Let = (p[e], ile], wle], n[e])
Ullman, 1972; Berstel, 1979) and weight (Kuichdenote a transition it.
and Salomaa, 1986; Petre and Salomaa, 2009). OurA pathr is a sequence of transitions=e; ... e,
equivalent representation allows a transition to be lssuch thata[e;] = p[e; 1] for 1 < i < n. We then de-
beled by a stack operation or a regular input symbdine p[r] = ple1], n[r] = nle,], i[r] =ile1] - - - i[en],
but not both. Stack operations are represented pdw[r]|=wlei] + ... + wley].
pairs of open and close parentheses (pushing a sym-A path 7 is accepting ifp[r] = I andn[r] € F.
bol on and popping it from the stack). The advantagé path is balanced ifr; (i[7]) € Di. A balanced
of this representation is that is identical to the finitgpath accepts the string € ¥ if it is a balanced
automaton representation except that certain syraccepting path such that (i[7]) =x.
bols (the parentheses) have special semantics. AsThe weight associated by to a stringz € ¥*
such, several finite-state algorithms either immedis 7'(z) = min ¢ p(,) w(r] + p(n[r]) where P(x)
ately generalize to this PDA representation or do sdenotes the set of balanced paths acceptingA
with minimal changes. The algorithms described inveighted language is recognizable by a weighted
this section have been implemented in the PDT eypushdown automaton iff it is context-free. We de-
tension (Allauzen and Riley, 2011) of the OpenFsfine thesizeof T" as|T'|=|Q|+|E|.

library (Allauzen et al., 2007). A PDA T hasa bounded stac there existsK €
o N such that for any sub-pathof any balanced path
2.1 Definitions in T |eni (rg (i[n]))| < K. If T has a bounded stack,

A (restricted) Dyck language consist of “well-then it represents a regular language. Figure 1 shows

formed” or “balanced” strings over a finite num-non-regular, regular and bounded-stack PDAs.

ber of pairs of parentheses. Thus the string A weighted finite automatofFSA) can be viewed

([TO)O)T{}I]) ()isinthe Dyck language over 3 as a PDA where the open and close parentheses al-

pairs of parentheses. phabets are empty, see (Mohri, 2009) for a stand-
More formally, letA and A be two finite alpha- alone definition.

bets such that there exists a bijectigrfrom A to

1375



2.2 Expansion Algorithm

Given a bounded-stack PDA, the expansiorof 7'
is the FSAT” equivalent tdl’ defined as follows.
A state inT” is a pair(q, z) wheregq is a state irl”
andz € IT*. A transition(q,a,w,q’) in T results in
a transition((q, z),d’, w, (¢’, 2")) in T” only when:
@aeX U{e}, 2’ =zandd' =a, (b)a€ll, 2/ =za

SHORTESTDISTANCE(T)
1 for eachqg € Q anda € 11 do
2 Blg,a] + 0
3 GETDISTANCE(T, I)
4 return d[f,I]

RELAX (g, s, w,S)
1 if d[g,s] > wthen
2 dg,s]+w

anda’ = ¢ or (c)a € 1I, 2/ is such that: = 2'a 3 it ¢ Sthen

andd’ =e. The initial state ofl” is I' = (I,¢). A 4 ENQUEUE(S, q)

state(q, z) in 7" is final if g is final N7 andz =€ GerpisTANCE(T, 5)

(¢’ ((g,€))=p(q)). The set of states @’ isthe setof 1 for eachg € Q do

pairs (¢, z) that can be reached from an initial state 2 d[g, s] + o

by transitions defined as above. The condition that3 dls:s] 0

T has a bounded stack ensures that this set is finit%4 fvjﬂggs#@ do

(since it implies that for anyq, z), |z| < K). 6 g+« HEAD(S)
The complexity of the algorithm is linear in 7  DEQUEUES;)

O(|T'|) = O(el™!). Figure 1d show the result of the g

for eache € E[q] do
algorithm when applied to the PDA of Figure 1c. ifale] € 2 U {c} then

10 ReLAX(nle], s, d[q, s] + w[e], Ss)
_ ' 11 elseifile] € TI then
2.3 Intersection Algorithm 12 Bls,i[e]] < Bls,i[e]] U {e}

elseifi[e] € II then
if d[n[e], n[e]] is undefinedhen
GETDISTANCE(T, nle])
for eache’ € Blnle], i[e]] do
w ¢ dlg, 5] +wle] + dlple’], nle]] + wle]
RELAX(nle], s, w, Ss)

The class of weighted pushdown automata is close%ﬁ
under intersection with weighted finite automatais
(Bar-Hillel et al., 1964; Nederhof and Satta, 2003).16
Considering a paif7}, T») where one element is an 1’
FSA and the other element a PDA, then there exists
a PDA T, NT5, theintersectionof T andTy, such Figure 2: PDA shortest distance algorithm. We assume
that for allz € ¥*: (T1NTy)(z) = Ty(z) +To(x). thatF'={f} andp(f)=0 to simplify the presentation.
We assume in the following thdt, is an FSA. We
also assume thdk has no input transitions. When
T5 has inpute transitions, an epsilon filter (Mohri,
2009; Allauzen et al., 2011) generalized to handle _ )
parentheses can be used. 2.4 Shortest Distance and Path Algorithms

A state inT' =TyNT5 is a pair(q1, ¢2) whereg; is A shortest pattin a PDAT is a balanced accepting
a state off andg, a state ofl;>. The initial state is path with minimal weight and thshortest distance
I=(Iy,Iy). Given atransitiore; = (¢1, a, w1, ¢;) In  in T is the weight of such a path. We show that when
T}, transitions out ofq; , g2) in T" are obtained using 7T has a bounded stack, shortest distance and short-
the following rules. est path can be computed ®(|T|log|T|) time

If a € X, thene; can be matched with a tran- (assumingl” has no negative weights) ai{(|7|?)
sition (g2, a,ws2,q5) in Th resulting a transition space.
((q1,q2), a, wi+we, (¢, ¢5)) InT. Given a states in 7' with at least one incoming

If a = ¢, thene; is matched with staying ig.  open parenthesis transition, we denotehythe set
resulting in a transitiori(¢1, ¢2), €, w1, (¢}, q2))- of states that can be reached frenby a balanced
Finally, if a € 1, e1 is also matched path. If s has several incoming open parenthesis
with staying in ¢, resulting in a transition transitions, a naive implementation might lead to the
((q1,92),a,w1,(¢},q2)) InT. states inC to be visited up to exponentially many

A state(q1, g2) in T is final when bothy; andgs  times. The basic idea of the algorithm is to memo-
are final, and thep((q1, g2)) = p1(q1)+p2(q2). ize the shortest distance frosito states inCs. The

The complexity of the algorithm is i@ (|11 ||12|).
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pseudo-code is given in Figure 2. When each component of the RTN is acyclic, the
GETDISTANCE(T, s) starts a new instance of thecomplexity of the algorithm is hence i@(|7]) in
shortest-distance algorithm fromusing the queue time and space.
Ss, initially containing s. While the queue is not  The algorithm can be modified to compute the
empty, a state is dequeued and its outgoing transhortest path by keeping track of parent pointers.
tions examined (line 5-9). Transitions labeled by _
non-parenthesis are treated as in Mohri (2009) (Iiné-> Replacement Algorithm
9-10). When the considered transitiers labeled by A recursive transition networkRTN) can be speci-
a close parenthesis, itis remembered that it balancisd by (N, 3, (T,).,en, S) where N is an alphabet
all incoming open parentheses dnabeled byile]  of nonterminalsy. is the input alphabet[T}, ), is
by addinge to Bs,i[e]] (line 11-12). Finally, when a family of FSAs with input alphabet U N, and
e is labeled with an open parenthesis, if its destings € NV is the root nonterminal.
tion has not already been visited, a new instance is A string = € ©* is accepted byR if there exists
started fromn[e] (line 14-15). The destination statesan accepting path in T's such that recursively re-
of all transitions balancing are then relaxed (line placing any transition with input labelc N by an
16-18). accepting path ifT,, leads to a path* with input x.
The space complexity of the algorithm isThe weight associated by is the minimum over all
quadratic for two reasons. First, the number o$uchr* of w[n*]+ps(n[r*]).
non-infinity d[q, s] is |Q|>. Second, the space re- Given an RTNR, the replacementof R is the
quired for storingB is at most inO(|E[?) since PDA T equivalent toR defined by the 9-tuple
for each open parenthesis transitienthe size of (X,I1,1L,Q, E, I, F,0,p) withII=Q =J,.cy Qv
|Blnle], i[e]]| is O(|E]|) in the worst case. This | =Ig, F=Fg, p=pg, andE =, cy Upep, E
last observation also implies that the cumulatedihere E¢ = {e} if ife] ¢ N and E°¢ =
number of transitions examined at line 16 is in{(ple], nle],wlel, I,.), (f,nle], pu(f), nle])|f € F.}
O(N|Q| |E[?) in the worst case, wherd denotes with ;z=i[e] € N otherwise.
the maximal number of times a state is inserted in The complexity of the construction is iA(|7]).
the queue for a given call of &DISTANCE. As- If |F,| =1, then|T| = O3, cn IT0]) = O(|R)).
suming the cost of a queue operation’is:) for a  Creating a superfinal state for edEhwould lead to
queue containing: elements, the worst-case timeaT whose size is always linear in the size/f
complexity of the algorithm can then be expressed
asO(N|T|? T(|T])). WhenT contains no negative 3 Hierarchical Phrase-Based Translation
weights, using a shortest-first queue discipline leads Representation
to a time complexity inO(|T'|31log |T'|). When all
theCy’s are acyclic, using a topological order queu
discipline leads to & (|T|?) time complexity.
In effect, we are solving &-sources shortest-
path problem withk single-source solutions. A po-

n this section, we compare several different repre-
sentations for the target translationsof the source
sentence by synchronous CF& prior to language
model M application. As discussed in the introduc-

tentially better approach might be to solve the tion, 7 is a context-free language. For example, sup-

sources ork-pairs problem directly (Hershberger etP05€ it corresponds to:
al., 2003). S—abXdg, S—acX fg, and X —be.

WhenT has been obtained by converting an RTNrigure 3 shows several alternative representations of
or an hypergraph into a PDA (Section 2.5), the poly7: Figure 3a shows the hypergraph representation of
nomial dependency ifil"| becomes a linear depen-this grammar; there is a 1:1 correspondence between
dency both for the time and space complexities. Ineach production in the CFG and each hyperedge in
deed, for eacly in T, there exists a unique such the hypergraph. Figure 3b shows the RTN represen-
thatd[q, s] is non-infinity. Moreover, for each close tation of this grammar with a 1:1 correspondence be-
parenthesis transistion there exists a unique opentween each production in the CFG and each path in
parenthesis transitio#l such that € B[n[e¢'],i[¢/]]. the RTN; this is the translation representation pro-
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SA ) resentation can require an additionx{e/s°1C1)
@ time and space since the PDA expansion can be
Figure 3: Alternative translation representations exponential.
2. Intersection: The intersection of a CF@),

) ) with a finite automatord/ can be performed by
duced by the HIFST decoder (Iglesias et al., 20093;  yhe ¢jassical Bar-Hillel algorithm (Bar-Hillel

de Gispert et al., 2010). Figure 3c shows the push- al., 1964) with time and space complex-
down automaton representation generated from the ity O(|T;,||M[?).X The PDA intersection algo-
RTN with the replacement algorithm of Section 2.5.

Sinces is a _finite .Ianguage and' does not allow plexity O(|T,||M]). Finally, the FSA intersec-
unbounded insertion],, has a bounded stack and tion algorithm has time and space complexity

T is,. in fact, a regular language. Figgre 3d shows O(|T;||M]|) (Mohri, 2009).
the finite-state automaton representatioriyofen- 3
erated by the PDA using the expansion algorithm
of Section 2.2. The HIFST decoder converts its
RTN translation representation immediately into the
finite-state representation using an algorithm equiv-
alent to converting the RTN into a PDA followed by
PDA expansion.

As shown in Figure 4, an advantage of the RTN,
PDA, and FSA representations is that they can ben@able 1 summarizes the complexity results. Note
fit from FSA epsilon removal, determinization andthe PDA representation is equivalent in time and su-
minimization algorithms applied to their compo-perior in space to the CFG/hypergraph representa-
nents (for RTNs and PDAs) or their entirety (fortion, in general, and it can be superior in both space

FSAs). For the complexity discussion below, how—F——— , , _ _
di d th timizati Instead The modified Bar-Hillel construction described by Chi-
ever, we disregard these optimizalions.  Instéad We, 2007) has time and space complexif{T),||M]*); the

focus on the complexity of each MT step describeehodifications were introduced presumably to benefit theesubs
in the introduction: guent pruning method employed (but see Huang et al. (2005)).
2The time (resp. space) complexity is not cubic (resp.

S : . quadratic) in|T,||M]|. Given a statey in T}, there exists a
1. SCFG Translation:Assuming that the parsing unique s, such thatg belongs toC’s,. Given a statelqs, g2)

of the input is performed by a CYK parse, theny, T, M, (q1,42) € Cs,.0p) ONly if 51 = s,,, and hence
the CFG, hypergraph, RTN and PDA representy, ¢2) belongs to at mogt\/| components.

rithm from Section 2.3 has time and space com-

. Shortest Path:The shortest path algorithm on
the hypergraph, RTN, and FSA representations
requires linear time and space (given the under-
lying acyclicity) (Huang, 2008; Mohri, 2009).
As presented in Section 2.4, the PDA rep-
resentation can require time cubic and space
quadratic inM|.2
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Representation | Time Complexity | Space Complexity 0 75x10° 75x10° 7.5x10 "
CFG/hypergraph O([s[" [GT[M[") | O([s[" [GI M) 2075 202 a1 09

PDA O(s’ |G IM*) | O(ls |G||M?) o

FSA 0(6‘5‘3‘5" |M]) O(e‘S‘S‘G‘ |M]|) Table 2:Number of ngrams (in millions) in the 1st pass 4-gram

language models obtained with differéhtalues (top row).
Table 1: Complexity using various target translation rep-

resentations. . .
tems, standard MERT (Och, 2003) iterative param-

eter estimation under IBM BLEUis performed on

and time to the FSA representation depending on thge development set.

relative SCFG and LM sizes. The FSA representa- The parallel corpus is aligned using MTTK (Deng
tion favors smaller target translation sets and larggynq Byrne, 2008) in both source-to-target and
language models. Should a better complexity PDAgrget-to-source directions. We then follow stan-
shortest path algorithm be found, this conclusiogjarg heuristics (Chiang, 2007) and filtering strate-
could change. In practice, the PDA and FSA repgies (Iglesias et al., 2009b) to extract hierarchical
resentations benefit hugely from the optimizationgnrases from the union of the directional word align-
mentioned above, these optimizations improve th@ents. We call a translation grammar the set of rules
time and space usage by one order of magnitude. extracted from this process. We extract two transla-

. tion grammars:
4 Experimental Framework

e A restricted grammar where we apply the fol-
lowing additional constraint: rules are only
considered if they have a forward translation
probability p > 0.01. We call thisG1. As will
be discussed later, the interest of this grammar
is that decoding under it can be exact, that is,
without any pruning in search.

e An unrestricted one without the previous con-
straint. We call thigz,. This is a superset of
the previous grammar, and exact search under
it is not feasible for HIFST: pruning is required
in search.

We use two hierarchical phrase-based SMT de-
coders. The first one is a lattice-based decoder im-
plemented with weighted finite-state transducers (de
Gispert et al., 2010) and described in Section 3. The
second decoder is a modified version using PDAs
as described in Section 2. In order to distinguish
both decoders we call them HiFST and HiPDT, re-
spectively. The principal difference between the two
decoders is where the finite-stagpansionstep is
done. In HIFST, the RTN representation is immedi-
ately expanded to an FSA. In HiPDT, this expansion
is delayed as late as possible - in the output of the
shortest path algorithm. Another possible configu- The initial English language model is a Kneser-
ration is to expand after the LM intersection step bukiey 4-gram estimated over the target side of the par-
before the shortest path algorithm; in practice this igllel text and the AFP and Xinhua portions of mono-
quite similar to HiFST. lingual data from the English Gigaword Fourth Edi-
In the following sections we report experimentsion (LDC2009T13). This is a total of 1.3B words.
in Chinese-to-English translation. For translatiorwe will call this language modél/;. For large lan-
model training, we use a subset of the GALE 2008uage model rescoring we also use the LM ob-
evaluation parallel text;this is 2.1M sentences andtained by interpolating/; with a zero-cutoff stupid-
approximately 45M words per language. We rebackoff (Brants et al., 2007) 5-gram estimated using
port translation results on a developmenttsae-nw  6.6B words of English newswire text.
(1,755 sentences) and a test ®stt-nw(1,671 sen-  We next describe how we build translation sys-
tences). These contain translations produced by ti@ms using entropy-pruned language models.
GALE program and portions of the newswire sec-

tions of MTO02 through MTO06. In tuning the sys- 1. We build abaseline HiFST system that usés
and a hierarchical gramma&#, parameters be-

®See  http://projects.ldc.upenn.edu/gale/data/catatiog. ing optimized with MERT under BLEU.
We excluded the UN material and the LDC2002E18,
LDC2004T08, LDC2007E08 and CUDonga collections. “4See ftp:/ljaguar.ncsl.nist.gov/mt/resources/mtea-pl
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2. We then use entropy-based pruning of the larin performance is only due to th&f! involved in
guage model (Stolcke, 1998) under a relativelecoding and thg applied prior to rescoring.
perplexity threshold of) to reduce the size of ~ As shown in row numbeg, for # < 10~ the
M. We will call the resulting language model system provides the same performance to the base-
asMY. Table 2 shows the number of n-gramdine when3 > 8, while decoding time is reduced
(in millions) obtained for differené values. by roughly 40%. This is becausd?! is 10% of the

3. We translate with/{ using the same param- size of the original language modaf;, as shown
eters obtained in MERT in step 1, except foiin Table 2. AsM? is further reduced by increas-
the word penalty, tuned over the lattices undeing 6 (see rows numbes and4), decoding time is
BLEU performance. This produces a translaalso reduced. However, the beam widtirequired
tion lattice in the topmost cell that contains hy-in order to recover the good hypotheses in rescoring
potheses with exact scores under the translationcreases, reachintR for experiment 3 and5 for
grammar andv/?. experiment 4.

4. Translation lattices in the topmost cell are Regarding rescoring with the largéd, (step 6
pruned with a likelihood-based beam widith  in Section 4), the system is also able to match the

5. We remove theM? scores from the pruned baseline performance as long @ss wide enough,
translation lattices and reapply;, moving the given the particulan/{ used in first-pass decoding.
word penalty back to the original value ob-Interestingly, results show that a simil&rvalue is
tained in MERT. These operations can be cameeded when rescoring either withy, or M.
ried out efficiently via standard FSA opera- The usage of entropy-pruned language models in-
tions. crements speed at the risk of search errors. For in-

6. Additionally, we can rescore the translation latstance, comparing the outputs of systemand 2
tices obtained in steps 1 or 5 with the largemwith 5 =10 in Table 3 we find 45 different 1-best hy-
language model,. Again, this can be done potheses, even though the BLEU score is identical.
via standard FSA operations. In other words, we have 45 cases in which sysfem

_ _ _ , is not able to recover the baseline output because the
Note_ that_lfﬂzoo orif 6=0, th_e translatlon lattices 1st-pass likelihood beaghis not wide enough. Sim-
obtained m_step 1 shogld bg identical to the ones ‘Hfarly, systems fails in 101 casesd = 12) and sys-
step 5. While the goal is to increageo reduce the (o4 fajis in 95 cases. Interestingly, some of these
size of the language model used at Steg3will  gentences would require impractically huge beams.
have to increase accordingly so as to avoid pruningy,;q might be due to the Kneser-Ney smoothing,

away desirable hypotheses in Step 4.51tefines \yhich interacts badly with entropy pruning (Chelba
a sufficiently wide beam to contain the hypotheseg; 4 2010).

which would be favoured by, faster decoding
with M¢ would be possible without incurring search

errorsM;. This is investigated next. 6 Hiero with PDAs and FSAs

In this section we contrast HiIFST with HIPDT under
the same translation grammar and entropy-pruned
In Table 3 we show translation performance unddanguage models. Under the constrained grammar
grammarG, for different values of). Performance G their performance is identical as both decoders
is reported after first-pass decoding willi{ (see can generate the entire search space which can then
step 3 in Section 4), after rescoring wifti; (see be rescored witld/; or M5 as shown in the previous
step 5) and after rescoring wiftf; (see step 6). The section.
baseline (experiment number 1) uges 0 (that is, Therefore, we now focus on the unconstrained
M) for decoding. grammarG,y, where exact search is not feasible for
Under translation grammalr,, HiIFST is able to HiFST. In order to evaluate this problem, we run
generate an FSA with the entire space of possiblaoth decoders ovaune-nw restricting memory us-
candidate hypotheses. Therefore, any degradatiage to 10 gigabytes. If this limit is reached in decod-

5 Entropy-Pruned LM in Rescoring
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HIFST (G + MY) +M, +M,

# 0 tune-nw | test-nw| time | § | tune-nw| test-nw| tune-nw| test-nw

1 0 (M) 34.3 345 | 0.68 | - - - 34.8 35.6

2 | 75x1077 32.0 32.8 0.38 | 10 34.8 35.6
9 34.3 34.5 34.9 35.5
8

3 | 75x10°8 29.5 30.0 0.28 | 12 34.2 34.5 34.7 35.6
9 34.3 34.4 34.8 35.2
8 34.2 35.1

4 1 75x107° 26.0 26.4 | 0.20 | 15 34.2 34.5 34.7 35.6
12 34.4 355

Table 3: Results (lowercase IBM BLEU scores) undarwith various M¢ as obtained with several values @f
Performance in subsequent rescoring with and M, after likelihood-based pruning of the translation latsider
variousg is also reported. Decoding time, in seconds/word eest-nw refers strictly to first-pass decoding.

Exact search for G + MY with memory usage under 10 GB
# 0 HIFST HiPDT
Success Failure Success Failure
Expand | Compose Compose| Expand
2| 75x107° 12 51 37 40 8 52
3| 7.5x%x10" 16 53 31 76 1 23
41 75%x10°7 18 53 29 99.8 0 0.2

Table 4: Percentage of success in producing the 1-bestat@msunderG, with variousM{ when applying a hard
memory limitation of 10 GB, as measured ovene-nw(1755 sentences). If decoder fails, we report what step was
being done when the limit was reached. HiFST could be expanidio an FSA or composing the FSA wift1?;
HiPDT could be PDA composing with/{ or PDA expanding into an FSA.

HiPDT (G2 + M?) +M; +Ms
0 tune-nw | test-nw /)) tune-nw | test-nw | tune-nw | test-nw
75x%x 107 25.7 26.3 | 15| 34.6 34.8 35.2 36.1

Table 5: HiPDT performance on gramm@s with = 7.5 x 10~7. Exact search with HiFST is not possible under
these conditions: pruning during search would be required.

ing, the process is killéd We report what internal differences between both decoders increase as the
decoding operation caused the system to crash. Fbff is more reduced, and fér="7.5 x 10~7 (row 4),
HiFST, these include expansion into an FI&{ HiPDT is able to perform exact search over all but
pand and subsequent intersection with the languagéiree sentences.
model Composk For HiPDT, these include PDA  Table 5 shows performance using the latter con-
intersection with the language mod€ldmposieand figuration (Table 4, row 4). After large language
subsequent expansion into an F3xpand, using model rescoring, HiPDT improves 0.5 BLEU over
algorithms described in Section 2. baseline with7; (Table 3, row 1).

Table 4 shows the number of times each decoder
succeeds in finding a hypothesis given the memory Discussion and Conclusion
limit, and the operations being carried out when they
fail to do so, when decoding with varioud?. With  HiFST fails to decode mainly because the expansion
6="7.5x 107 (row 2), HiFST can only decode 218 into an FST leads to far too big search spaces (e.g.
sentences, while HIPDT succeeds in 703 cases. Ttals 938 times undef = 7.5 x 10~%). If it suc-
mmit command. The experiment was carried outCeeds n expandlng the search sz_ice into an FST,
over machines with different configurations and load. Thereth€ decoder still has to compose with the language
fore, these numbers must be considered as approximatesvaluenodel, which is also critical in terms of memory us-
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age (fails 536 times). In contrast, HiPDT creates &eferences

PDA, :\VhICh IS a rr:jore" comp?f(.:t.reprt.esentatloln of th Ifred V. Aho and Jeffrey D. Ullman. 1972The Theory
search space and allows etiicient |r|ter§ectlon wit of Parsing, Translation and Compilingrolume 1-2.
the language model before expansion into an FST. prantice-Hall.

Therefore, the memory use}ge is considerably Iowe(5yri| Allauzen and Michael Riley, 2011. Pushdown
Nevertheless, the complexity of the language model Transducershttp:/pdt.openfst.org.

is critical for the PDA intersection and very speciallycyril Allauzen, Michael Riley, Johan Schalkwyk, Wo-
the PDA expansion into an FST (fails 403 times for jciech Skut, and Mehryar Mohri. 2007. OpenFst:
0=17.5x 10*8). A general and efficient weighted finite-state trans-
With the algorithms presented in this paper, de- ducer library. InProceedings of CIAApages 11-23.

coding with PDAs is possible for any translation http://www.openfst.org.
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. me 6482 oL.NCS pages 28—-38. Springer.
LMs, although this has been shown to be an ad- , i S pag .pl g
equate strategy when applying compact CFG ruIeY' Bar-Hillel, M. Perles, and E. Shamir. 1964. On formal
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sets. On the other hand, HIFST cannot decode underY_ Bar-Hillel, editor, Language and Information: Se-
large translation grammars, thus requiring pruning |ected Essays on their Theory and Applicatipages
during lattice construction, but it can apply an un- 116-150. Addison-Wesley.
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robust than HiIFST when using complex hierarchi- terspeechpages 2242—2245,
cal grammars. Conversely, FSTs might be more . . . .
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