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Abstract

We offer a simple, effective, and scalable
method for statistical machine translation pa-
rameter tuning based on the pairwise approach
to ranking (Herbrich et al., 1999). Unlike
the popular MERT algorithm (Och, 2003), our
pairwise ranking optimization (PRO) method
is not limited to a handful of parameters and
can easily handle systems with thousands of
features. Moreover, unlike recent approaches
built upon the MIRA algorithm of Crammer
and Singer (2003) (Watanabe et al., 2007; Chi-
ang et al., 2008b), PRO is easy to imple-
ment. It uses off-the-shelf linear binary classi-
fier software and can be built on top of an ex-
isting MERT framework in a matter of hours.
We establish PRO’s scalability and effective-
ness by comparing it to MERT and MIRA and
demonstrate parity on both phrase-based and
syntax-based systems in a variety of language
pairs, using large scale data scenarios.

1 Introduction

The MERT algorithm (Och, 2003) is currently the
most popular way to tune the parameters of a sta-
tistical machine translation (MT) system. MERT
is well-understood, easy to implement, and runs
quickly, but can behave erratically and does not scale
beyond a handful of features. This lack of scalability
is a significant weakness, as it inhibits systems from
using more than a couple dozen features to discrimi-
nate between candidate translations and stymies fea-
ture development innovation.

Several researchers have attempted to address
this weakness. Recently, Watanabe et al. (2007)

and Chiang et al. (2008b) have developed tuning
methods using the MIRA algorithm (Crammer and
Singer, 2003) as a nucleus. The MIRA technique of
Chiang et al. has been shown to perform well on
large-scale tasks with hundreds or thousands of fea-
tures (2009). However, the technique is complex and
architecturally quite different from MERT. Tellingly,
in the entire proceedings of ACL 2010 (Hajič et al.,
2010), only one paper describing a statistical MT
system cited the use of MIRA for tuning (Chiang,
2010), while 15 used MERT.1

Here we propose a simpler approach to tuning that
scales similarly to high-dimensional feature spaces.
We cast tuning as a ranking problem (Chen et al.,
2009), where the explicit goal is to learn to correctly
rank candidate translations. Specifically, we follow
the pairwise approach to ranking (Herbrich et al.,
1999; Freund et al., 2003; Burges et al., 2005; Cao et
al., 2007), in which the ranking problem is reduced
to the binary classification task of deciding between
candidate translation pairs.

Of primary concern to us is the ease of adoption of
our proposed technique. Because of this, we adhere
as closely as possible to the established MERT ar-
chitecture and use freely available machine learning
software. The end result is a technique that scales
and performs just as well as MIRA-based tuning,
but which can be implemented in a couple of hours
by anyone with an existing MERT implementation.
Mindful that many would-be enhancements to the

1The remainder either did not specify their tuning method
(though a number of these used the Moses toolkit (Koehn et al.,
2007), which uses MERT for tuning) or, in one case, set weights
by hand.
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state-of-the-art are false positives that only show im-
provement in a narrowly defined setting or with lim-
ited data, we validate our claims on both syntax and
phrase-based systems, using multiple language pairs
and large data sets.

We describe tuning in abstract and somewhat for-
mal terms in Section 2, describe the MERT algo-
rithm in the context of those terms and illustrate its
scalability issues via a synthetic experiment in Sec-
tion 3, introduce our pairwise ranking optimization
method in Section 4, present numerous large-scale
MT experiments to validate our claims in Section 5,
discuss some related work in Section 6, and con-
clude in Section 7.

2 Tuning

In Figure 1, we show an example candidate space,
defined as a tuple 〈∆, I, J, f, e,x〉 where:

• ∆ is a positive integer referred to as the dimen-
sionality of the space

• I is a (possibly infinite) set of positive integers,
referred to as sentence indices

• J maps each sentence index to a (possibly infi-
nite) set of positive integers, referred to as can-
didate indices

• f maps each sentence index to a sentence from
the source language

• e maps each pair 〈i, j〉 ∈ I × J(i) to the jth

target-language candidate translation of source
sentence f(i)

• x maps each pair 〈i, j〉 ∈ I × J(i) to a
∆-dimension feature vector representation of
e(i, j)

The example candidate space has two source sen-
tences, three candidate translations for each source
sentence, and feature vectors of dimension 2. It is
an example of a finite candidate space, defined as
a candidate space for which I is finite and J maps
each index of I to a finite set.

A policy of candidate space 〈∆, I, J, f, e,x〉 is a
function that maps each member i ∈ I to a member
of J(i). A policy corresponds to a choice of one
candidate translation for each source sentence. For

the example in Figure 1, policy p1 = {1 7→ 2, 2 7→
3} corresponds to the choice of “he does not go” for
the first source sentence and “I do not go” for the
second source sentence. Obviously some policies
are better than others. Policy p2 = {1 7→ 3, 2 7→ 1}
corresponds to the inferior translations “she not go”
and “I go not.”

We assume the MT system distinguishes between
policies using a scoring function for candidate trans-
lations of the form hw(i, j) = w · x(i, j), where w
is a weight vector of the same dimension as feature
vector x(i, j). This scoring function extends to a
policy p by summing the cost of each of the policy’s
candidate translations: Hw(p) =

∑
i∈I hw(i, p(i)).

As can be seen in Figure 1, using w = [−2, 1],
Hw(p1) = 9 and Hw(p2) = −8.

The goal of tuning is to learn a weight vector w
such that Hw(p) assigns a high score to good poli-
cies, and a low score to bad policies.2 To do so,
we need information about which policies are good
and which are bad. This information is provided by
a “gold” scoring function G that maps each policy
to a real-valued score. Typically this gold function
is BLEU (Papineni et al., 2002), though there are
several common alternatives (Lavie and Denkowski,
2009; Melamed et al., 2003; Snover et al., 2006;
Chiang et al., 2008a).

We want to find a weight vector w such that Hw

behaves “similarly” to G on a candidate space s.
We assume a loss function ls(Hw, G) which returns
the real-valued loss of using scoring function Hw

when the gold scoring function is G and the candi-
date space is s. Thus, we may say the goal of tuning
is to find the weight vector w that minimizes loss.

3 MERT

In general, the candidate space may have infinitely
many source sentences, as well as infinitely many
candidate translations per source sentence. In prac-
tice, tuning optimizes over a finite subset of source
sentences3 and a finite subset of candidate transla-
tions as well. The classic tuning architecture used
in the dominant MERT approach (Och, 2003) forms
the translation subset and learns weight vector w via

2Without loss of generality, we assume that a higher score
indicates a better translation.

3See Section 5.2 for the tune sets used in this paper’s exper-
iments.
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Source Sentence Candidate Translations
i f(i) j e(i, j) x(i, j) hw(i, j) g(i, j)

1 “il ne va pas” 1 “he goes not” [2 4] 0 0.28
2 “he does not go” [3 8] 2 0.42
3 “she not go” [6 1] -11 0.12

2 “je ne vais pas” 1 “I go not” [-3 -3] 3 0.15
2 “we do not go” [1 -5] -7 0.18
3 “I do not go” [-5 -3] 7 0.34

Figure 1: Example candidate space of dimensionality 2. Note: I = {1, 2}, J(1) = J(2) = {1, 2, 3}. We also show a
local scoring function hw(i, j) (where w = [−2, 1]) and a local gold scoring function g(i, j).

Algorithm TUNE(s, G):
1: initialize pool: let s′ = 〈∆, I ′, J ′, f, e,x〉,

where I ′ ⊆ I and J ′ = ∅
2: for the desired number of iterations do
3: candidate generation: choose index pairs

(i, j); for each, add j to J ′(i)
4: optimization: find vector w that minimizes

ls′(Hw, G)
5: return w

Figure 2: Schema for iterative tuning of base candidate
space s = 〈∆, I, J, f, e,x〉 w.r.t. gold function G.

a feedback loop consisting of two phases. Figure 2
shows the pseudocode. During candidate genera-
tion, candidate translations are selected from a base
candidate space s and added to a finite candidate
space s′ called the candidate pool. During optimiza-
tion, the weight vector w is optimized to minimize
loss ls′(Hw, G).

For its candidate generation phase, MERT gener-
ates the k-best candidate translations for each source
sentence according to hw, where w is the weight
vector from the previous optimization phase (or an
arbitrary weight vector for the first iteration).

For its optimization phase, MERT defines the loss
function as follows:

ls(Hw, G) = max
p
G(p)−G(arg max

p
Hw(p))

In other words, it prefers weight vectors w such
that the gold function G scores Hw’s best policy as
highly as possible (if Hw’s best policy is the same
as G’s best policy, then there is zero loss). Typically
the optimization phase is implemented using Och’s
line optimization algorithm (2003).

MERT has proven itself effective at tuning candi-
date spaces with low dimensionality. However, it is
often claimed that MERT does not scale well with
dimensionality. To test this claim, we devised the
following synthetic data experiment:

1. We created a gold scoring function G that is
also a linear function of the same form as Hw,
i.e.,G(p) = Hw∗(p) for some gold weight vec-
tor w∗. Under this assumption, the role of the
optimization phase reduces to learning back the
gold weight vector w∗.

2. We generated a ∆-dimensionality candidate
pool with 500 source “sentences” and 100 can-
didate “translations” per sentence. We created
the corresponding feature vectors by drawing
∆ random real numbers uniformly from the in-
terval [0, 500].

3. We ran MERT’s line optimization on this syn-
thetic candidate pool and compared the learned
weight vector w to the gold weight vector w∗

using cosine similarity.

We used line optimization in the standard way,
by generating 20 random starting weight vectors and
hill-climbing on each independently until no further
progress is made, then choosing the final weight vec-
tor that minimizes loss. We tried various dimen-
sionalities from 10 to 1000. We repeated each set-
ting three times, generating different random data
each time. The results in Figure 3 indicate that as
the dimensionality of the problem increases MERT
rapidly loses the ability to learn w∗. Note that this
synthetic problem is considerably easier than a real
MT scenario, where the data is noisy and interdepen-
dent, and the gold scoring function is nonlinear. If
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MERT cannot scale in this simple scenario, it has lit-
tle hope of succeeding in a high-dimensionality de-
ployment scenario.

4 Optimization via Pairwise Ranking

We would like to modify MERT so that it scales well
to high-dimensionality candidate spaces. The most
prominent example of a tuning method that per-
forms well on high-dimensionality candidate spaces
is the MIRA-based approach used by Watanabe et
al. (2007) and Chiang et al. (2008b; 2009). Unfortu-
nately, this approach requires a complex architecture
that diverges significantly from the MERT approach,
and consequently has not been widely adopted. Our
goal is to achieve the same performance with mini-
mal modification to MERT.

With MERT as a starting point, we have a choice:
modify candidate generation, optimization, or both.
Although alternative candidate generation methods
have been proposed (Macherey et al., 2008; Chiang
et al., 2008b; Chatterjee and Cancedda, 2010), we
will restrict ourselves to MERT-style candidate gen-
eration, in order to minimize divergence from the
established MERT tuning architecture. Instead, we
focus on the optimization phase.

4.1 Basic Approach

While intuitive, the MERT optimization module fo-
cuses attention on Hw’s best policy, and not on its
overall prowess at ranking policies. We will cre-
ate an optimization module that directly addresses
Hw’s ability to rank policies in the hope that this
more holistic approach will generalize better to un-
seen data.

Assume that the gold scoring function G decom-
poses in the following way:

G(p) =
∑

i∈I
g(i, p(i)) (1)

where g(i, j) is a local scoring function that scores
the single candidate translation e(i, j). We show an
example g in Figure 1. For an arbitrary pair of can-
didate translations e(i, j) and e(i, j′), the local gold
function g tells us which is the better translation.
Note that this induces a ranking on the candidate
translations for each source sentence.

We follow the pairwise approach to ranking (Her-
brich et al., 1999; Freund et al., 2003; Burges et al.,
2005; Cao et al., 2007). In the pairwise approach,
the learning task is framed as the classification of
candidate pairs into two categories: correctly or-
dered and incorrectly ordered. Specifically, for can-
didate translation pair e(i, j) and e(i, j′), we want:
g(i, j) > g(i, j′) ⇔ hw(i, j) > hw(i, j′). We can
re-express this condition:
g(i, j) > g(i, j′)⇔ hw(i, j) > hw(i, j′)

⇔ hw(i, j)− hw(i, j′) > 0

⇔ w · x(i, j)−w · x(i, j′) > 0

⇔ w · (x(i, j)− x(i, j′)) > 0

Thus optimization reduces to a classic binary clas-
sification problem. We create a labeled training in-
stance for this problem by computing difference vec-
tor x(i, j) − x(i, j′), and labeling it as a positive
or negative instance based on whether, respectively,
the first or second vector is superior according to
gold function g. To ensure balance, we consider
both possible difference vectors from a pair. For ex-
ample, given the candidate space of Figure 1, since
g(1, 1) > g(1, 3), we would add ([−4, 3],+) and
([4,−3],−) to our training set. We can then feed this
training data directly to any off-the-shelf classifica-
tion tool that returns a linear classifier, in order to ob-
tain a weight vector w that optimizes the above con-
dition. This weight vector can then be used directly
by the MT system in the subsequent candidate gen-
eration phase. The exact loss function ls′(Hw, G)
optimized depends on the choice of classifier.4

Typical approaches to pairwise ranking enumer-
ate all difference vectors as training data. For tuning
however, this means O(|I| ∗ J2

max) vectors, where
Jmax is the cardinality of the largest J(i). Since
I and Jmax commonly range in the thousands, a
full enumeration would produce billions of feature
vectors. Out of tractability considerations, we sam-
ple from the space of difference vectors, using the
sampler template in Figure 4. For each source sen-
tence i, the sampler generates Γ candidate transla-
tion pairs 〈j, j′〉, and accepts each pair with proba-
bility αi(|g(i, j) − g(i, j′)|). Among the accepted
pairs, it keeps the Ξ with greatest g differential, and
adds their difference vectors to the training data.5

4See (Chen et al., 2009) for a brief survey.
5The intuition for biasing toward high score differential is
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Figure 3: Result of synthetic data learning experiment
for MERT and PRO, with and without added noise. As
the dimensionality increases MERT is unable to learn the
original weights but PRO still performs adequately.

4.2 Scalability
We repeated the scalability study from Section 3,
now using our pairwise ranking optimization (here-
after, PRO) approach. Throughout all experiments
with PRO we choose Γ = 5000, Ξ = 50, and the
following step function α for each αi: 6

α(n) =

{
0 if n < 0.05

1 otherwise

We used MegaM (Daumé III, 2004) as a binary
classifier in our contrasting synthetic experiment and
ran it “out of the box,” i.e., with all default settings
for binary classification.7 Figure 3 shows that PRO
is able to learn w∗ nearly perfectly at all dimension-
alities from 10 to 1000.

As noted previously, though, this is a rather sim-
ple task. To encourage a disconnect between g and
hw and make the synthetic scenario look more like
MT reality, we repeated the synthetic experiments

that our primary goal is to ensure good translations are preferred
to bad translations, and not to tease apart small differences.

6We obtained these parameters by trial-and-error experi-
mentation on a single MT system (Urdu-English SBMT), then
held them fixed throughout our experiments. We obtained sim-
ilar results using Γ = Ξ = 100, and for each αi, a logistic sig-
moid function centered at the mean g differential of candidate
translation pairs for the ith source sentence. This alternative ap-
proach has the advantage of being agnostic about which gold
scoring function is used.

7With the sampling settings previously described and
MegaM as our classifier we were able to optimize two to three
times faster than with MERT’s line optimization.

Algorithm SAMPLERs,g( Γ, Ξ, i, αi ):
1: V = 〈〉
2: for Γ samplings do
3: Choose 〈j, j′〉 ∈ J(i)×J(i) uniformly at ran-

dom.
4: With probability αi(|g(i, j)-g(i, j′)|), add

(x(i, j),x(i, j′), |g(i, j)-g(i, j′)|) to V .
5: Sort V decreasingly by |g(i, j)-g(i, j′)|.
6: return (x(i, j) − x(i, j′), sign(g(i, j)-g(i, j′))

and (x(i, j′)-x(i, j), sign(g(i, j′)-g(i, j))) for
each of the first Ξ members of V .

Figure 4: Pseudocode for our sampler. Arguments: s =
〈∆, I, J, f, e,x〉 is a finite candidate space; g is a scoring
function; Γ, Ξ, i are nonnegative integers; αi is a func-
tion from the nonnegative real numbers to the real interval
[0, 1].

but added noise to each feature vector, drawn from
a zero-mean Gaussian with a standard deviation of
500. The results of the noisy synthetic experiments,
also in Figure 3 (the lines labeled “Noisy”), show
that the pairwise ranking approach is less successful
than before at learning w∗ at high dimensionality,
but still greatly outperforms MERT.

4.3 Discussion

The idea of learning from difference vectors also lies
at the heart of the MIRA-based approaches (Watan-
abe et al., 2007; Chiang et al., 2008b) and the ap-
proach of Roth et al. (2010), which, similar to our
method, uses sampling to select vectors. Here, we
isolate these aspects of those approaches to create
a simpler tuning technique that closely mirrors the
ubiquitous MERT architecture. Among other sim-
plifications, we abstract away the choice of MIRA
as the classification method (our approach can use
any classification technique that learns a separating
hyperplane), and we eliminate the need for oracle
translations.

An important observation is that BLEU does not
satisfy the decomposability assumption of Equa-
tion (1). An advantage of MERT is that it can di-
rectly optimize for non-decomposable scoring func-
tions like BLEU. In our experiments, we use
the BLEU+1 approximation to BLEU (Liang et al.,
2006) to determine class labels. We will neverthe-
less use BLEU to evaluate the trained systems.
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PBMT

Language Experiment BLEU
feats method tune test

Urdu-English
base

MERT 20.5 17.7
MIRA 20.5 17.9
PRO 20.4 18.2

ext
MIRA 21.8 17.8
PRO 21.6 18.1

Arabic-English
base

MERT 46.8 41.2
MIRA 47.0 41.1
PRO 46.9 41.1

ext
MIRA 47.5 41.7
PRO 48.5 41.9

Chinese-English
base

MERT 23.8 22.2
MIRA 24.1 22.5
PRO 23.8 22.5

ext
MIRA 24.8 22.6
PRO 24.9 22.7

SBMT

Language Experiment BLEU
feats method tune test

Urdu-English
base

MERT 23.4 21.4
MIRA 23.6 22.3
PRO 23.4 22.2

ext
MIRA 25.2 22.8
PRO 24.2 22.8

Arabic-English
base

MERT 44.7 39.0
MIRA 44.6 39.0
PRO 44.5 39.0

ext
MIRA 45.8 39.8
PRO 45.9 40.3

Chinese-English
base

MERT 25.5 22.7
MIRA 25.4 22.9
PRO 25.5 22.9

ext
MIRA 26.0 23.3
PRO 25.6 23.5

Table 1: Machine translation performance for the experiments listed in this paper. Scores are case-sensitive IBM
BLEU. For every choice of system, language pair, and feature set, PRO performs comparably with the other methods.

5 Experiments

We now turn to real machine translation condi-
tions to validate our thesis: We can cleanly replace
MERT’s line optimization with pairwise ranking op-
timization and immediately realize the benefits of
high-dimension tuning. We now detail the three
language pairs, two feature scenarios, and two MT
models used for our experiments. For each language
pair and each MT model we used MERT, MIRA, and
PRO to tune with a standard set of baseline features,
and used the latter two methods to tune with an ex-
tended set of features.8 At the end of every experi-
ment we used the final feature weights to decode a
held-out test set and evaluated it with case-sensitive
BLEU. The results are in Table 1.

5.1 Systems

We used two systems, each based on a different MT
model. Our syntax-based system (hereafter, SBMT)
follows the model of Galley et al. (2004). Our

8MERT could not run to a satisfactory completion in any
extended feature scenario; as implied in the synthetic data ex-
periment of Section 3, the algorithm makes poor choices for
its weights and this leads to low-quality k-best lists and dismal
performance, near 0 BLEU in every iteration.

phrase-based system (hereafter, PBMT) follows the
model of Och and Ney (2004). In both systems
we learn alignments with GIZA++ (Och and Ney,
2000) using IBM Model 4; for Urdu-English and
Chinese-English we merged alignments with the re-
fined method, and for Arabic-English we merged
with the union method.

5.2 Data

Table 2 notes the sizes of the datasets used in our ex-
periments. All tune and test data have four English
reference sets for the purposes of scoring.

Data U-E A-E C-E

Train
lines 515K 6.5M 7.9M

words 2.2M 175M 173M

Tune
lines 923 1994 1615

words 16K 65K 42K

Test
lines 938 1357 1357

words 18K 47K 37K

Table 2: Data sizes for the experiments reported in this
paper (English words shown).
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Class
Urdu-English Arabic-English Chinese-English

PBMT SBMT PBMT SBMT PBMT SBMT
base ext base ext base ext base ext base ext base ext

baseline 15 15 19 19 15 15 19 19 15 15 19 19
target word – 51 – 50 – 51 – 50 – 51 – 299

discount – 11 – 11 – 11 – 10 – 11 – 10
node count – – – 99 – – – 138 – – – 96
rule overlap – – – 98 – – – 136 – – – 93
word pair – 2110 – – – 6193 – – – 1688 – –

phrase length – 63 – – – 63 – – – 63 – –
total 15 2250 19 277 15 6333 18 352 15 1828 19 517

Table 3: Summary of features used in experiments in this paper.

5.2.1 Urdu-English
The training data for Urdu-English is that made

available in the constrained track in the NIST 2009
MT evaluation. This includes many lexicon entries
and other single-word data, which accounts for the
large number of lines relative to word count. The
NIST 2008 evaluation set, which contains newswire
and web data, is split into two parts; we used roughly
half each for tune and test. We trained a 5-gram
English language model on the English side of the
training data.

5.2.2 Arabic-English
The training data for Arabic English is that made

available in the constrained track in the NIST 2008
MT evaluation. The tune set, which contains only
newswire data, is a mix from NIST MT evaluation
sets from 2003–2006 and from GALE development
data. The test set, which contains both web and
newswire data, is the evaluation set from the NIST
2008 MT evaluation. We trained a 4-gram English
language model on the English side of the training
data.

5.2.3 Chinese-English
For Chinese-English we used 173M words of

training data from GALE 2008. For SBMT we used
a 32M word subset for extracting rules and building
a language model, but used the entire training data
for alignments, and for all PBMT training. The tune
and test sets both contain web and newswire data.
The tune set is selected from NIST MT evaluation
sets from 2003–2006. The test set is the evaluation
set from the NIST 2008 MT evaluation. We trained a

3-gram English language model on the English side
of the training data.

5.3 Features

For each of our systems we identify two feature sets:
baseline, which correspond to the typical small fea-
ture set reported in current MT literature, and ex-
tended, a superset of baseline, which adds hundreds
or thousands of features. Specifically, we use 15
baseline features for PBMT, similar to the baseline
features described by Watanabe et al. (2007). We
use 19 baseline features for SBMT, similar to the
baseline features described by Chiang et al. (2008b).

We used the following feature classes in SBMT
and PBMT extended scenarios:

• Discount features for rule frequency bins (cf.
Chiang et al. (2009), Section 4.1)

• Target word insertion features9

We used the following feature classes in SBMT ex-
tended scenarios only (cf. Chiang et al. (2009), Sec-
tion 4.1):10

• Rule overlap features

• Node count features
9For Chinese-English and Urdu-English SBMT these fea-

tures only fired when the inserted target word was unaligned to
any source word.

10The parser used for Arabic-English had a different nonter-
minal set than that used for the other two SBMT systems, ac-
counting for the wide disparity in feature count for these feature
classes.
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Figure 5: Comparison of MERT, PRO, and MIRA on tuning Urdu-English SBMT systems, and test results at every
iteration. PRO performs comparably to MERT and MIRA.

We used the following feature classes in PBMT
extended scenarios only:

• Unigram word pair features for the 80 most fre-
quent words in both languages plus tokens for
unaligned and all other words (cf. Watanabe et
al. (2007), Section 3.2.1)11

• Source, target, and joint phrase length fea-
tures from 1 to 7, e.g. “tgt=4”, “src=2”, and
“src/tgt=2,4”

The feature classes and number of features used
within those classes for each language pair are sum-
marized in Table 3.

5.4 Tuning settings
Each of the three approaches we compare in this
study has various details associated with it that may
prove useful to those wishing to reproduce our re-
sults. We list choices made for the various tuning
methods here, and note that all our decisions were
made in keeping with best practices for each algo-
rithm.

5.4.1 MERT
We used David Chiang’s CMERT implementation

of MERT that is available with the Moses system
(Koehn et al., 2007). We ran MERT for up to 30 it-
erations, using k = 1500, and stopping early when

11This constitutes 6,723 features in principle (822 − 1 since
“unaligned-unaligned” is not considered) but in practice far
fewer co-occurrences were seen. Table 3 shows the number of
actual unigram word pair features observed in data.

the accumulated k-best list does not change in an it-
eration. In every tuning iteration we ran MERT once
with weights initialized to the last iteration’s chosen
weight set and 19 times with random weights, and
chose the the best of the 20 ending points according
to G on the development set. The G we optimize
is tokenized, lower-cased 4-gram BLEU (Papineni et
al., 2002).

5.4.2 MIRA
We for the most part follow the MIRA algorithm

for machine translation as described by Chiang et al.
(2009)12 but instead of using the 10-best of each of
the best hw, hw +g, and hw-g, we use the 30-best
according to hw.13 We use the same sentence-level
BLEU calculated in the context of previous 1-best
translations as Chiang et al. (2008b; 2009). We ran
MIRA for 30 iterations.

5.4.3 PRO
We used the MegaM classifier and sampled as de-

scribed in Section 4.2. As previously noted, we used
BLEU+1 (Liang et al., 2006) for g. MegaM was easy
to set up and ran fairly quickly, however any linear
binary classifier that operates on real-valued features
can be used, and in fact we obtained similar results

12and acknowledge the use of David Chiang’s code
13This is a more realistic scenario for would-be implementers

of MIRA, as obtaining the so-called “hope” and “fear” transla-
tions from the lattice or forest is significantly more complicated
than simply obtaining a k-best list. Other tests comparing these
methods have shown between 0.1 to 0.3 BLEU drop using 30-
best hw on Chinese-English (Wang, 2011).
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using the support vector machine module of WEKA
(Hall et al., 2009) as well as the Stanford classifier
(Manning and Klein, 2003). We ran for up to 30 iter-
ations and used the same k and stopping criterion as
was used for MERT, though variability of sampling
precluded list convergence.

While MERT and MIRA use each iteration’s final
weights as a starting point for hill-climbing the next
iteration, the pairwise ranking approach has no ex-
plicit tie to previous iterations. To incorporate such
stability into our process we interpolated the weights
w′ learned by the classifier in iteration t with those
from iteration t − 1 by a factor of Ψ, such that
wt = Ψ ·w′ + (1−Ψ) ·wt−1. We found Ψ = 0.1
gave good performance across the board.

5.5 Discussion

We implore the reader to avoid the natural tendency
to compare results using baseline vs. extended fea-
tures or between PBMT and SBMT on the same lan-
guage pair. Such discussions are indeed interesting,
and could lead to improvements in feature engineer-
ing or sartorial choices due to the outcome of wagers
(Goodale, 2008), but they distract from our thesis.
As can be seen in Table 1, for each of the 12 choices
of system, language pair, and feature set, the PRO
method performed nearly the same as or better than
MIRA and MERT on test data.

In Figure 5 we show the tune and test BLEU us-
ing the weights learned at every iteration for each
Urdu-English SBMT experiment. Typical of the rest
of the experiments, we can clearly see that PRO ap-
pears to proceed more monotonically than the other
methods. We quantified PRO’s stability as compared
to MERT by repeating the Urdu-English baseline
PBMT experiment five times with each configura-
tion. The tune and test BLEU at each iteration is
depicted in Figure 6. The standard deviation of the
final test BLEU of MERT was 0.13 across the five
experiment instances, while PRO had a standard de-
viation of just 0.05.

6 Related Work

Several works (Shen et al., 2004; Cowan et al.,
2006; Watanabe et al., 2006) have used discrimina-
tive techniques to re-rank k-best lists for MT. Till-
mann and Zhang (2005) used a customized form of
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Figure 6: Tune and test curves of five repetitions of the
same Urdu-English PBMT baseline feature experiment.
PRO is more stable than MERT.

multi-class stochastic gradient descent to learn fea-
ture weights for an MT model. Och and Ney (2002)
used maximum entropy to tune feature weights but
did not compare pairs of derivations. Ittycheriah and
Roukos (2005) used a maximum entropy classifier to
train an alignment model using hand-labeled data.
Xiong et al. (2006) also used a maximum entropy
classifier, in this case to train the reordering com-
ponent of their MT model. Lattice- and hypergraph-
based variants of MERT (Macherey et al., 2008; Ku-
mar et al., 2009) are more stable than traditional
MERT, but also require significant engineering ef-
forts.

7 Conclusion
We have described a simple technique for tuning
an MT system that is on par with the leading tech-
niques, exhibits reliable behavior, scales gracefully
to high-dimension feature spaces, and is remark-
ably easy to implement. We have demonstrated, via
a litany of experiments, that our claims are valid
and that this technique is widely applicable. It is
our hope that the adoption of PRO tuning leads to
fewer headaches during tuning and motivates ad-
vanced MT feature engineering research.
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Hal Daumé III. 2004. Notes on CG and LM-BFGS
optimization of logistic regression. Paper available at
http://pub.hal3.name#daume04cg-bfgs,
implementation available at http://hal3.name/
megam/, August.

Yoav Freund, Raj Iyer, Robert E. Schapire, and Yoram
Singer. 2003. An efficient boosting algorithm for
combining preferences. Journal of Machine Learning
Research, 4:933–969.

Michel Galley, Mark Hopkins, Kevin Knight, and Daniel
Marcu. 2004. What’s in a translation rule? In HLT-
NAACL 2004: Main Proceedings, pages 273–280,
Boston, MA, May. Association for Computational Lin-
guistics.

Gloria Goodale. 2008. Language Weaver: fast
in translation. The Christian Science Monitor,
October 1. http://www.csmonitor.com/
Innovation/Tech-Culture/2008/1001/
language-weaver-fast-in-translation.
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