
Proceedings of the 2011 Conference on Empirical Methods in Natural Language Processing, pages 1202–1212,
Edinburgh, Scotland, UK, July 27–31, 2011. c©2011 Association for Computational Linguistics

Computing Logical Form on Regulatory Texts∗

Nikhil Dinesh
Artificial Intelligence Center

SRI International
Menlo Park, CA - 94025
dinesh@ai.sri.com

Aravind Joshi and Insup Lee
Department of Computer Science

University of Pennsylvania
Philadelphia, PA - 19104

{joshi,lee}@seas.upenn.edu

Abstract

The computation of logical form has been pro-
posed as an intermediate step in the translation
of sentences to logic. Logical form encodes
the resolution of scope ambiguities. In this
paper, we describe experiments on a modest-
sized corpus of regulation annotated with a
novel variant of logical form, calledabstract
syntax trees(ASTs). The main step in com-
puting ASTs is to order scope-taking opera-
tors. A learning model for ranking is adapted
for this ordering. We design features by study-
ing the problem of comparing the scope of one
operator to another. The scope comparisons
are used to compute ASTs, with an F-score of
90.6% on the set of ordering decisons.

1 Introduction

May (1985) argued for a level oflogical form as a
prelude to translating sentences to logic. Just as a
parse tree determines the constituent structure of a
sentence, a logical form of a sentence represents one
way of resolving scope ambiguities. The level of
logical form is an appealing layer of modularity; it
allows us to take a step beyond parsing in studying
scope phenomenon, and yet, avoid the open problem
of fully translating sentences to logic.

Data-driven analyses of scope have been of in-
terest in psycholinguistics (Kurtzman and MacDon-
ald, 1993) and more recently in NLP (Srinivasan
and Yates, 2009). The focus has typically been

∗This research was supported in part by ONR MURI
N00014-07-1-0907, NSF CNS-1035715, NSF IIS 07-05671,
and SRI International.

on predicting the preferred scopal ordering of sen-
tences with two quantifying determiners, for exam-
ple, in the sentence “every kid climbed a tree”. In
the related problem of translating database queries
to logic, Zettlemoyer and Collins (2009) and Wong
and Mooney (2007) consider the scope of adjectives
in addition to determiners, for example the scope of
“cheapest” in the noun phrase “the cheapest flights
from Boston to New York”. To our knowledge, em-
pirical studies of scope have been restricted to phe-
nomenon between and within noun phrases.

In this paper, we describe experiments on a novel
annotation of scope phenomenon in regulatory texts
– Section 610 of the Food and Drug Administra-
tion’s Code of Federal Regulations1 (FDA CFR).
Determiners, modals, negation, and verb phrase
modifiers are the main scope-taking operators. We
have annotated195 sentences with a variant of log-
ical form, calledabstract syntax trees(ASTs). Our
focus is on the problem of computing the AST, given
a (variant of a) parse tree of a sentence.

The long term goal of this work is to assist in the
translation of regulation to logic, for the application
of conformance checking. The problem is to for-
mally determine whether an organization conforms
to regulation, by checking the organization’s records
using the logical translation of regulation. Confor-
mance checking has been of interest in a variety of
regulatory contexts, and examples include privacy
policy (Barth et al., 2006; Jones and Sergot, 1992;
Anderson, 1996) and business contracts (Governa-
tori et al., 2006; Grosof et al., 1999).

We now discuss some problems that arise in defin-

1http://www.gpoaccess.gov/cfr/index.html

1202



ing logical form and the assumptions that we make
to circumvent these problems.

1.1 Problems and Assumptions

A key assumption of logical form is that the trans-
lation from language to logic is syntax-based. As
a result, the logic needs to be expressive enough to
accomodate a syntactic translation. There is no con-
sensus logic for constructs, such as, plurals, purpose
clauses, and certain modals. This leads to the fol-
lowing problem in defining logical form.
How do we define the logical form of a sentence,
without defining the logic?We adopt a specific for-
malism that accomodates a subset of the constructs
found in regulation. We generalize from the formal-
ized constructs to other constructs. Some of these
generalizations may need revision in the future.

We assume that sentences in regulation are trans-
lated to statements in logic of the form:

(id) ϕ(x1, ..., xn) 7→ ψ(x1, ..., xn)

where, “id” is an identifier,ϕ is the precondition,
ψ is the postcondition, andx1, ..., xn are free vari-
ables. The distinction between pre and postcondi-
tions has been adopted by most logics for regula-
tion, to accomodate exceptions to laws (Sergot et al.,
1986; Makinson and van der Torre, 2000; Governa-
tori et al., 2006). The pre and postconditions are
expressed in a modal logic that we designed in prior
work (Dinesh et al., 2011). In describing the logi-
cal form, we will sketch how the logical form can
be mapped to logic. But, we do not assume that the
reader has a detailed understanding of the logic.

Given the assumptions about the logic, our goal
is to transform a regulatory sentence into a structure
that lets us determine: (I) the constituents of a sen-
tence that contribute to the pre/postcondition, and
(II) the scope of operators in the pre/postcondition.
The structures that we use are calledabstract syn-
tax trees(ASTs), which can be understood as a re-
stricted kind of logical form for regulatory texts.

1.2 Contributions and Outline

In this paper, we focus on the problem of computing
the AST given a (kind of) parse tree for a sentence.
The main step is is toorder or rank scope-taking
operators. A learning model for ranking is adapted

for this ordering. We design features by studying the
problem of comparing the scope of one operator to
another. The pairwise scope comparisons are then
used to compute ASTs, with an F-score of90.6% on
the set of ordering decisons.

The rest of this paper is organized as follows. We
define ASTs using an example in Section 2, and
setup the learning problem in Section 3. We then de-
scribe the corpus using statistics about operators in
Section 4. In Section 5, we describe experiments on
comparing the scope of an operator to another. We
use the pairwise scope comparisons, in Section 6 to
comput the AST. We discuss related work in Sec-
tion 7 and conclude in Section 8.

2 Abstract Syntax Trees

We describeabstract syntax trees(ASTs) using an
example from CFR Section 610.11:

(1) A general safety testfor the detection of extra-
neous toxic contaminantsshall be performed on
biological productsintended for administration
to humans.

We discuss the translation in logic and the AST
for the fragment of (1) that appears in black. In or-
der to keep figures to a manageable size, we restrict
attention to fragments of sentences, by graying out
portions. The term AST is borrowed from compil-
ers (Aho et al., 1986), where it is used as an interme-
diate step in the semantic interpretation of programs.
Translation in Logic: The sentence (1) is formally
expressed as:

(1) bio prod(x) 7→ Om(x)(∃y : test(y) ∧ ψ(x, y))

where,ψ(x, y) = gensaf(y)∧ag(y,m(x))∧ob(y, x)
The predicates and function symbols are read as

follows. bio prod(x) - “x is a biological product”.
m(x) denotes the manufacturer ofx. The modal op-
eratorO stands for “obligation”. test(y) - “y is a
test (event)”.gensaf(y) - “y is a general safety pro-
cedure”.ag(y,m(x)) - “the agent ofy ism(x)”, and
ob(y, x) - “the object of the eventy is x”. The for-
malized version of the law is read as follows: “Ifx
is a biological product, then the manufacturerm(x)
is required/obligated to perform a general safety test
y which hasx as its object”. We refer the reader
to (Dinesh et al., 2011) for details on the logic.

1203



The distinction between pre and postconditions
is a non-trivial assumption. As with all logic-
programming formalisms, only free variables are
“shared” between pre and postconditons. This im-
plies that all existential quantification, modals, and
negation appear within the pre or postcondition. In
the example above, the existential quantifier (∃y)
and the modal (O) appear within the postcondition.
Abstract Syntax Tree: The AST for (1) is shown in
Figure 1. The main nodes of interest are the inter-
nal nodes labeledλ . An internal node withn + 1
children corresponds to ann-ary operator. The first
child of the internal node is the operator. Opera-
tors are labeled with a part-of-speech tag, for exam-
ple, “D” for determiner, “M” for modal, and “O” for
other. The remainingn children are its arguments.
We use the termnuclear scopeto refer to the last
(nth) argument of the operator, and the termrestric-
tor to refer to any other argument. We borrow these
terms from the literature on quantifier scope for de-
terminers (Heim and Kratzer, 1998, Chapter 7).

For example, the phrase “general safety test” is in
the restrictor of the operatorA, and the variabley
is in its nuclear scope. The modalshall is a unary
operator, and doesn’t have a restrictor. Non-unary
operators bind the variable displayed on the internal
node. The variabley is bound by the operatorA.

Implicit operatorsare inserted when there is no
overt word or phrase. In Figure 1, the implicit oper-
ators areunderlined. The generic noun phrase “bi-
ological products” is associated with the implicit de-
terminerall. Similarly, we use the implicit operator
Post to mark the position of the postcondition.

λx

D

all

R

bio. prod.

λ

O

Post

λ

M

shall

λ

M

be

λy

D

A

R

gen. saf. test

.

y performed onx

Figure 1: Example of an abstract syntax tree (AST).

We conclude this section with some notation for
describing ASTs. Given an AST for a sentences, we

say that an operatoroi scopes overoj, denotedoi ≫
oj, if oj appears in the nuclear scope ofoi. For ex-
ample, in Figure 1, we haveall ≫ Post, all ≫ shall,
all ≫ A, Post ≫ A, andshall ≫ A. In addition, we
say thatthe restrictor ofoi scopes overoj, denoted
R(oi) ≫ oj, if oj appears in the restrictor ofoi. Such
configurations occur with PP-modification of NPs,
and we discuss examples in later sections.

3 Computing ASTs – Overview

In this section, we give an overview of our approach
to computing ASTs. We will assume as given a Pro-
cessed Parse Tree (PPT) of a sentence, with the op-
erators and their restrictors identified. An example
is discussed in Section 3.1. Given such a PPT, the
AST is computed in two steps: (1) finding the preter-
minal at which an operator takes scope, and (2) or-
dering the operators associated with a preterminal.
We describe the second step in Section 3.2, and then
briefly outline the first step in Section 3.3. The steps
are described in reverse order, because in most cases,
the operators associated with a preterminal are deter-
mined directly by syntactic attachment.

3.1 Processed Parse Trees

We compute ASTs from processed parse trees
(PPTs) of sentences. Figure 2 gives the PPT cor-
responding to the AST in Figure 1.

.

λ

P

Post

λy

D

A

R

gen. saf. test

λ

M

shall

λ

M

be

.

performed on

λx

D

IMP

R

bio. prod.

Figure 2: Processed parse tree (PPT) for (1).

A PPT provides the set of operators in a sen-
tence, associated with their restrictors. For exam-
ple, the determiner “a” has the restrictorgeneral
safety test. The phrasebiological productshas no
explicit determiner associated with it, and the cor-
responding operator in the PPT is labeled “IMP”
for implicit. In addition, the postcondition marker
“Post” is also identified. Except for the postcon-

1204



dition marker, annotator-specified implicit operators
are not given in the PPT.

There are two main types of nodes in the PPT –
operatorsandpreterminals. The nodes labeled with
the symbolλ, e.g., λ and λx , correspond to op-
erators. The root of the PPT and the restrictors of
the operators, are the preterminals. Based on this
example, it may seem that a sentence just has a list
of operators. While this is true of example (1), em-
bedded operators arise, for example, in the context
of PP-modification of NPs and relative clauses. We
will discuss an example in Section 3.3.

In this work, the PPTs are obtained by removing
all scope decisions from the AST. To a first approxi-
mation, we start by removing all operators from the
AST, and then, replace the corresponding variables
by the operators. Implicit unary operators (such as
the postcondition marker) are placed at the start of
the preterminal.

It is worthwhile to consider whether it is rea-
sonable to assume PPTs as given. We believe that
this assumption is (slightly) stronger than assuming
perfect parse trees. Although the PPT leaves cer-
tain chunks of the sentence unprocessed, in most
cases, the unprocessed chunks correspond to base
NPs. The main additional piece of information is the
existence of a postcondition marker for each main
clause of a sentence. We believe that computation
of PPTs is better seen as a problem of syntax rather
than scope, and we set it aside to future work. Our
focus here is on converting a PPT to an AST.

3.2 Ordering Operators

The problem of learning to order a set of items is
not new. Cohen et al. (1998) give a learning theo-
retic perspective, and Liu (2009) surveys informa-
tion retrieval applications. The approach that we use
can be seen as a probabilistic version of the boosting
approach developed by Cohen et al. (1998). We ex-
plain the step of ordering operators, by revisiting the
example of the general safety test, from Section 2.

Given the PPT in Figure 2, we compute the AST
in Figure 1 byorderingor rankingthe operators. For
example, we need to determine that the implicit de-
terminer associated withbiological productsis uni-
versal, and hence, we haveIMP ≫ Post. However,
the determiner “A” associated withgeneral safety
testis existential, and hence, we havePost ≫ A.

We now develop some notation to describe the
scopal ordering of operators. A PPTτ is viewed
as a set of preterminal nodes, and we will write –
(a) p ∈ τ to denote thatp occurs inτ , and (b)
|τ | to denote the number of preterminals inτ . A
preterminalp is viewed as an ordered set of oper-
atorsp = (o1, ..., o|p|). For example, in Figure 2,
the root preterminalp has|p| = 5, and the operators
o1 = Post, o2 = A, o3 = shall, and so on.

An AST α contains a ranking of operators asso-
ciated with each preterminal, denotedrα(p). The
ranks of operators are denoted by subscripts. Let
p = (o1, ..., o5) be the root preterminal of the PPT
in Figure 2. The ranking associated with the AST in
Figure 1 is given byrα(p) = (o12, o

2
5, o

3
3, o

4
4, o

5
1). For

example,o25 = A denotes that the determiner “A” ap-
pears second in the surface order (Figure 2) and fifth
or lowest in the scope order (Figure 1). Similarly,
o51 = IMP denotes that the implicit determiner ap-
pears fifth or last in the surface order (Figure 2) and
first or highest in the scope order (Figure 1). Note
that the subscript suffices to identify the position of
an operator in the AST.
Model: We now describe the learning model for or-
dering operators. Given a PPTτ , letA(τ) be the set
of all possible ASTs. Our goal is to find the AST
which has the highest probability given the PPT:

α∗ = arg max
α∈A(τ)

P (α|τ)

The conditional probability of an AST is defined as:

P (α|τ) =
∏

p∈τ
P (rα(p)|τ)

P (rα(p)|τ) =
|p|−1∏

i=1

|p|∏

j=i+1

P (oi ≫ oj|τ)

In other words,P (α|τ) is modeled as the product
of the probabilities of the ranking of each pretermi-
nal, which is in turn expressed as the product of the
probabilities of the pairwise ordering decisions. The
model falls under the class of pairwise ranking ap-
proaches (Liu, 2009). We will consider the problem
of estimating the probabilities in Section 5, and the
problem of searching for the best AST in Section 6.

1205



.

λ

P

Post

λx3

D

IMP

R

samp. of

λx1

D

any

R

.

lot of

λx2

D

a

R

lic. prod.

λ

M

may

λ

M

be

.

...

Figure 3: PPT for (2)

λx1

D

any

R

λx2

D

a

R

lic. prod.

.

lot of x2

λ

P

Post

λ

M

may

λ

M

be

λx3

D

some

R

samp. of x1

.

...

Figure 4: AST for (2)

3.3 Finding the Scope Preterminal

In the example that we discussed in the previous sec-
tion, there were no embedded operators, i.e., an op-
erator or its variable located in the restrictor of an-
other. An embedded operator can either – (a) take
scope within the restrictor of the embedding oper-
ator, or (b) outscope the embedding operator. To
account for the second case, we need to determine
whether it is appropriate to lift an embedded opera-
tor to a higher preterminal than the one to which it
is associated syntactically.

We discuss an example ofinverse linking(Larson,
1985) to illustrate the problem. Consider the follow-
ing sentence:

(2) Samples of any lot of a licensed product,except
for radioactive biological products, together with
the protocols showing results of applicable tests,
may at any time be required to be sent to the Di-
rector, Center for Biologics Evaluation and Re-
search.

The PPT and AST for (2) are shown in Figures 3
and 4 respectively. Consider the noun phrase “IMP
samples ofany lot of a licensed product” in the

.

λ

P

Post

λx1

D

any

R

.

lot of

λx2

D

a

R

lic. prod.

λx3

D

IMP

R

samp. of x1

λ

M

may

λ

M

be

.

...

Figure 5: Second PPT for (2), obtained from the PPT in
Figure 3, by raisingany to the root preterminal.

PPT. The implicit determinerIMP in the PPT is in-
terpreted as the existential determinersome in the
AST. The three operators are related as follows in
the AST:any ≫ some and R(any) ≫ a, i.e., any
outscopes the implicit determiner, anda appears in
the restrictor ofany. Observe that the variablesx1
and x2 , which are associated withany anda, ap-
pear in the restrictors ofsome andany respectively.
As a result, in the PPT, in Figure 3,any anda appear
in the restrictor ofIMP andany. The PPT provides
a standard parse of PP-modification of NPs.

The important feature of this example is that
the determiner “any” is syntactically embedded in
the restrictor ofIMP in the PPT (Figure 4), but it
outscopes the implicit determiner in the AST (Fig-
ure 3). As a result, the PPT in Figure 3 cannot be
converted to the AST in Figure 4 simply by ranking
sibling operators (as we did in the previous section).

To handle such cases, we convert the PPT in Fig-
ure 3 to a second PPT (shown in Figure 5). The only
allowed operation during this conversion is to raise
an embedded operator to a higher preterminal. The
PPT in Figure 5 is obtained by raisingany to the
root preterminal, making it a sibling of the implicit
determinerIMP in the PPT in Figure 5. This second
PPT can be converted to the AST by reordering sib-
ling operators. The learning model used for this step
is similar to the one used to order operators, and in
the interests of space, we omit the details.

4 Brief Overview of the Corpus

We have annotated195 sentences from the FDA
CFR Section 610 with ASTs. The operators are di-
vided into the following types – determiners (e.g.,

1206



every, a, at least), modal auxiliaries (e.g.,must,
be), VP modifiers (e.g.,if, for, after), negation and
coordinating conjunctions (e.g.,and, but, or). The
majority of the corpus was annotated by a single an-
notator. However, to estimate inter-annotator agree-
ment, a set of32 sentences was annotated by a
second annotator. In this section, we restrict our-
selves to presenting statistics that highlight part of
the guidelines and motivate the features that we use
to order operators. An example-based justification
of guidelines, and a discussion of inter-annotator
agreement can be found in (Dinesh, 2010).
De Re vs De Dicto:We narrow our focus to one part
of the annotation, thede revs de dictodistinction.
Informally, operators withde rescope occur in the
precondition of the logical translation of a sentence,
while those withde dictoscope occur in the post-
condition. This distinction is of key importance in
the application of conformance checking, as it helps
determine the facts that need to be provided by an
organization (de re), and the actions that an organi-
zation is required to take (de dicto).

For simplicity, we further restrict attention to op-
erators that are siblings of the postcondition in the
AST, and ignore the operators embedded in preposi-
tional phrases and clauses, for example. A (main
clause) operatoro is said to havede re scope iff
it outscopes the postcondition marker (o ≫ Post).
Otherwise, the operator is said to havede dictoscope
(Post ≫ o). In the example of the general safety test
from Section 2, the implicit determiner associated
with “biological products” hasde rescope, while all
other operators in the sentence havede dictoscope.

Operator Number of De Re Scope
Type Instances Percentage
Determiner 277 59.9%
Modal Aux 268 0%
VP Modifier 132 68.2%
CC 36 22.2%
Neg 33 0%
Other 74 17.6%

Table 1: De Re scope distribution. An operator hasde re
scope iff it outscopes the postcondition marker.

Table 1 shows the percentage of each type of op-
erator that hasde rescope. Modal auxiliaries and
negation are umambigous to this distinction, and al-
ways havede dictoscope. Note that a type of opera-

tor with 50% occuringde reis ambiguous, while0%
or 100% are unambiguous. Thus, from Table 1, we
can conclude that determiners, and VP modifiers are
the most ambiguous types. And, more features are
needed to disambiguate them.

Determiner Number of De Re Scope
Type Instances Percentage
Universal 74 100%
Existential 12 0%
Ambiguous 50 28%
Deictic 127 53.5%
Other 14 35.7%

Table 2: De Re scope distribution for determiners.

Determiners: We divide the determiners into the
following subtypes: universal/generic (e.g.,every,
all), existential (some), ambiguous (e.g.,a, an), de-
ictic (e.g.,the, those), and other (e.g.,at least, at
most). The guidelines for annotation were as fol-
lows – (a) universal determiners havede rescope,
(b) existential determiners havede dictoscope, and
(c) for other determiners, the annotator needs to de-
cide whether a particular use is interpreted existen-
tially or universally. Table 2 showsde rescope dis-
tribution for each of these subtypes. As expected,
universal and existential determiners are unambigu-
ous, while ambiguous and deictic determiners show
more variety. For example, the deictic determiner
the can refer to a specific entity (“the FDA”) or have
a universal interpretation (“the products”).

Thus, to disambiguate betweende reandde dicto
interpretations for determiners, we need two types of
features – (1) Features to predict whether ambiguous
and deictic determiners are universal or not, and (2)
Features to determine the type of implicit determin-
ers. In Table 2, we assume that the type of implicit
determiners are given. This assumption is unreal-
istic. Rather, we need to predict the type of such
determiners, during the computation of the AST.

VP Modifier Number of De Re Scope
Type Instances Percentage
Temporal and Conditional 73 100%
Purpose 8 0%
References to Laws 33 0.9%
Other 29 65.5%

Table 3: De Re scope distribution for VP modifiers.

1207



VP Modifiers: We divide the VP modifiers into the
following subtypes: temporal and conditional (e.g.,
after, if), purpose (for), references to laws (which
are a special type of modifier in the legal domain,
e.g., “as specified in paragraph (c)”), and other (e.g.,
regardless, notwithstanding). Table 3 shows the
percentage of each subtype of modifier that hasde
re scope. Following the guidelines for annotation,
the temporal and conditional modifiers are alwaysde
re, the purpose modifiers and modifiers conveying
references to laws are alwaysde dicto.

5 Comparing the Scope of Operators

We now consider a subproblem in computing the
AST – comparing the scope of pairs of operators.
In Section 6, we will use the classifiers that perform
comparisons, to compute the AST. All experiments
in this section use the MAXENT implentation from
the MALLET toolkit (McCallum, 2002). We begin
by revisiting de re-de dicto distinction from Sec-
tion 4. Then, we generalize to other comparisons.
De Re vs De Dicto: The (binary) classification
problem is as follows. Our observations are triples
x = (o, o′, τ) are such that there is a preterminal
p ∈ τ , {o, o′} ⊆ p, ando′ = Post. In other words,
we are considering operators (o) that are siblings of
the postcondition marker (o′). An observation has
the label1 if o ≫ o′ (de rescope), and a label of0
otherwise (de dictoscope).
Features: We use the following (classes of) fea-
tures for an observationx = (o, o′, τ):

• TYPE - The type and subtype of the operator.
We use the subtypes from Section 4 only for
explicit operators.

• PRE-VERB - Tracks whethero and o′ appear
before or after the main verb of the sentence.

• PRE-VERB + PERF - Conjunction of the previ-
ous feature with whether the main verb isper-
form. The verbperformis frequent in the CFR,
and its subject is typically givende dictoscope,
as it is the main predicate of the sentence.

• POS - The part-of-speech of the head word. For
example, for the noun phrasebiological prod-
ucts, the head word isproducts, and the POS is

NNS (plural common noun). And, this POS tag
may indicate a generic/universal interpretation.

Count MAJORITY TYPE ALL

All 823 66.2% 84.1% 89.2%

No MD 522 53.2% 74.9% 83.7%

DT 277 59.9% 62.9% 81.2%

Imp. DT 100 69% 76%

Table 4: De Re vs De Dicto classification. Average accu-
racies over 10-fold cross-validation. The rows describe
the subset of observations considered, and the columns
describe the subset of features used.

Experiments: We evaluate the features by perform-
ing 10-fold cross-validation. The results are summa-
rized in Table 4. The rows describe the subset of ob-
servations used. “All” includes all observations, “No
MD” excludes the modal auxiliaries, “DT” includes
only the determiners, and “Imp. DT” includes only
implicit determiners. The columns describe the fea-
tures used. MAJORITY is the majority baseline, i.e.,
the accuracy obtained by predicting the most fre-
quent class or the majority class. The majority class
is de dictowhen all operators are considered (the
first row), andde re in all other rows. The TYPE

column gives the accuracy when only the type and
subtypes are used as features. This column does not
apply to implicit determiners, as the subtype infor-
mation is unavailable. And, finally, the ALL column
gives the accuracy when all features are used.

From Table 4, we can conclude that the TYPE fea-
ture is useful in making thede re-de dictodistinc-
tion, and further gains are obtained by using ALL

features. The most dramatic improvement is for de-
terminers, and indeed, our features were designed
for this case. However, the performance gains are
not very high for implicit determiners, and further
investigation is needed.

Next, we apply the features to more general oper-
ator comparisons. The first row of Table 5 considers
observationsx = (o, o′, τ), whereo ando′ are sib-
lings, and predicts whethero ≫ o′. The second row
considers observations whereo′ is embedded syn-
tactically withino, and predicts whether R(o) ≫ o′.
In other words, the problem is to determine whether
a syntactically embedded operator remains scopally
embedded, or whether it has inverse scope (see Sec-
tion 3.3).

1208



Count MAJORITY TYPE ALL

Siblings 2793 76.1% 83.3% 87.5%

Embedded 5081 95% 95.3% 96.4%

Table 5: Ordering siblings and embedded operators.
Average accuracies over 10-fold cross-validation. The
columns describe the subset of features used.

6 From Operator Comparisons to ASTs

We now consider the problem of computing the
AST given the classifiers for comparing operators.
Section 6.1 describes the algorithms used. In Sec-
tion 6.2, we develop metrics to evaluate the com-
putation of ASTs. We conclude, in Section 6.3, by
evaluating different algorithms using the metrics.

6.1 Algorithms

We begin by discussing the intractability of the prob-
lem of ranking or ordering operators. Then, we
sketch the search heuristics used.
Intractability: The decision version of the rank-
ing problem is NP-complete. A similar result is es-
tablished by Cohen et al. (1998) in the context of a
boosting approach to ranking.

Theorem 1. The following problem is NP-complete:
Input: A PPTτ , a preterminalp ∈ τ , probabilities
P (oi ≫ oj|τ), andc ∈ [0, 1]

Output: Yes, if there is an orderingr such that
P (r(p)|τ) ≥ c

The proof is by reduction from ACYCLIC SUB-
GRAPH (Karp, 1972) – finding a subgraph which is
acyclic and has at leastk edges.
Heuristics: To order operators, we use a beam
search procedure. Each search state consists preter-
minal, in which the firsti ranks have been assigned
to operators. We then search over next states by as-
signing the ranki+1 to one of the remaining opera-
tors. We used a beam size of104 in our experiments.
In most cases, the number of operators per preter-
minal is less than7. As a result, the total number
of possible orderings is typically less than7!, and a
beam size of104 is sufficient to compute an exact or-
dering. In other words, due to the size restrictions, in
most cases, beam search is equivalent to exact (ex-
haustive) search.

To handle embedded operators, we use a simple
greedy heuristic. We enumerate the operators in the

initial PPT, corresponding to an in-order traversal.
For each operator, we attach it to the most likely an-
cestor, given the attachment decisions for the previ-
ous operators. This heuristic is optimal for the case
where the depth of embedding is at most1, which is
the common case.

6.2 Metrics

In this section, we describe metrics used to evaluate
the computation of ASTs. Letτ be the initial PPT,
α the correct AST, andα∗ the computed AST. We
define accuracy at various levels.

The simplest metric is to define accuracy atthe
level of ASTs, i.e., by computing the fraction of cases
for which α = α∗. However, this metric is harsh,
in the sense that it does not give algorithms partial
credit for getting a portion of the AST correct.

The next possible metric is to define accuracy at
the level of preterminals. Let p be a preterminal.
Note thatτ , α andα∗ share the same set of preter-
minals, but may associate different operators with
them. We say thatp is correct inα∗, if it is asso-
ciated with the same set of operators as inα, and
for all {o, o′} ⊆ p, we haveo ≫ o′ w.r.t. α∗ iff
o ≫ o′ w.r.t. α. In other words, the preterminals
are identical, both in terms of the set of operators
and the ordering between pairs of operators. While
preterminal-level accuracy gives partial credit, it is
still a little harsh, in the sense that an algorithm
which makes one ordering mistake at a preterminal
is penalized the same as an algorithm which makes
multiple mistakes.

Finally, we consider metrics to define accuracy at
the level of pairs of operators. Let p be a preter-
minal. The setPairs(p, α) consists of pairs of op-
erators(o, o′) such thato and o′ are both associ-
ated withp in α, ando = o′ or o ≫ o′. The set
Pairs(p, α∗) is defined similarly usingα∗ instead of
α. Given the setsPairs(p, α) andPairs(p, α∗), pre-
cision, recall, and f-score are defined in the usual
way. We leave the details to the reader.

6.3 Results

We evaluate the following algorithms:

1. No Embedding – The AST is computed purely
by reordering operators within a preterminal in
the PPT.

1209



(a) SURFACE – No reordering is performed,
i.e., the order of operators in the AST re-
spects the surface order

(b) TYPE – Using only type and subtype in-
formation for the operators

(c) ALL – Using all the features described in
Section 5

2. ALL + – The initial PPT is transformed into a
second PPT before reordering (as described in
Section 3.3). All features are used.

Prec. Rec. F p α

SURF. 86.9% 82.7% 84.6% 81% 4.2%

TYPE 90.4% 86% 88.1% 83.6% 24.7%

ALL 92% 87.6% 89.8% 85.1% 33.5%

ALL + 91.9% 89.4% 90.6% 85.9% 36.2%

Table 6: Performance of the algorithms in computing the
ASTs. Averaged over 10-fold cross-validation.195ASTs
in total, an average of8.6 preterminals per AST, and1.8
operators per preterminal.

Table 6 summarizes the performance of the al-
gorithms, under the various metrics. The accura-
cies are averaged over 10-fold cross-validation. A
total of 195 ASTs are used. The average number
of preterminals per AST is8.6, with an average of
1.8 operators per preterminal. The best number un-
der each metric is shown in bold-face. By adding
features, we improve the precision from86.9% to
90.4% to 92% in moving from SURFACE to TYPE

to ALL . By handling embedded operators, we im-
prove the recall from87.6% to 89.4% in moving
from ALL to ALL +. As we saw in Section 5, in95%
of the cases, the embedded operators respects syn-
tactic scope, and as a result, we obtain only modest
gains from handling embedded operators.

The reader may feel that the F-score of90.6% is
quite high given the size of our training data. This
score is inflated by inclusion of reflexive pairs, of
the form (o, o). Such pairs are included for the
following (technical) reasons. The algorithm that
handles embedded operators (ALL+) usually raises
them from a single operator node (as in Figure 3) to
a multi-operator node (as in Figure 5). If it makes
an incorrect decision to raise an operator it takes a
precision hit, at the multi-operator node (because

it has some false positives). By contrast, an algo-
rithm loses precision for failing to correctly raise,
only when we encounter the single operator node.

For these reasons, it is better to consider the rela-
tive improvement in F-score over the baseline. The
relative improvement of ALL + over SURFACE in
terms of F-score is36.6%. We believe that the
preterminal-level accuracy is more indicative in an
absolute sense. Furthermore, when we restrict atten-
tion to those preterminals with two or more opera-
tors in the PPT, the accuracy of ALL + is 69.4%.

7 Related Work

ASTs can be seen as a middle ground between two
lines of research in translating sentences to logic.

At one end of the spectrum, we have methods
that achieve good accuracy on restricted texts. The
two main corpora that have been considered are the
GEOQUERY corpus (Thompson et al., 1997) and
the ATIS-3 corpus (Dahl et al., 1994). The GEO-
QUERY corpus consists of queries to a geographical
database. The queries were collected from students
participating in a study and the average sentence
length is 8 words. The ATIS corpus is collected
from subjects’ interaction with a database of flight
information, using spoken natural language. The ut-
terances have be transcribed, and the average sen-
tence length is10 words (Berant et al., 2007). Algo-
rithms, which achieve good accuracy, have been de-
veloped to compute the logical translation for these
queries (Zettlemoyer and Collins, 2005; Wong and
Mooney, 2007; Zettlemoyer and Collins, 2009). The
annotated sentences in the FDA CFR Section 610.40
are longer (about30 words on average), and contain
modalities which are not present in these corpora.

At the other end of the spectrum, Bos et al. (Bos et
al., 2004) have developed a broad-coverage parser to
translate sentences to a logic based on discourse rep-
resentation theory. Here, there is no direct method to
evaluate the correctness of the translation. However,
indirect evaluations are possible, for example, by
studying improvement in textual entailment tasks.

To summarize, there are techniques that either
produce an accurate translation for sentences in a
limited domain, or produce some translation for sen-
tences in a broader range of texts. ASTs offer a mid-
dle ground in two ways. First, we focus on regula-

1210



tory texts which are less restricted than the database
queries in the GEOQUERY and ATIS corpora, but do
not exhibit anaphoric phenomenon found in genres,
such as, newspaper text. In (Dinesh et al., 2007), we
discuss lexical statistics that show significant differ-
ences in the distribution of anaphoric items in the
CFR and Wall Street Journal (WSJ) corpora. For ex-
ample, the frequency of pronouns and anaphoric dis-
course connectives is significantly lower in the CFR
than in the WSJ. Instead, the CFR has an idiosyn-
cratic mechanism for referring to sentences, using
phrases such as “except as specified in paragraph
(c) and (d)”. A question of interest is whether the
GEOQUERY and ATIS corpora show similar pecu-
liarities in terms of anaphora. The second difference
between our approach and others is that we do not
attempt to translate all the way to logic. The level of
logical form lets us obtain a direct evaluation, while
leaving open the design of parts of the logic.

8 Conclusions

We described experiments on a modest-sized cor-
pus of regulatory sentences, annotated with a novel
variant of logical form, calledabstract syntax trees
(ASTs). An example from the corpus was presented
in Section 2 and some statistics, describing the cor-
pus, were discussed in Section 4. In Sections 3, 5,
and 6, we developed and tested algorithms to con-
vert a processed parse tree (PPT) to an AST. The
main step in this conversion was to rank or order the
operators at a preterminal. We presented a proba-
bilistic model for ranking, investigated the design of
features, and developed search heuristics. The best
algorithm, which uses all features and handles em-
bedded operators, achieves an F-score of90.6%.

An important direction for further inquiry is in the
design of better features. Various types of features
have been proposed for the scopal ordering of deter-
miners. Examples include syntactic features (Ioup,
1975; Reinhart, 1983), such as position and voice,
semantic features (Grimshaw, 1990; Jackendoff,
1972), such as thematic roles. More recently, Srini-
vasan and Yates (2009) showed how pragmatic in-
formation, for example “there are more people than
cities”, can be leveraged for scope disambiguation.
We experimented with lexico-syntactic features in
this work, and leave an investigation of semantic and

pragmatic features to future work.

Acknowledgements

We thank Claire Cardie, Steve Kimbrough, Annie
Louis, Fernando Pereira, Emily Pitler, Oleg Sokol-
sky, and the anonymous reviewers for helpful com-
ments on earlier versions of this paper.

References

A. Aho, R. Sethi, and J. Ullman. 1986.Compilers: Prin-
ciples, Techniques, and Tools. Addison-Wessley.

R. J. Anderson. 1996. A security policy model for clin-
cial information systems. InProceedings of the IEEE
Symposium on Security and Privacy.

A. Barth, A. Dutta, J. C. Mitchell, and H. Nissenbaum.
2006. Privacy and contextual integrity: Framework
and applications. InProceedings IEEE Symposium on
Security and Privacy.

J. Berant, Y. Gross, M. Mussel, B. Sandbank, E. Ruppin,
and S. Edelman. 2007. Boosting unsupervised gram-
mar induction by splitting complex sentences on func-
tion words. InProceedings of the Boston University
Conference on Language Development.

J. Bos, S. Clark, M. Steedman, J. R. Curran, and J. Hock-
enmaier. 2004. Wide-coverage semantic representa-
tions from a CCG parser. InProceedings of COLING.

W. W. Cohen, R. E. Schapire, and Y. Singer. 1998.
Learning to order things.Journal of Artificial Intel-
ligence Research, 10:243–270.

D. Dahl, M. Bates, M. Brown, W. Fisher, K. Hunicke-
Smith, D. Pallett, C. Pao, A. Rudnicky, and
E. Shriberg. 1994. Expanding the scope of the ATIS
task: the ATIS-3 corpus. InProceedings of the ARPA
HLT Workshop.

N. Dinesh, A. Joshi, I. Lee, and O. Sokolsky. 2007.
Logic-based regulatory conformance checking. In
Proceedings of the 14th Monterey Workshop.

N. Dinesh, A. Joshi, I. Lee, and O. Sokolsky. 2011. Per-
mission to speak: A logic for access control and con-
formance. Journal of Logic and Algebraic Program-
ming, 80(1):50–74.

N. Dinesh. 2010.Regulatory Conformance Checking:
Logic and Logical Form. Ph.D. thesis, University of
Pennsylvania.

G. Governatori, Z. Milosevic, and S. Sadiq. 2006. Com-
pliance checking between business processes and busi-
ness contracts. In10th International Enterprise Dis-
tributed Object Computing Conference (EDOC).

J. Grimshaw. 1990.Argument Structure. MIT Press.

1211



B. Grosof, Y. Labrou, and H. Y. Chan. 1999. A declar-
ative approache to business rules in contracts: Cour-
teous logic programs in xml. InACM Conference on
Electronic Commerce.

Irene Heim and Angelika Kratzer. 1998.Semantics in
Generative Grammar. Blackwell.

G. Ioup. 1975. Some universals for quantifier scope.
Syntax and Semantics, 4:37–58.

R. Jackendoff. 1972.Semantic Interpretation in Genera-
tive Grammar. MIT Press.

A. J. I. Jones and M. J. Sergot. 1992. Formal spec-
ification of security requirements using the theory
of normative positions. InEuropean Symposium on
Reasearch in Computer Security (ESORICS).

R. M. Karp. 1972. Reducibility among combinatorial
problems. In R. E. Miller and J. W. Thatcher, editors,
Complexity of Computer Computations, pages 85–103.
Plenum Press.

H. S. Kurtzman and M. C. MacDonald. 1993. Resolution
of quantifier scope ambiguities.Cognition, 48:243–
279.

R. K. Larson. 1985. Quantifying to np. Manuscript,
MIT.

T. Liu. 2009. Learning to rank for information retrieval.
Foundations and Trends in Information Retrieval, 3(3).

D. Makinson and L. van der Torre. 2000. Input/output
logics. Journal of Philosophical Logic, 29:383–408.

R. May. 1985.Logical Form: Its structure and deriva-
tion. MIT Press.

A. McCallum. 2002. MALLET: A machine learning for
language toolkit. http://mallet.cs.umass.edu.

T. Reinhart. 1983.Anaphora and Semantic Interpreta-
tion. Croom Helm.

M.J. Sergot, F.Sadri, R.A. Kowalski, F.Kriwaczek,
P.Hammond, and H.T. Cory. 1986. The british na-
tionality act as a logic program.Communications of
the ACM, 29(5):370–86.

P. Srinivasan and A. Yates. 2009. Quantifier scope
disambiguation using extracted pragmatic knowledge:
Preliminary results. InProceedings of the Conference
on Empirical Methods in Natural Language Process-
ing (EMNLP).

C. A. Thompson, R. J. Mooney, and L. R. Tang. 1997.
Learning to parse natural language database queries
into logical form. InProceedings of the Workshop on
Automata Induction, Grammatical Inference and Lan-
guage Acquisition.

Y. W. Wong and R. J. Mooney. 2007. Learning syn-
chronous grammars for semantic parsing with lambda
calculus. InProceedings of the Annual Meeting of the
Association for Computational Linguistics (ACL).

L. S. Zettlemoyer and M. Collins. 2005. Learning to
map sentences to logical form: Structured classifica-
tion with probabilistic categorial grammars. InPro-
ceedings of UAI.

L. S. Zettlemoyer and M. Collins. 2009. Learning
context-dependent mappings from sentences to logi-
cal form. InProceedings of the Annual Meeting of the
Association for Computational Linguistics (ACL).

1212


