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Abstract on predicting the preferred scopal ordering of sen-
tences with two quantifying determiners, for exam-
The computation of logical form has beenpro-  ple, in the sentence “every kid climbed a tree”. In

posed as an intermediate step in the translation  the related problem of translating database queries
of sentences to logic. Logical form encodes  , |nic Zettlemoyer and Collins (2009) and Wong
the resolution of scope ambiguities. In this dM 2007 ider th f adiecti
paper, we describe experiments on a modest- _an _0_0ney ( ) §0n3| er the Scope ot adjectives
sized corpus of regulation annotated with a in addition tp determiners, for example the scope of
novel variant of logical form, calledbstract “cheapest” in the noun phrase “the cheapest flights
syntax tree§ASTs). The main step in com- from Boston to New York”. To our knowledge, em-
puting ASTs is to order scope-taking opera- pirical studies of scope have been restricted to phe-
tors. A learning model for ranking is adapted  nomenon between and within noun phrases.
for this ordering. We design features by study- In this paper, we describe experiments on a novel
ing the problem of comparing the scope Of.one annotation of scope phenomenon in regulatory texts
operator to another. The scope comparisons ) -
are used to compute ASTs, with an F-score of Section 610 of the Food and_ Drug Administra-
90.6% on the set of ordering decisons. tion's Code of Federal Regulatioch¢FDA CFR).
Determiners, modals, negation, and verb phrase
_ modifiers are the main scope-taking operators. We
1 Introduction have annotated95 sentences with a variant of log-
ical form, calledabstract syntax treeASTs). Our

May (1985) argued for a level dbgical formas a ¢ ) h bi ; g the AST. i
prelude to translating sentences to logic. Just as geus is on the problem of computing the AST, given

parse tree determines the constituent structure ofaa(varlant of a) parse tree of a sentence.

sentence, a logical form of a sentence represents oneThe long term goal of this work is to assist in the

way of resolving scope ambiguities. The level c)1Iranslat|on of regulation to logic, for the application

logical form is an appealing layer of modularity; itOf conformanpe checking. The pr_oblc_em is to for-
allows us to take a step beyond parsing in studyin ally determine whether an organization conforms

scope phenomenon, and yet, avoid the open probld regulation, by checking the organization’s records
of fully translating sentences to logic using the logical translation of regulation. Confor-

Data-driven analyses of scope have been of ifnance checking has been of interest in a variety of

terest in psycholinguistics (Kurtzman and MacDon_reguIatory contexts, and examples include privacy

ald, 1993) and more recently in NLP (Srinivasar{JOIICy (Barth et al., 2006; _Jones and Sergot, 1992
and Yates, 2009). The focus has typically bee nderson, 1996) and business contracts (Governa-
' ' tori et al., 2006; Grosof et al., 1999).

“This research was supported in part by ONR MURI  \We now discuss some problems that arise in defin-
N00014-07-1-0907, NSF CNS-1035715, NSF IIS 07-05671,

and SRI International. *htt p: / / www. gpoaccess. gov/ cfr/ i ndex. ht m
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ing logical form and the assumptions that we makéor this ordering. We design features by studying the

to circumvent these problems. problem of comparing the scope of one operator to
_ another. The pairwise scope comparisons are then
1.1 Problems and Assumptions used to compute ASTs, with an F-score96f6% on

A key assumption of logical form is that the transthe set of ordering decisons.

lation from language to logic is syntax-based. As The rest of this paper is organized as follows. We

a result, the logic needs to be expressive enough @efine ASTs using an example in Section 2, and

accomodate a syntactic translation. There is no cosetup the learning problem in Section 3. We then de-

sensus logic for constructs, such as, plurals, purposeribe the corpus using statistics about operators in

clauses, and certain modals. This leads to the fobection 4. In Section 5, we describe experiments on

lowing problem in defining logical form. comparing the scope of an operator to another. We

How do we define the logical form of a sentenceyse the pairwise scope comparisons, in Section 6 to

without defining the logice adopt a specific for- comput the AST. We discuss related work in Sec-

malism that accomodates a subset of the construdte@n 7 and conclude in Section 8.

found in regulation. We generalize from the formal-

ized constructs to other constructs. Some of thege Abstract Syntax Trees

generalizations may need revision in the future.  \We describeabstract syntax treeASTS) using an
We assume that sentences in regulation are trangxample from CFR Section 610.11:

lated to statements in logic of the form: _
(1) A general safety tesbr the detection of extra-

(id) ¢(z1 zn) — (21 Tn) neous toxic contaminanshall be performed on
s e s eee
biological productsntended for administration
where, “id” is an identifier,p is the precondition to humans

¢ is the postconditionandzy, ..., z, are free vari- v giscuss the translation in logic and the AST
ables. The distinction between pre and postcondiy, e fragment of (1) that appears in black. In or-
tions has been adopted by most logics for regulaye, 14 eep figures to a manageable size, we restrict
tion, to accomodate exceptions to laws (Sergot et alantion to fragments of sentences, by graying out
1986; Makinson and van der Torre, 2000; Govemnasqiong The term AST is borrowed from compil-
tori et al,, 2006). The pre and postconditions arg s (ang et al., 1986), where it is used as an interme-

expressed in a modal logic that we designed in priQfi,te step in the semantic interpretation of programs.

work (Dinesh et al., 2011). In describing the logi~rangjation in Logic: The sentence (1) is formally
cal form, we will sketch how the logical form can expressed as:

be mapped to logic. But, we do not assume that the
reader has a detailed understanding of the logic. (1) bio_prod(x) = Oy (3y : test(y) A (z,y))

Given the assumptions about the logic, our goal
is to transform a regulatory sentence into a structutdhere,v(z, y) = gensaf (y)Aag(y, m(x))Aob(y, z)
that lets us determine: (I) the constituents of a sen- The predicates and function symbols are read as
tence that contribute to the pre/postcondition, anfbllows. bio_prod(x) - “z is a biological product”.
(I) the scope of operators in the pre/postconditiony (z) denotes the manufacturer of The modal op-
The structures that we use are calldabtract syn- erator O stands for “obligation”. test(y) - “y is a
tax trees(ASTs), which can be understood as a retest (event)”.gensaf(y) - “y is a general safety pro-
stricted kind of logical form for regulatory texts.  cedure”.ag(y, m(z)) - “the agent ofy ism(z)”, and
ob(y, z) - “the object of the eveny is 2”. The for-
malized version of the law is read as follows: ‘if
In this paper, we focus on the problem of computings a biological product, then the manufacturefx)
the AST given a (kind of) parse tree for a sentencds required/obligated to perform a general safety test
The main step is is t@rder or rank scope-taking y which hasx as its object”. We refer the reader
operators. A learning model for ranking is adaptedo (Dinesh et al., 2011) for details on the logic.
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The distinction between pre and postconditionsay that an operates scopes oves;, denoted; >
is a non-trivial assumption. As with all logic- o;, if o; appears in the nuclear scopewf For ex-
programming formalisms, only free variables areample, in Figure 1, we hawadl > Post, all > shall,
“shared” between pre and postconditons. This imall > A, Post > A, andshall > A. In addition, we
plies that all existential quantification, modals, anday thatthe restrictor ofo; scopes oven;, denoted
negation appear within the pre or postcondition. IfR(o;) > o;, if o; appears in the restrictor of. Such
the example above, the existential quantifiegy)( configurations occur with PP-modification of NPs,
and the modal®) appear within the postcondition. and we discuss examples in later sections.
Abstract Syntax Tree: The AST for (1) is shown in i i
Figure 1. The main nodes of interest are the inte® COMputing ASTs — Overview

nal nodes labelefh |. An internal node witt + 1 |, this section, we give an overview of our approach
children corresponds to anary operator The first ¢, computing ASTs. We will assume as given a Pro-
child of the intern_al node is the operator. Operagzessed Parse Tree (PPT) of a sentence, with the op-
tors are labeled with a part-of-speech tag, for examsrators and their restrictors identified. An example
ple, “D” for determiner, “M" for modal, and “O” for js giscussed in Section 3.1. Given such a PPT, the
other. The remaining children are its arguments. pogT s computed in two steps: (1) finding the preter-
We use the ternmuclear scopeo refer to the last minal at which an operator takes scope, and (2) or-
(n'") argument of the operator, and the te@Btric-  gering the operators associated with a preterminal.
tor to refer to any other argument. We borrow thes@ye describe the second step in Section 3.2, and then
terms from the literature on quantifier scope for depyiefly outline the first step in Section 3.3. The steps
terminers (Heim and Kratzer, 1998, Chapter 7).  are described in reverse order, because in most cases,
For example, the phrase “general safety test” is ithe operators associated with a preterminal are deter-

the restrictor of the operatdk, and the variabl@ mined directly by syntactic attachment.
is in its nuclear scope. The modstall is a unary

operator, and doesn't have a restrictor. Non-unarg-1 Processed Parse Trees

Opel’atorS bind the variable d|Sp|ayEd on the intequ/e Compute ASTs from processed parse trees

node. The variablgy|is bound by the operatdk.  (PPTs) of sentences. Figure 2 gives the PPT cor-
Implicit operatorsare inserted when there is noresponding to the AST in Figure 1.

overt word or phrase. In Figure 1, the implicit oper-

ators araunderlined. The generic noun phrase “bi-
™ performed on
shall be

ological products” is associated with the implicit de-
terminerall. Similarly, we use the implicit operator
Post to mark the position of the postcondition.

gen. saf. test

Figure 2: Processed parse tree (PPT) for (1).

A PPT provides the set of operators in a sen-
tence, associated with their restrictors. For exam-
ple, the determinerd” has the restrictogeneral
safety test The phraséiological productshas no

Figure 1: Example of an abstract syntax tree (AST). explicit determiner associated with it, and the cor-

responding operator in the PPT is labeld§P”

We conclude this section with some notation fofor implicit. In addition, the postcondition marker
describing ASTs. Given an AST for a sentences, w&Post” is also identified. Except for the postcon-
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dition marker, annotator-specified implicit operators We now develop some notation to describe the
are not given in the PPT. scopal ordering of operators. A PPTis viewed
There are two main types of nodes in the PPT as a set of preterminal nodes, and we will write —
operatorsandpreterminals The nodes labeled with (a) p € 7 to denote that occurs int, and (b)
the symbol), e.g., and, correspond to op- |7| to denote the number of preterminalsn A
erators. The root of the PPT and the restrictors gireterminalp is viewed as an ordered set of oper-
the operators, are the preterminals. Based on thigorsp = (o',...,ol"l). For example, in Figure 2,
example, it may seem that a sentence just has a ltsie root pretermingh has|p| = 5, and the operators
of operators. While this is true of example (1), eme! = Post, 0> = A, o3 = shall, and so on.
bedded operators arise, for example, in the context An AST « contains a ranking of operators asso-
of PP-modification of NPs and relative clauses. Weiated with each preterminal, denoteg(p). The
will discuss an example in Section 3.3. ranks of operators are denoted by subscripts. Let
In this work, the PPTs are obtained by removing = (o!,...,0°) be the root preterminal of the PPT
all scope decisions from the AST. To a first approxiin Figure 2. The ranking associated with the AST in
mation, we start by removing all operators from theFigure 1 is given by, (p) = (03, 02, 03, 0%, 0?). For
AST, and then, replace the corresponding variablescamplep? = A denotes that the determineX™ap-
by the operators. Implicit unary operators (such asears second in the surface order (Figure 2) and fifth
the postcondition marker) are placed at the start @fr lowest in the scope order (Figure 1). Similarly,
the preterminal. o} = IMP denotes that the implicit determiner ap-
It is worthwhile to consider whether it is rea-pears fifth or last in the surface order (Figure 2) and
sonable to assume PPTs as given. We believe tHast or highest in the scope order (Figure 1). Note
this assumption is (slightly) stronger than assuminghat the subscript suffices to identify the position of
perfect parse trees. Although the PPT leaves cedin operator in the AST.
tain chunks of the sentence unprocessed, in Magfodel: We now describe the learning model for or-
cases, the unprocessed chunks correspond to b@@ing operators. Given a PRTlet A(7) be the set
NPs. The main additional piece of information is theyf g possible ASTs. Our goal is to find the AST

existence of a postcondition marker for each maihich has the highest probability given the PPT:
clause of a sentence. We believe that computation

of PPTs is better seen as a problem of syntax rather a* = arg max P(a|r)
than scope, and we set it aside to future work. Our a€A(T)

focus here is on converting a PPT to an AST.
The conditional probability of an AST is defined as:
3.2 Ordering Operators

The problem of learning to order a set of items is P(alr) = Hp(ta(P)\T)

not new. Cohen et al. (1998) give a learning theo- per

retic perspective, and Liu (2009) surveys informa-

tion retrieval applications. The approach that we use pl=1 ol

can be seen as a probabilistic version of the boosting Plra(p)|r) = H H P(o; > o|7)

approach developed by Cohen et al. (1998). We ex-

plain the step of ordering operators, by revisiting the

example of the general safety test, from Section 2.In other words,P(«|7) is modeled as the product
Given the PPT in Figure 2, we compute the ASTof the probabilities of the ranking of each pretermi-

in Figure 1 byorderingor rankingthe operators. For nal, which is in turn expressed as the product of the

example, we need to determine that the implicit deprobabilities of the pairwise ordering decisions. The

terminer associated withiological productsis uni- model falls under the class of pairwise ranking ap-

versal, and hence, we haldP > Post. However, proaches (Liu, 2009). We will consider the problem

the determiner A” associated withgeneral safety of estimating the probabilities in Section 5, and the

testis existential, and hence, we haest > A. problem of searching for the best AST in Section 6.
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a lic. prod.
a lic. prod.

Figure 3: PPT for (2) Figure 5: Second PPT for (2), obtained from the PPT in
Figure 3, by raisingny to the root preterminal.

PPT. The implicit determineiMP in the PPT is in-
terpreted as the existential determis@me in the
AST. The three operators are related as follows in
the AST:any > some and R@ny) > a, i.e.,any
outscopes the implicit determiner, andappears in
the restrictor ofiny. Observe that the variabl
and, which are associated witdny anda, ap-
pear in the restrictors glome andany respectively.
As aresult, in the PPT, in Figure 8ny anda appear

in the restrictor olMP andany. The PPT provides
a standard parse of PP-modification of NPs.

3.3 Finding the Scope Preterminal The important feature of this example is that

In the example that we discussed in the previous se € determiner dny” is syntactically embedded in

tion, there were no embedded operators, i.e., an o e restrictor OTMP_ i_n the PP_T (F_igure 4), but i_t
erator or its variable located in the restrictor of an_outscopes the implicit determ_lner_ln the AST (Fig-
e 3). As a result, the PPT in Figure 3 cannot be

other. An embedded operator can either — (a) takld d to the AST in Fi 4 simolv b Ki
scope within the restrictor of the embedding Opergonverte to the N Figure 2 simply by ranking

ator, or (b) outscope the embedding operator. ibling operators (as we did in the previous section).

account for the second case, we need to determine '© Nandle such cases, we convert the PPT in Fig-
whether it is appropriate to lift an embedded operair® 3 t0 asecond PPT (shown in Figure 5). The only
tor to a higher preterminal than the one to which igllowed operation during this conversion is to raise

is associated syntactically. an embedded operator to a higher preterminal. The

We discuss an example iokverse linking(Larson, PPT in Figure 5 is obtained by raisiray to the
1985) to illustrate the problem. Consider the followX00t preterminal, making it a sibling of the implicit
ing sentence: determinedMP in the PPT in Figure 5. This second

) PPT can be converted to the AST by reordering sib-

(2) Samples of any lot of a licensed produetgept ling operators. The learning model used for this step

for radioactive biological products, together with.” ">, ilar to th dt d t di
the protocols showing results of applicable tests',s Similar to the one used to oraer operators, and in

may at any time be required to be sent to the pithe interests of space, we omit the details.
rector, Center for Biologics Evaluation and Re- ) .
search. 4 Brief Overview of the Corpus

Figure 4: AST for (2)

The PPT and AST for (2) are shown in Figures 3Me have annotated95 sentences from the FDA
and 4 respectively. Consider the noun phrad4?® CFR Section 610 with ASTs. The operators are di-
samples ofany lot of a licensed product” in the vided into the following types — determiners (e.g.,
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every, a, at least), modal auxiliaries (e.g.must,

coordinating conjunctions (e.gand, but, or). The

tor with 50% occuringde reis ambiguous, whil®%

be), VP madifiers (e.g.if, for, after), negation and or 100% are unambiguous. Thus, from Table 1, we
can conclude that determiners, and VP modifiers are
majority of the corpus was annotated by a single arthe most ambiguous types. And, more features are

notator. However, to estimate inter-annotator agre@eeded to disambiguate them.

ment, a set of32 sentences was annotated by a

second annotator. In this section, we restrict our- Determiner | Number of | De Re Scope
selves to presenting statistics that highlight part of Type Instances | Percentage

C . Universal 74 100%
the guidelines and motivate the features _tha_t we use Existential | 12 0%
to order operators. An example-based justification Ambiguous | 50 28%
of guidelines, and a discussion of inter-annotator Deictic 127 53.5%
agreement can be found in (Dinesh, 2010). Other 14 35.7%

De Re vs De Dicto:We narrow our focus to one part
of the annotation, thee revs de dictodistinction.
Informally, operators witlde rescope occur in the
precondition of the logical translation of a sentenceDeterminers:  We divide the determiners into the
while those withde dictoscope occur in the post- following subtypes: universal/generic (e.gvery,
condition. This distinction is of key importance inall), existential §ome), ambiguous (e.ga, an), de-
the application of conformance checking, as it helpitic (e.g.,the, those), and other (e.gat least, at
determine the facts that need to be provided by dfost). The guidelines for annotation were as fol-
organization de ré), and the actions that an organi-lows — (a) universal determiners hasle re scope,
zation is required to takelé dictd. (b) existential determiners hade dictoscope, and
For simplicity, we further restrict attention to op- (C) for other determiners, the annotator needs to de-
erators that are siblings of the postcondition in th€ide whether a particular use is interpreted existen-
AST, and ignore the operators embedded in prepodially or universally. Table 2 showde rescope dis-
tional phrases and clauses, for example. A (maitiibution for each of these subtypes. As expected,
clause) operatop is said to havede re scope iff universal and existential determiners are unambigu-
it outscopes the postcondition marker % Post). 0Ous, while ambiguous and deictic determiners show
Otherwise, the operator is said to haleedictoscope more variety. For example, the deictic determiner
(Post > 0). In the example of the general safety testhe can refer to a specific entitytffe FDA’) or have
from Section 2, the implicit determiner associated Universal interpretation ttie products”).
with “biological products” hasle rescope, while all ~ Thus, to disambiguate betweda reandde dicto

other operators in the sentence hdeedictoscope. interpretations for determiners, we need two types of
features — (1) Features to predict whether ambiguous

Table 2: De Re scope distribution for determiners.

Operator | Number of | De Re Scope and deictic determiners are universal or not, and (2)
Type Instances | Percentage d . h fi licit d .
Determiner | 277 59.9% Features to determine the type of implicit e‘Ferm_m_-
Modal Aux | 268 0% ers. In Table 2, we assume that the type of implicit
VP Modifier | 132 68.2% determiners are given. This assumption is unreal-
cC 36 22.2% istic. Rather, we need to predict the type of such
0, . . .
Neg 33 0% determiners, during the computation of the AST.
Other 74 17.6%
o VP Modifier Number of | De Re Scope
Table 1: De Re scope distribution. An operator Hage Type Instances | Percentage
scope iff it outscopes the postcondition marker. Temporal and Conditiona] 73 100%
Purpose 8 0%
Table 1 shows the percentage of each type of opf References to Laws 33 0.9%
erator that hasle rescope. Modal auxiliaries and | Other 29 65.5%

negation are umambigous to this distinction, and al-
ways haveale dictoscope. Note that a type of opera-
1207
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VP Modifiers: We divide the VP modifiers into the NNS (plural common noun). And, thiststag
following subtypes: temporal and conditional (e.g., may indicate a generic/universal interpretation.
after, if), purpose for), references to laws (which
are a special type of modifier in the legal domain,

Count | MAJORITY | TYPE ALL
e.g., ‘as specified in paragraph (c)”), and other (e.g., [Aj 823 | 66.2% 8419 | 89.2%
regardless, notwithstanding). Table 3 shows the NoMD | 522 | 53.2% 74.9% | 83.7%
percentage of each subtype of modifier that tas DT 277 | 59.9% 62.9% | 81.2%
re scope. Following the guidelines for annotation, | !MP-DT | 100 | 69% - 6%

the temporal and conditional modifiers are alwdgs . o
able 4: De Re vs De Dicto classification. Average accu-

re, the purpose modifiers and modifiers conve ing : e ;
purp . y acies over 10-fold cross-validation. The rows describe
references to laws are alwage dicto

the subset of observations considered, and the columns

. describe the subset of features used.
5 Comparing the Scope of Operators

Experiments: We evaluate the features by perform-

We now consider a subproblem in computing th(?ng 10-fold cross-validation. The results are summa-

AST — comparing the scope of pairs of OIC)er"’ltorsr'ized in Table 4. The rows describe the subset of ob-

In Sectipn 6, we will use the classifiers that IOferforn%ervations used. “All” includes all observations, “No
comparisons, to compute the AST. Al experlment?le,, excludes the modal auxiliaries, “DT” includes

in this section use the NXENT implentation from only the determiners, and “Imp. DT” includes only
the MALLET toolkit (McCallum, 2002). We begin implicit determiners. The columns describe the fea-

by revisiting de rede dicto distinction from Sec- tures used. MJORITY is the majority baseline, i.e.,

gon ; ThenbweDgen.er_zI:_lIr:ze tk())' other C(lamp-z;rlsqns. the accuracy obtained by predicting the most fre-
e Re vs De Dicto: The (binary) classification guent class or the majority class. The majority class

problem I,S as foIIows.hOrL]Jr ot;]servgtlons are ”'P'efs de dictowhen all operators are considered (the
z = (0,0/,7) are such that there is a pretermina irst row), andde rein all other rows. The YpPE

/ /I
per {oo0 } b ando’ = Post. In othe_r yvords, column gives the accuracy when only the type and
we are considering operators) that are siblings of subtypes are used as features. This column does not
" , :
tEe lp%St|CQ?d't'0n cnaérkeroo. An obsgrvalltlgnl :;‘S apply to implicit determiners, as the subtype infor-
the labell if o > o (de rescope), and a labe mation is unavailable. And, finally, thelA column

otherW|s§ de dictoscope). . gives the accuracy when all features are used.
Features: We use t.he fO”OW'?g (.classes of) fea- From Table 4, we can conclude that thePE fea-
tures for an observation = (o, o', 7): ture is useful in making thele rede dictodistinc-
e TvPE - The type and subtype of the operatortlon’ and further gains are optalned by us_lngl_A
. features. The most dramatic improvement is for de-
We use the subtypes from Section 4 only for =~ ) :
- terminers, and indeed, our features were designed
explicit operators. ) .
for this case. However, the performance gains are
not very high for implicit determiners, and further
investigation is needed.
Next, we apply the features to more general oper-

e PRE-VERB + PERF- Conjunction of the previ- ator comparisons. The first row of Table 5 considers

ous feature with whether the main verhpisr-  Observationse = (o, 0’,7), whereo ando’ are sib-
form. The verbperformis frequent in the CFR, lings, and predicts whether> o’. The second row
and its subject is typically givede dictoscope, considers observations wheseis embedded syn-

as it is the main predicate of the sentence.  tactically withino, and predicts whether B(>> o
In other words, the problem is to determine whether

e POs- The part-of-speech of the head word. Foa syntactically embedded operator remains scopally
example, for the noun phrasgological prod- embedded, or whether it has inverse scope (see Sec-
ucts the head word iproducts and the Bsis tion 3.3).
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_ Count | MAJORITY | TYPE | ALL initial PPT, corresponding to an in-order traversal.
Siblings | 2793 | 76.1% 83.3% | 87.5% For each operator, we attach it to the most likely an-
Embedded| 5081 | 95% 95.3% | 96.4% . . .

cestor, given the attachment decisions for the previ-

Table 5: Ordering siblings and embedded operatorg.us operators. This heuristic is optimal for the case

Average accuracies over 10-fold cross-validation. Thl@’here the depth of embedding is at moswhich is
columns describe the subset of features used. the common case.

6.2 Metrics

In this section, we describe metrics used to evaluate
We now consider the problem of computing théhe computation of ASTs. Let be the initial PPT,
AST given the classifiers for comparing operatorsx the correct AST, and* the computed AST. We
Section 6.1 describes the algorithms used. In Sedefine accuracy at various levels.
tion 6.2, we develop metrics to evaluate the com- The simplest metric is to define accuracytla¢
putation of ASTs. We conclude, in Section 6.3, byevel of ASTd.e., by computing the fraction of cases
evaluating different algorithms using the metrics. for which « = «o*. However, this metric is harsh,
_ in the sense that it does not give algorithms partial
6.1 Algorithms credit for getting a portion of the AST correct.
We begin by discussing the intractability of the prob- The next possible metric is to define accuracy at
lem of ranking or ordering operators. Then, wéhe level of preterminals Let p be a preterminal.
sketch the search heuristics used. Note thatr, o anda* share the same set of preter-
Intractability: ~ The decision version of the rank- minals, but may associate different operators with
ing problem is NP-complete. A similar result is esthem. We say thap is correct ina*, if it is asso-
tablished by Cohen et al. (1998) in the context of giated with the same set of operators asyinand
boosting approach to ranking. for all {o,0'} C p, we haveo > o w.rt. o* iff
o > o w.rt. a. In other words, the preterminals
are identical, both in terms of the set of operators
and the ordering between pairs of operators. While
Output:  Yes, if there is an ordering such that pr_eterminal—level accuracy gives partial credit,.it is
P(e(p)|7) > ¢ stlll_ a little harsh, in th_e sense that an algorlthm
which makes one ordering mistake at a preterminal
The proof is by reduction from &vCLIC SUB- s penalized the same as an algorithm which makes
GRAPH (Karp, 1972) — finding a subgraph which ismyltiple mistakes.
acyclic and has at leastedges. Finally, we consider metrics to define accuracy at
Heuristics: To order Operators, we use a beamhe level of pairs of operators Let p be a preter-
search procedure. Each search state consists pretainal. The sefPairs(p, o) consists of pairs of op-
minal, in which the first ranks have been assignederators (o, o’) such thato and o’ are both associ-
to operators. We then search over next states by agred withp in o, ando = o’ oro > o’. The set

signing the rank + 1 to one of the remaining opera- pairs(p, o*) is defined similarly using* instead of

tors. We used a beam sizeldf! in our experiments. . Given the set®airs(p, o) andPairs(p, a*), pre-

In most cases, the number of operators per pretefision, recall, and f-score are defined in the usual

minal is less thary. As a result, the total number way. We leave the details to the reader.

of possible orderings is typically less th@ah and a

beam size of0? is sufficient to compute an exact or-6.3  Results

dering. In other words, due to the size restrictions, iQye evaluate the following algorithms:

most cases, beam search is equivalent to exact (ex-

haustive) search. 1. No Embedding — The AST is computed purely
To handle embedded operators, we use a simple by reordering operators within a preterminal in

greedy heuristic. We enumerate the operators in the the PPT.
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6 From Operator Comparisons to ASTs

Theorem 1. The following problem is NP-complete:
Input: A PPTr, a preterminalp € 7, probabilities
P(o > dl|1), andc € [0, 1]



(&) URFACE — No reordering is performed, it has some false positives). By contrast, an algo-
i.e., the order of operators in the AST re-rithm loses precision for failing to correctly raise,

spects the surface order only when we encounter the single operator node.
(b) TYPE — Using only type and subtype in- For these reasons, it is better to consider the rela-
formation for the operators tive improvement in F-score over the baseline. The

relative improvement of AL+ over SURFACE in
terms of F-score i36.6%. We believe that the
preterminal-level accuracy is more indicative in an
2 ALL+ — The initial PPT is transformed into a @bsolute sense. Furthermore, when we restrict atten-

second PPT before reordering (as described PN t0 those preterminals with two or more opera-
Section 3.3). All features are used. tors in the PPT, the accuracy oA+ is 69.4%.

(c) ALL — Using all the features described in
Section 5

7 Related Work

Prec. Rec. F p «@
SURF. | 86.9% | 82.7% | 84.6% | 81% 4.2% ASTs can be seen as a middle ground between two
TYPE | 90.4% | 86% 88.1% | 83.6% | 24.7% lines of research in translating sentences to logic.

ALL 92% 87.6% | 89.8% | 85.1% | 33.5%
ALL+ | 91.9% | 89.4% | 90.6% | 85.9% | 36.2%

At one end of the spectrum, we have methods
that achieve good accuracy on restricted texts. The
Table 6: Performance of the algorithms in computing th-!-;rWO main corpora that have been considered are the
ASTSs. Averaged over 10-fold cross-validatid®5 ASTs GEOQUERY corpus (Thompson et al.,, 1997) and

in total, an average of.6 preterminals per AST, antlg ~ the ATIS-3 corpus (Dahl et al., 1994). TheeG-
operators per preterminal. QUERY corpus consists of queries to a geographical

database. The queries were collected from students

Table 6 summarizes the performance of the aparticipating in a study and the average sentence
gorithms, under the various metrics. The accurdength is8 words. The ATIS corpus is collected
cies are averaged over 10-fold cross-validation. Aom subjects’ interaction with a database of flight
total of 195 ASTs are used. The average numbeinformation, using spoken natural language. The ut-
of preterminals per AST i8.6, with an average of terances have be transcribed, and the average sen-
1.8 operators per preterminal. The best number urience length i20 words (Berant et al., 2007). Algo-
der each metric is shown in bold-face. By addingithms, which achieve good accuracy, have been de-
features, we improve the precision fro$6.9% to veloped to compute the logical translation for these
90.4% to 92% in moving from SURFACE to TYPE queries (Zettlemoyer and Collins, 2005; Wong and
to ALL. By handling embedded operators, we imMooney, 2007; Zettlemoyer and Collins, 2009). The
prove the recall from87.6% to 89.4% in moving annotated sentences in the FDA CFR Section 610.40
from ALL to ALL+. As we saw in Section 5, i95%  are longer (about0 words on average), and contain
of the cases, the embedded operators respects sytpdalities which are not present in these corpora.
tactic scope, and as a result, we obtain only modest At the other end of the spectrum, Bos et al. (Bos et
gains from handling embedded operators. al., 2004) have developed a broad-coverage parser to

The reader may feel that the F-scored6f6% is  translate sentences to a logic based on discourse rep-
quite high given the size of our training data. Thigesentation theory. Here, there is no direct method to
score is inflated by inclusion of reflexive pairs, ofevaluate the correctness of the translation. However,
the form (0,0). Such pairs are included for theindirect evaluations are possible, for example, by
following (technical) reasons. The algorithm thaistudying improvement in textual entailment tasks.
handles embedded operators (ALL+) usually raises To summarize, there are techniques that either
them from a single operator node (as in Figure 3) tproduce an accurate translation for sentences in a
a multi-operator node (as in Figure 5). If it makedimited domain, or produce some translation for sen-
an incorrect decision to raise an operator it takestances in a broader range of texts. ASTs offer a mid-
precision hit, at the multi-operator node (becausdle ground in two ways. First, we focus on regula-
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tory texts which are less restricted than the databapgeagmatic features to future work.
gueries in the @OQUERY and ATIS corpora, but do
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