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Abstract

Previous work has shown that high quality
phrasal paraphrases can be extracted from
bilingual parallel corpora. However, it is not
clear whether bitexts are an appropriate re-
source for extracting more sophisticated sen-
tential paraphrases, which are more obviously
learnable from monolingual parallel corpora.
We extend bilingual paraphrase extraction to
syntactic paraphrases and demonstrate its abil-
ity to learn a variety of general paraphrastic
transformations, including passivization, da-
tive shift, and topicalization. We discuss how
our model can be adapted to many text gener-
ation tasks by augmenting its feature set, de-
velopment data, and parameter estimation rou-
tine. We illustrate this adaptation by using
our paraphrase model for the task of sentence
compression and achieve results competitive
with state-of-the-art compression systems.

1 Introduction

Paraphrases are alternative ways of expressing the
same information (Culicover, 1968). Automatically
generating and detecting paraphrases is a crucial as-
pect of many NLP tasks. In multi-document sum-
marization, paraphrase detection is used to collapse
redundancies (Barzilay et al., 1999; Barzilay, 2003).
Paraphrase generation can be used for query expan-
sion in information retrieval and question answer-
ing systems (McKeown, 1979; Anick and Tipirneni,
1999; Ravichandran and Hovy, 2002; Riezler et al.,
2007). Paraphrases allow for more flexible matching
of system output against human references for tasks
like machine translation and automatic summariza-
tion (Zhou et al., 2006; Kauchak and Barzilay, 2006;
Madnani et al., 2007; Snover et al., 2010).
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Broadly, we can distinguish two forms of para-
phrases: phrasal paraphrases denote a set of surface
text forms with the same meaning:

the committee’s second proposal
the second proposal of the committee

while syntactic paraphrases augment the surface
forms by introducing nonterminals (or slots) that are
annotated with syntactic constraints:

the NP1’s NPy
the NP5 of the NP,

It is evident that the latter have a much higher poten-
tial for generalization and for capturing interesting
paraphrastic transformations.

A variety of different types of corpora (and se-
mantic equivalence cues) have been used to auto-
matically induce paraphrase collections for English
(Madnani and Dorr, 2010). Perhaps the most nat-
ural type of corpus for this task is a monolingual
parallel text, which allows sentential paraphrases to
be extracted since the sentence pairs in such corpora
are perfect paraphrases of each other (Barzilay and
McKeown, 2001; Pang et al., 2003). While rich syn-
tactic paraphrases have been learned from monolin-
gual parallel corpora, they suffer from very limited
data availability and thus have poor coverage.

Other methods obtain paraphrases from raw
monolingual text by relying on distributional simi-
larity (Lin and Pantel, 2001; Bhagat and Ravichan-
dran, 2008). While vast amounts of data are
readily available for these approaches, the distri-
butional similarity signal they use is noisier than
the sentence-level correspondency in parallel cor-
pora and additionally suffers from problems such as
mistaking cousin expressions or antonyms (such as
{boy, girl} or {rise, fall}) for paraphrases.
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Abundantly available bilingual parallel corpora
have been shown to address both these issues, ob-
taining paraphrases via a pivoting step over foreign
language phrases (Bannard and Callison-Burch,
2005). The coverage of paraphrase lexica extracted
from bitexts has been shown to outperform that
obtained from other sources (Zhao et al., 2008a).
While there have been efforts pursuing the extrac-
tion of more powerful paraphrases (Madnani et
al., 2007; Callison-Burch, 2008; Cohn and Lapata,
2008; Zhao et al., 2008b), it is not yet clear to what
extent sentential paraphrases can be induced from
bitexts. In this paper we:

e Extend the bilingual pivoting approach to para-
phrase induction to produce rich syntactic para-
phrases.

e Perform a thorough analysis of the types of
paraphrases we obtain and discuss the para-
phrastic transformations we are capable of cap-
turing.

e Describe how training paradigms for syntac-
tic/sentential paraphrase models should be tai-
lored to different text-to-text generation tasks.

e Demonstrate our framework’s suitability for a
variety of text-to-text generation tasks by ob-
taining state-of-the-art results on the example
task of sentence compression.

2 Related Work

Madnani and Dorr (2010) survey a variety of data-
driven paraphrasing techniques, categorizing them
based on the type of data that they use. These
include large monolingual texts (Lin and Pantel,
2001; Szpektor et al., 2004; Bhagat and Ravichan-
dran, 2008), comparable corpora (Barzilay and Lee,
2003; Dolan et al., 2004), monolingual parallel cor-
pora (Barzilay and McKeown, 2001; Pang et al.,
2003), and bilingual parallel corpora (Bannard and
Callison-Burch, 2005; Madnani et al., 2007; Zhao et
al., 2008b). We focus on the latter type of data.
Paraphrase extraction using bilingual parallel cor-
pora was proposed by Bannard and Callison-Burch
(2005) who induced paraphrases using techniques
from phrase-based statistical machine translation
(Koehn et al., 2003). After extracting a bilingual
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phrase table, English paraphrases are obtained by
pivoting through foreign language phrases. Since
many paraphrases can be extracted for a phrase,
Bannard and Callison-Burch rank them using a para-
phrase probability defined in terms of the translation
model probabilities p(f|e) and p(el f):

Zp(627 f’el)
f

ZP(62|f, er)p(fler) (@)
f

ey

p(ezler)

%

> pleal f)p(fler). 3)
f

Several subsequent efforts extended the bilin-
gual pivoting technique, many of which introduced
elements of more contemporary syntax-based ap-
proaches to statistical machine translation. Mad-
nani et al. (2007) extended the technique to hier-
archical phrase-based machine translation (Chiang,
2005), which is formally a synchronous context-free
grammar (SCFG) and thus can be thought of as a
paraphrase grammar. The paraphrase grammar can
paraphrase (or “decode”) input sentences using an
SCFG decoder, like the Hiero, Joshua or cdec MT
systems (Chiang, 2007; Li et al., 2009; Dyer et al.,
2010). Like Hiero, Madnani’s model uses just one
nonterminal X instead of linguistic nonterminals.

Three additional efforts incorporated linguistic
syntax. Callison-Burch (2008) introduced syntac-
tic constraints by labeling all phrases and para-
phrases (even non-constituent phrases) with CCG-
inspired slash categories (Steedman and Baldridge,
2011), an approach similar to Zollmann and Venu-
gopal (2006)’s syntax-augmented machine transla-
tion (SAMT). Callison-Burch did not formally de-
fine a synchronous grammar, nor discuss decoding,
since his presentation did not include hierarchical
rules. Cohn and Lapata (2008) used the GHKM
extraction method (Galley et al., 2004), which is
limited to constituent phrases and thus produces
a reasonably small set of syntactic rules. Zhao
et al. (2008b) added slots to bilingually extracted
paraphrase patterns that were labeled with part-of-
speech tags, but not larger syntactic constituents.

Before the shift to statistical natural language pro-
cessing, paraphrasing was often treated as syntactic
transformations or by parsing and then generating



from a semantic representation (McKeown, 1979;
Muraki, 1982; Meteer and Shaked, 1988; Shem-
tov, 1996; Yamamoto, 2002). Indeed, some work
generated paraphrases using (non-probabilistic) syn-
chronous grammars (Shieber and Schabes, 1990;
Dras, 1997; Dras, 1999; Kozlowski et al., 2003).

After the rise of statistical machine translation, a
number of its techniques were repurposed for para-
phrasing. These include sentence alignment (Gale
and Church, 1993; Barzilay and Elhadad, 2003),
word alignment and noisy channel decoding (Brown
etal., 1990; Quirk et al., 2004), phrase-based models
(Koehn et al., 2003; Bannard and Callison-Burch,
2005), hierarchical phrase-based models (Chiang,
2005; Madnani et al., 2007), log-linear models and
minimum error rate training (Och, 2003a; Madnani
et al., 2007; Zhao et al., 2008a), and here syntax-
based machine translation (Wu, 1997; Yamada and
Knight, 2001; Melamed, 2004; Quirk et al., 2005).

Beyond cementing the ties between paraphrasing
and syntax-based statistical machine translation, the
novel contributions of our paper are (1) an in-depth
analysis of the types of structural and sentential
paraphrases that can be extracted with bilingual piv-
oting, (2) a discussion of how our English-English
paraphrase grammar should be adapted to specific
text-to-text generation tasks (Zhao et al., 2009) with
(3) a concrete example of the adaptation procedure
for the task of paraphrase-based sentence compres-
sion (Knight and Marcu, 2002; Cohn and Lapata,
2008; Cohn and Lapata, 2009).

3 SCFGs in Translation

The model we use in our paraphrasing approach is
a syntactically informed synchronous context-free
grammar (SCFG). The SCFG formalism (Aho and
Ullman, 1972) was repopularized for statistical ma-
chine translation by Chiang (2005). Formally, a
probabilistic SCFG G is defined by specifying

g: <N77T5’777.’17R7S>7

where N is a set of nonterminal symbols, 7g and 71
are the source and target language vocabularies, R
is a set of rules and S € N is the root symbol. The
rules in ‘R take the form:

C_><77a7N7w>7
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sie versuchten|(das leck (it einer fdetonation zu schiiessen

NP — das leck | the leak
PP/NN — mit einer | with a
VP — NP PP/NN detonation zu schliessen | closing NP PP/NN blast

Figure 1: Synchronous grammar rules for translation are
extracted from sentence pairs in a bixtext which have
been automatically parsed and word-aligned. Extraction
methods vary on whether they extract only minimal rules
for phrases dominated by nodes in the parse tree, or more
complex rules that include non-constituent phrases.

where the rule’s left-hand side C' € N is a nonter-
minal, v € (NUT7g)* and a € (NUT7)* are strings
of terminal and nonterminal symbols with an equal
number of nonterminals cy7 () = enr(a) and

~ {1 .. ~CNT('7)} — {1 .. .CNT(a)}

constitutes a one-to-one correspondency function
between the nonterminals in v and a. A non-
negative weight w > 0 is assigned to each rule, re-
flecting the likelihood of the rule.

Rule Extraction Phrase-based approaches to sta-
tistical machine translation (and their successors)
extract pairs of (e, f) phrases from automatically
word-aligned parallel sentences.  Och (2003b)
described various heuristics for extracting phrase
alignments from the Viterbi word-level alignments
that are estimated using Brown et al. (1993) word-
alignment models.

These phrase extraction heuristics have been ex-
tended so that they extract synchronous grammar
rules (Galley et al., 2004; Chiang, 2005; Zollmann
and Venugopal, 2006; Liu et al., 2006). Most of
these extraction methods require that one side of the
parallel corpus be parsed. This is typically done au-
tomatically with a statistical parser.

Figure 1 shows examples of rules obtained from
a sentence pair. To extract a rule, we first choose a
source side span f like das leck. Then we use phrase
extraction techniques to find target spans e that are
consistent with the word alignment (in this case the



leak is consistent with our f). The nonterminal sym-
bol that is the left-hand side of the SCFG rule is then
determined by the syntactic constituent that domi-
nates e (in this case NP). To introduce nonterminals
into the right-hand side of the rule, we can apply
rules extracted over sub-phrases of f, synchronously
substituting the corresponding nonterminal symbol
for the sub-phrases on both sides. The synchronous
substitution applied to f and e then yields the corre-
spondency ~.

One significant differentiating factor between the
competing ways of extracting SCFG rules is whether
the extraction method generates rules only for con-
stituent phrases that are dominated by a node in
the parse tree (Galley et al., 2004; Cohn and
Lapata, 2008) or whether they include arbitrary
phrases, including non-constituent phrases (Zoll-
mann and Venugopal, 2006; Callison-Burch, 2008).
We adopt the extraction for all phrases, including
non-constituents, since it allows us to cover a much
greater set of phrases, both in translation and para-
phrasing.

Feature Functions Rather than assigning a single
weight w, we define a set of feature functions ¢ =
{¢1...on} that are combined in a log-linear model:

N
w:—Z)\iloggoi. 4
i=1

The weights X of these feature functions are set to
maximize some objective function like BLEU (Pap-
ineni et al., 2002) using a procedure called minimum
error rate training (MERT), owing to Och (2003a).
MERT iteratively adjusts the weights until the de-
coder produces output that best matches reference
translations in a development set, according to the
objective function. We will examine appropriate ob-
jective functions for text-to-text generation tasks in
Section 6.2.

Typical features used in statistical machine trans-
lation include phrase translation probabilities (cal-
culated using maximum likelihood estimation over
all phrase pairs enumerable in the parallel cor-
pus), word-for-word lexical translation probabili-
ties (which help to smooth sparser phrase transla-
tion estimates), a “rule application penalty” (which
governs whether the system prefers fewer longer

1171

PP Qe
QBRI P>

they can not be dangerous to the rest of the village

sie dem rest des dorfes nicht gefahrlich werden kénnen

QP

CUPPP
<

NP/NN — dem rest des | the rest of the
VB+JJ — geféhrlich werden | be dangerous
NP — NP/NN dorfes | NP/NN village

VP/PP — nicht VB+JJ kénnen | can not VB+JJ
S — sie NP VP/PP | they VP/PP to NP

Figure 2: An example derivation produced by a syntactic
machine translation system. Although the synchronous
trees are unlike the derivations found in the Penn Tree-
bank, their yield is a good translation of the German.

phrases or a greater number of shorter phrases), and
a language model probability.

Decoding Given an SCFG and an input source
sentence, the decoder performs a search for the sin-
gle most probable derivation via the CKY algorithm.
In principle the best translation should be the En-
glish sentence e that is the most probable after sum-
ming over all d € D derivations, since many deriva-
tions yield the same e. In practice, we use a Viterbi
approximation and return the translation that is the
yield of the single best derivation:

¢ = arg max Z p(d,elf)

e€Trans(f) deD(o.f)

~ yield(arg max d,e . 5

yield( gdeD(e,f)p( 1)) )
Derivations are simply successive applications of the
SCFG rules such as those given in Figure 2.

4 SCFGs in Paraphrasing

Rule Extraction To create a paraphrase grammar
from a translation grammar, we extend the syntac-
tically informed pivot approach of Callison-Burch
(2008) to the SCFG model. For this purpose, we
assume a grammar that translates from a given for-
eign language to English. For each pair of trans-
lation rules where the left-hand side C' and foreign



string -y match:

C — <'Y,O[1,N1,Q31>
C — <77 a2, ~2, 62)7

we create a paraphrase rule:
C— <a17 a2, ~, 95>7

where the nonterminal correspondency relation ~
has been set to reflect the combined nonterminal
alignment:

1o

~ = ~

Feature Functions In the computation of the fea-
tures ¢ from 1 and g» we follow the approximation
in Equation 3, which yields lexical and phrasal para-
phrase probability features. Additionally, we add a
boolean indicator for whether the rule is an iden-
tity paraphrase, d;4ensity- Another indicator feature,
Oreorder> fires if the rule swaps the order of two non-
terminals, which enables us to promote more com-
plex paraphrases that require structural reordering.

Decoding With this, paraphrasing becomes an
English-to-English translation problem which can
be formulated similarly to Equation 5 as:

€y = yield(arg de&giel)p(d, esler)).

Figure 3 shows an example derivation produced as a
result of applying our paraphrase rules in the decod-
ing process. Another advantage of using the decoder
from statistical machine translation is that n-gram
language models, which have been shown to be use-
ful in natural language generation (Langkilde and
Knight, 1998), are already well integrated (Huang
and Chiang, 2007).

5 Analysis

A key motivation for the use of syntactic paraphrases
over their phrasal counterparts is their potential to
capture meaning-preserving linguistic transforma-
tions in a more general fashion. A phrasal system is
limited to memorizing fully lexicalized transforma-
tions in its paraphrase table, resulting in poor gener-
alization capabilities. By contrast, a syntactic para-
phrasing system intuitively should be able to address
this issue and learn well-formed and generic patterns
that can be easily applied to unseen data.
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twelve cartoons

insulting

the prophet mohammad

12 of the cartoons that are offensive to the prophet mohammad
QP>

Paraphrase Rule

Lexical paraphrase:
JJ — offensive | insulting

Foreign Pivot Phrase

JJ > beleidigend | offensive
JJ -> beleidigend | insulting

NP -> NP die VP | NP VP
NP -> NP die VP | NP that VP

VP — sind JJ fir NP | are JJ to NP
VP — sind JJ fir NP | JJ NP

NP -> CD der NNS | CD of the NNS
NP -> CD der NNS | CD NNS

Reduced relative clause:
NP — NP that VP | NP VP

Pred. adjective copula deletion:
VP — are JJto NP | JJ NP

Partitive construction:
NP — CD of the NNS | CD NNS

Figure 3: An example of a synchronous paraphrastic
derivation. A few of the rules applied in the parse are
show in the left column, with the pivot phrases that gave
rise to them on the right.

To put this expectation to the test, we investigate
how our grammar captures a number of well-known
paraphrastic transformations.! Table 1 shows the
transformations along with examples of the generic
grammar rules our system learns to represent them.
When given a transformation to extract a syntactic
paraphrase for, we want to find rules that neither
under- nor over-generalize. This means that, while
replacing the maximum number of syntactic argu-
ments with nonterminals, the rules ideally will both
retain enough lexicalization to serve as sufficient ev-
idence for the applicability of the transformation and
impose constraints on the nonterminals to ensure the
arguments’ well-formedness.

The paraphrases implementing the possessive rule
and the dative shift shown in Table 1 are a good
examples of this: the two noun-phrase arguments
to the expressions are abstracted to nonterminals
while each rule’s lexicalization provides an appro-
priate frame of evidence for the transform. This is
important for a good representation of dative shift,
which is a reordering transformation that fully ap-
plies to certain ditransitive verbs while other verbs
are uncommon in one of the forms:

!The data and software used to extract the grammar we draw
these examples from is described in Section 6.5.



Possessive rule NP — the NN of the NNP | the NNP’s NN
NP —  the NNS; made by NNS2 | the NNS5’s NNS;
. . VP — give NN to NP | give NP the NN
Dative shift VP - provide NP1 to NPy |  give NPy NP,
. S/VP — ADVP they VBP | they VPB ADVP
Adv./ad). phrase move S — itis ADJP VP | VPis ADJP
Verb particle shift VP — VB NPup | VBup NP
Reduced relative clause SBAR/S —  although PRP VBP that | although PRP VBP
ADJP — very JJ that S | JJ S
Partitive constructions NP = CDofthe NV | = CD NN
NP — all DT\NP | all of the DT\NP
Topicalization S — NP, VP. | VP,NP.
Passivization SBAR — that NP had VBN | which was VBN by NP
Licht verbs VP — take action ADVP | toact ADVP
£ VP — TO take a decision PP | TO decide PP

Table 1: A selection of meaning-preserving transformations and hand-picked examples of syntactic paraphrases that

our system extracts capturing these.

give decontamination equipment to Japan
give Japan decontamination equipment

provide decontamination equipment to Japan
7 provide Japan decontamination equipment

Note how our system extracts a dative shift rule for
to give and a rule that both shifts and substitutes a
more appropriate verb for to provide.

The use of syntactic nonterminals in our para-
phrase rules to capture complex transforms also
makes it possible to impose constraints on their ap-
plication. For comparison, as Madnani et al. (2007)
do not impose any constraints on how the nontermi-
nal X can be realized, their equivalent of the fopi-
calization rule would massively overgeneralize:

S — Xl,XQ. ‘ XQ,Xl.

Additional examples of transforms our use of syn-
tax allows us to capture are the adverbial phrase
shift and the reduction of a relative clause, as well
as other phenomena listed in Table 1.

Unsurprisingly, syntactic information alone is not
sufficient to capture all transformations. For in-
stance it is hard to extract generic paraphrases for all
instances of passivization, since our syntactic model
currently has no means of representing the morpho-
logical changes that the verb undergoes:

the reactor /leaks radiation
radiation is leaking from the reactor .

Still, for cases where the verb’s morphology does
not change, we manage to learn a rule:
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the radiation that the reactor had leaked
the radiation which leaked from the reactor .

Another example of a deficiency in our synchronous
grammar models are light verb constructs such as:

to take a walk
to walk .

Here, a noun is transformed into the corresponding
verb — something our synchronous syntactic CFGs
are not able to capture except through memorization.

Our survey shows that we are able to extract ap-
propriately generic representations for a wide range
of paraphrastic transformations. This is a surpris-
ing result which shows that bilingual parallel cor-
pora can be used to learn sentential paraphrases, and
that they are a viable alternative to other data sources
like monolingual parallel corpora, which more obvi-
ously contain sentential paraphrases, but are scarce.

6 Text-to-Text Applications

The core of many text-to-text generation tasks is
sentential paraphrasing, augmented with specific
constraints or goals. Since our model borrows much
of its machinery from statistical machine translation
— a sentential rewriting problem itself — it is straight-
forward to use our paraphrase grammars to generate
new sentences using SMT’s decoding and param-
eter optimization techniques. Our framework can
be adapted to many different text-to-text generation
tasks. These could include text simplification, sen-



tence compression, poetry generation, query expan-
sion, transforming declarative sentences into ques-
tions, and deriving hypotheses for textual entail-
ment. Each individual text-to-text application re-
quires that our framework be adapted in several
ways, by specifying:

e A mechanism for extracting synchronous
grammar rules (in this paper we argue that
pivot-based paraphrasing is widely applicable).

e An appropriate set of rule-level features that
capture information pertinent to the task (e.g.
whether a rule simplifies a phrase).

e An appropriate “objective function” that scores
the output of the model, i.e. a task-specific
equivalent to the BLEU metric in SMT.

e A development set with examples of the sen-
tential transformations that we are modeling.

e Optionally, a way of injecting task-specific
rules that were not extracted automatically.

In the remainder of this section, we illustrate how
our bilingually extracted paraphrases can be adapted
to perform sentence compression, which is the task
of reducing the length of sentence while preserving
its core meaning. Most previous approaches to sen-
tence compression focused only on the deletion of
a subset of words from the sentence (Knight and
Marcu, 2002). Our approach follows Cohn and La-
pata (2008), who expand the task to include substi-
tutions, insertions and reorderings that are automat-
ically learned from parallel texts.

6.1 Feature Design

In Section 4 we discussed phrasal probabilities.
While these help quantify how good a paraphrase
is in general, they do not make any statement on
task-specific things such as the change in language
complexity or text length. To make this information
available to the decoder, we enhance our paraphrases
with four compression-targeted features. We add the
count features cg. and ¢4, indicating the number of
words on either side of the rule as well as two differ-
ence features: Cgcount = Ctgt — Csrc and the anal-
ogously computed difference in the average word

length in characters, cg4.4-
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6.2 Objective Function

Given our paraphrasing system’s connection to
SMT, the naive/obvious choice for parameter op-
timization would be to optimize for BLEU over a
set of paraphrases, for instance parallel English ref-
erence translations for a machine translation task
(Madnani et al., 2007). For a candidate C' and a ref-
erence R, (with lengths c and r) BLEU is defined as:

BLEUN(C, R)

|

where p,, is the modified n-gram precision of C
against I, with typically N =4 and w,, = % The
1—c/rT)

e(lfc/r) . 625:1 log wnpn if C/?" S 1

N .
e2n=1108 Wnpn otherwise

“brevity penalty” term e is added to prevent
short candidates from achieving perfect scores.

Naively optimizing for BLEU, however, will re-
sult in a trivial paraphrasing system heavily biased
towards producing identity “paraphrases”. This is
obviously not what we are looking for. Moreover,
BLEU does not provide a mechanism for directly
specifying a per-sentence compression rate, which
is desirable for the compression task.

Instead, we propose PRECIS, an objective func-
tion tailored to the text compression task:

PRECIS) (I, C, R)
B { eAMw—c/i) -BLEU(C, R) if C/i >

BLEU(C, R) otherwise

For an input sentence I, an output C' and ref-
erence compression R (with lengths ¢, ¢ and 7),
PRECIS combines the precision estimate of BLEU
with an additional “verbosity penalty” that is ap-
plied to compressions that fail to meet a given target
compression rate . We rely on the BLEU brevity
penalty to prevent the system from producing overly
aggressive compressions. The scaling term \ deter-
mines how severely we penalize deviations from ¢.
In our experiments we use A = 10.

It is straightforward to find similar adaptations for
other tasks. For text simplification, for instance, the
penalty term can include a readability metric. For
poetry generation we can analogously penalize out-
puts that break the meter (Greene et al., 2010).

6.3 Development Data

To tune the parameters of our paraphrase system for
sentence compression, we need an appropriate cor-



pus of reference compressions. Since our model is
designed to compress by paraphrasing rather than
deletion, the commonly used deletion-based com-
pression data sets like the Ziff-Davis corpus are not
suitable. We have thus created a corpus of com-
pression paraphrases. Beginning with 9570 tuples
of parallel English—English sentences obtained from
multiple reference translations for machine transla-
tion evaluation, we construct a parallel compression
corpus by selecting the longest reference in each tu-
ple as the source sentence and the shortest reference
as the target sentence. We further retain only those
sentence pairs where the compression rate cr falls in
the range 0.5 < cr < 0.8. From these, we randomly
select 936 sentences for the development set, as well
as 560 sentences for a test set that we use to gauge
the performance of our system.

6.4 Grammar Augmentations

As we discussed in Section 5, the paraphrase gram-
mar we induce is capable of representing a wide va-
riety of transformations. However, the formalism
and extraction method are not explicitly geared to-
wards a compression application. For instance, the
synchronous nature of our grammar does not allow
us to perform deletions of constituents as done by
Cohn and Lapata (2007)’s tree transducers. One way
to extend the grammar’s capabilities towards the re-
quirements of a given task is by injecting additional
rules designed to capture appropriate operations.
For the compression task, this could include
adding rules to delete target-side nonterminals:

JJ = JJ | e

This would render the grammar asynchronous and
require adjustments to the decoding process. Al-
ternatively, we can generate rules that specifically
delete particular adjectives from the corpus:

JJ — superfluous | € .

In our experiments we evaluate the latter approach
by generating optional deletion rules for all adjec-
tives, adverbs and determiners.

6.5 Experimental Setup

We extracted a paraphrase grammar from the
French—English Europarl corpus (v5). The bitext
was aligned using the Berkeley aligner and the En-
glish side was parsed with the Berkeley parser. We
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Grammar # Rules
total 42,353,318
w/o identity 23,641,016
w/o complex constituents 6,439,923
w/o complex const. & identity 5,097,250

Table 2: Number and distribution of rules in our para-
phrase grammar. Note the significant number of identity
paraphrases and rules with complex nonterminal labels.

obtained the initial translation grammar using the
SAMT toolkit (Venugopal and Zollmann, 2009).
The grammars we extract tend to be extremely
large. To keep their size manageable, we only con-
sider translation rules that have been seen more than
3 times and whose translation probability exceeds
10~* for pivot recombination. Additionally, we only
retain the top 25 most likely paraphrases of each
phrase, ranked by a uniformly weighted combina-
tion of phrasal and lexical paraphrase probabilities.
We tuned the model parameters to our PRECIS
objective function, implemented in the Z-MERT
toolkit (Zaidan, 2009). For decoding we used the
Joshua decoder (Li et al., 2010). The language
model used in our paraphraser and the Clarke and
Lapata (2008) baseline system is a Kneser-Ney dis-
counted 5-gram model estimated on the Gigaword
corpus using the SRILM toolkit (Stolcke, 2002).

6.6 Evaluation

To assess the output quality of the resulting sentence
compression system, we compare it to two state-of-
the-art sentence compression systems. Specifically,
we compare against our implementation of Clarke
and Lapata (2008)’s compression model which uses
a series of constraints in an integer linear program-
ming (ILP) solver, and Cohn and Lapata (2007)’s
tree transducer toolkit (T3) which learns a syn-
chronous tree substitution grammar (STSG) from
paired monolingual sentences. Unlike SCFGs, the
STSG formalism allows changes to the tree topol-
ogy. Cohn and Lapata argue that this is a natural
fit for sentence compression, since deletions intro-
duce structural mismatches. We trained the T3 soft-
ware” on the 936 (full, compressed) sentence pairs
that comprise our development set. This is equiva-
lent in size to the training corpora that Cohn and La-
pata (2007) used (their training corpora ranged from

2www.dcs.shef.ac.uk/people/T.Cohn/t3/



882-1020 sentence pairs), and has the advantage of
being in-domain with respect to our test set. Both
these systems reported results outperforming previ-
ous systems such as McDonald (2006). To showcase
the value of the adaptations discussed above, we also
compare variants of our paraphrase-based compres-
sion systems: using Hiero instead of syntax, using
syntax with or without compression features, using
an augmented grammar with optional deletion rules.
We solicit human judgments of the compres-
sions along two five-point scales: grammaticality
and meaning. Judges are instructed to decide how
much the meaning from a reference translation is
retained in the compressed sentence, with a score
of 5 indicating that all of the important information
is present, and 1 being that the compression does
not retain any of the original meaning. Similarly, a
grammar score of 5 indicates perfect grammaticality,
and a grammar score of 1 is assigned to sentences
that are entirely ungrammatical. To ensure fairness,
we perform pairwise system comparisons with com-
pression rates strictly tied on the sentence-level. For
any comparison, a sentence is only included in the
computation of average scores if the difference be-
tween both systems’ compression rates is < 0.05.
Table 4 shows a set of pairwise comparisons for
compression rates ~ 0.5. We see that going from
a Hiero-based to a syntactic paraphrase grammar
yields a significant improvement in grammatical-
ity. Adding compression-specific features improves
grammaticality even further. Further augmenting the
grammar with deletion rules significantly helps re-
tain the core meaning at compression rates this high,
however compared to the un-augmented syntactic
system grammaticality scores drop. While our ap-
proach significantly outperforms the T3 system, we
are not able to match ILP’s results in grammaticality.
In Table 3 we compare our system to the ILP ap-
proach at a modest compression rate of =~ 0.8. Here,
we significantly outperform ILP in meaning reten-
tion while achieving comparable results in gram-
maticality. This improvement is significant at p <
0.0001, using the sign test, while the better gram-
maticality score of the ILP system is not statisti-

3Because evaluation quality correlates linearly with com-
pression rate, the community-accepted practice of not compar-
ing based on a closely tied compression rate is potentially sub-
ject to erroneous interpretation (Napoles et al., 2011).
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CR | Meaning | Grammar
Reference 0.73 4.26 4.35
Syntax+Feat. 0.80 3.67 3.38
ILP 0.80 3.50 3.49
| Random Deletions [ 0.50 [ 1.94 | 157

Table 3: Results of the human evaluation on longer com-
pressions: pairwise compression rates (CR), meaning and
grammaticality scores. Bold indicates a statistically sig-
nificance difference at p < 0.05.

CR | Meaning | Grammar
Hiero 0.56 2.57 2.35
Syntax 0.56 2.76 2.67
Syntax 0.53 2.70 2.49
Syntax+Feat. | 0.53 2.71 2.54
Syntax+Feat. | 0.54 2.79 2.71
Syntax+Aug. | 0.54 2.96 2.52
Syntax+Aug. | 0.52 2.87 2.40
ILP 0.52 2.83 3.09
Syntax+Aug. | 0.50 241 2.20
T3 0.50 2.01 1.93

Table 4: Human evaluation for shorter compressions and
for variations of our paraphrase system. +Feat. includes
the compression features from Section 6.1, +Aug. in-
cludes optional deletion rules from Section 6.4.

cally significant (p < 0.088). These results indi-
cate that, over a variety of compression rates, our
framework for text-to-text generation is performing
as well as or better than specifically tailored state-
of-the-art methods.

Table 5 shows an example sentence drawn from
our test set and the compressions produced by the
different systems. We see that both the paraphrase
and ILP systems produce good quality results, with
the paraphrase system retaining the meaning of the
source sentence more accurately.

7 Conclusion

In this work we introduced a method to learn syntac-
tically informed paraphrases from bilingual parallel
texts. We discussed the expressive power and limita-
tions of our formalism and outlined straightforward
adaptation strategies for applications in text-to-text
generation. We demonstrated when our paraphras-
ing system was adapted to do sentence compression,
it achieved results competitive with state-of-the-art
compression systems with only minimal effort.



Source he also expected that he would have a role in the future at the level of the islamic movement
across the palestinian territories , even if he was not lucky enough to win in the elections .
Reference he expects to have a future role in the islamic movement in the palestinian territories if he is
not successful in the elections .
Syntax-+Feat he also expected that he would have a role in the future of the islamic movement in the
" | palestinian territories , although he was not lucky enough to win elections .
ILP he also expected that he would have a role at the level of the islamic movement , even if he
was not lucky enough to win in the elections .
Source in this war which has carried on for the last 12 days , around 700 palestinians , which include
a large number of women and children , have died .
Reference about 700 palestinians , mostly women and children , have been killed in the israeli offensive
over the last 12 days .
Syntax+Feat in this war has done for the last 12 days , around 700 palestinians , including women and
" | children , died .
ILP in this war which has carried for the days palestinians , which include a number of women
and children died .
Source hala speaks arabic most of the time with her son , taking into consideration that he can speak
english with others .
Reference hala speaks to her son mostly in arabic , as he can speak english to others .
Syntax+Feat hala speaks arabic most of the time with her son , considering that he can speak english with
" | others .
ILP hala speaks arabic most of the time , taking into consideration that he can speak english with
others .

Table 5: Example compressions produced by the two systems in Table 3 for three input sentences from our test data.

Acknowledgments

We would like to thank Trevor Cohn for kindly pro-
viding us with the T3 compression system. This re-
search was supported by the NSF under grant IIS-
0713448. Opinions, interpretations, and conclusions
are the authors’ alone.

References

Alfred V. Aho and Jeffrey D. Ullman. 1972. The Theory
of Parsing, Translation, and Compiling. Prentice Hall.

Peter G. Anick and Suresh Tipirneni. 1999. The para-
phrase search assistant: terminological feedback for
iterative information seeking. In Proceedings of SI-
GIR.

Colin Bannard and Chris Callison-Burch. 2005. Para-
phrasing with bilingual parallel corpora. In Proceed-
ings of ACL.

Regina Barzilay and Noemie Elhadad. 2003. Sentence

1177

alignment for monolingual comparable corpora. In
Proceedings of EMNLP.

Regina Barzilay and Lillian Lee. 2003. Learning to
paraphrase: An unsupervised approach using multiple-
sequence alignment. In Proceedings of HLT/NAACL.

Regina Barzilay and Kathleen McKeown. 2001. Extract-
ing paraphrases from a parallel corpus. In Proceedings
of ACL.

Regina Barzilay, Kathleen R. McKeown, and Michael
Elhadad. 1999. Information fusion in the context
of multi-document summarization. In Proceedings of
ACL.

Regina Barzilay. 2003. Information Fusion for Mutli-
document Summarization: Paraphrasing and Genera-
tion. Ph.D. thesis, Columbia University, New York.

Rahul Bhagat and Deepak Ravichandran. 2008. Large
scale acquisition of paraphrases for learning surface
patterns. In Proceedings of ACL/HLT.

Peter Brown, John Cocke, Stephen Della Pietra, Vincent
Della Pietra, Frederick Jelinek, Robert Mercer, and



Paul Poossin. 1990. A statistical approach to language
translation. Computational Linguistics, 16(2), June.
Peter Brown, Stephen Della Pietra, Vincent Della Pietra,
and Robert Mercer. 1993. The mathematics of ma-
chine translation: Parameter estimation. Computa-

tional Linguistics, 19(2):263-311, June.

Chris Callison-Burch. 2008. Syntactic constraints on
paraphrases extracted from parallel corpora. In Pro-
ceedings of EMNLP.

David Chiang. 2005. A hierarchical phrase-based model
for statistical machine translation. In Proceedings of
ACL.

David Chiang. 2007. Hierarchical phrase-based transla-
tion. Computational Linguistics, 33(2):201-228.

James Clarke and Mirella Lapata. 2008. Global infer-
ence for sentence compression: An integer linear pro-
gramming approach. Journal of Artificial Intelligence
Research, 31:273-381.

Trevor Cohn and Mirella Lapata. 2007. Large margin
synchronous generation and its application to sentence
compression. In Proceedings of EMNLP-CoLing.

Trevor Cohn and Mirella Lapata. 2008. Sentence com-
pression beyond word deletion. In Proceedings of the
COLING.

Trevor Cohn and Mirella Lapata. 2009. Sentence com-
pression as tree transduction. Journal of Artificial In-
telligence Research (JAIR), 34:637-674.

Peter W. Culicover. 1968. Paraphrase generation and
information retrieval from stored text. = Mechani-
cal Translation and Computational Linguistics, 11(1-
2):78-88.

Bill Dolan, Chris Quirk, and Chris Brockett. 2004. Un-
supervised construction of large paraphrase corpora:
Exploiting massively parallel news sources. In Pro-
ceedings of the COLING.

Mark Dras. 1997. Representing paraphrases using syn-
chronous tree adjoining grammars. In Proceedings of
ACL.

Mark Dras. 1999. Tree Adjoining Grammar and the Re-
luctant Paraphrasing of Text. Ph.D. thesis, Macquarie
University, Australia.

Chris Dyer, Adam Lopez, Juri Ganitkevitch, Jonathan
Weese, Ferhan Ture, Phil Blunsom, Hendra Setiawan,
Vladimir Eidelman, and Philip Resnik. 2010. cdec: A
decoder, alignment, and learning framework for finite-
state and context-free translation models. In Proceed-
ings of ACL.

William Gale and Kenneth Church. 1993. A program
for aligning sentences in bilingual corpora. Compu-
atational Linguistics, 19(1):75-90.

Michel Galley, Mark Hopkins, Kevin Knight, and Daniel
Marcu. 2004. What’s in a translation rule? In Pro-
ceedings of HLT/NAACL.

1178

Erica Greene, Tugba Bodrumlu, and Kevin Knight. 2010.
Automatic analysis of rhythmic poetry with applica-
tions to generation and translation. In Proceedings of
EMNLP.

Liang Huang and David Chiang. 2007. Forest rescoring:
Faster decoding with integrated language models. In
Proceedings of ACL.

David Kauchak and Regina Barzilay. 2006. Para-
phrasing for automatic evaluation. In Proceedings of
EMNLP.

Kevin Knight and Daniel Marcu. 2002. Summariza-
tion beyond sentence extraction: A probabilistic ap-
proach to sentence compression. Artificial Intelli-
gence, 139:91-107.

Philipp Koehn, Franz Josef Och, and Daniel Marcu.
2003. Statistical phrase-based translation. In Proceed-
ings of HLT/NAACL.

Raymond Kozlowski, Kathleen McCoy, and K. Vijay-
Shanker.  2003.  Generation of single-sentence
paraphrases from predicate/argument structure using
lexico-grammatical resources. In Workshop On Para-
phrasing.

Irene Langkilde and Kevin Knight. 1998. The practi-
cal value of n-grams in generation. In Workshop On
Natural Language Generation, Ontario, Canada.

Zhifei Li, Chris Callison-Burch, Chris Dyer, Juri Gan-
itkevitch, Sanjeev Khudanpur, Lane Schwartz, Wren
Thornton, Jonathan Weese, and Omar Zaidan. 2009.
Joshua: An open source toolkit for parsing-based ma-
chine translation. In Proceedings of WMTO09.

Zhifei Li, Chris Callison-Burch, Chris Dyer, Juri Gan-
itkevitch, Ann Irvine, Sanjeev Khudanpur, Lane
Schwartz, Wren Thornton, Ziyuan Wang, Jonathan
Weese, and Omar Zaidan. 2010. Joshua 2.0: A
toolkit for parsing-based machine translation with syn-
tax, semirings, discriminative training and other good-
ies. In Proceedings of WMT 0.

Dekang Lin and Patrick Pantel. 2001. Discovery of infer-
ence rules from text. Natural Language Engineering,
7(3):343-360.

Yang Liu, Qun Liu, and Shouxun Lin. 2006. Tree-
to-string alignment templates for statistical machine
translation. In Proceedings of the ACL/Coling.

Nitin Madnani and Bonnie Dorr. 2010. Generat-
ing phrasal and sentential paraphrases: A survey
of data-driven methods. Computational Linguistics,
36(3):341-388.

Nitin Madnani, Necip Fazil Ayan, Philip Resnik, and
Bonnie Dorr. 2007. Using paraphrases for parameter
tuning in statistical machine translation. In Proceed-
ings of WMTO7.

Ryan McDonald. 2006. Discriminative sentence com-
pression with soft syntactic evidence. In Proceedings
of EACL.



Kathleen R. McKeown. 1979. Paraphrasing using given
and new information in a question-answer system. In
Proceedings of ACL.

Dan Melamed. 2004. Statistical machine translation by
parsing. In Proceedings of ACL.

Marie W. Meteer and Varda Shaked. 1988. Strategies for
effective paraphrasing. In Proceedings of COLING.
Kazunori Muraki. 1982. On a semantic model for multi-

lingual paraphrasing. In Proceedings of COLING.

Courtney Napoles, Chris Callison-Burch, and Ben-
jamin Van Durme. 2011. Evaluating sentence com-
pression: Pitfalls and suggested remedies. In Work-
shop on Monolingual Text-To-Text Generation.

Franz Josef Och. 2003a. Minimum error rate training for
statistical machine translation. In Proceedings of ACL.

Franz Josef Och. 2003b. Minimum error rate training in
statistical machine translation. In Proceedings of ACL.

Karolina Owczarzak, Declan Groves, Josef Van Gen-
abith, and Andy Way. 2006. Contextual bitext-derived
paraphrases in automatic MT evaluation. In Proceed-
ings of WMTO06.

Bo Pang, Kevin Knight, and Daniel Marcu. 2003.
Syntax-based alignment of multiple translations: Ex-
tracting paraphrases and generating new sentences. In
Proceedings of HLT/NAACL.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic evalua-
tion of machine translation. In Proceedings of ACL.

Chris Quirk, Chris Brockett, and William Dolan. 2004.
Monolingual machine translation for paraphrase gen-
eration. In Proceedings of EMNLP.

Chris Quirk, Arul Menezes, and Colin Cherry. 2005. De-
pendency treelet translation: Syntactically informed
phrasal smt. In Proceedings of ACL.

Deepak Ravichandran and Eduard Hovy. 2002. Learning
sufrace text patterns for a question answering system.
In Proceedings of ACL.

Stefan Riezler, Alexander Vasserman, Ioannis Tsochan-
taridis, Vibhu Mittal, and Yi Liu. 2007. Statistical
machine translation for query expansion in answer re-
trieval. In Proceedings of ACL.

Hadar Shemtov. 1996. Generation of paraphrases from
ambiguous logical forms. In Proceedings of COLING.

Stuart Shieber and Yves Schabes. 1990. Generation and
synchronous tree-adjoining grammars. In Workshop
On Natural Language Generation.

Matthew Snover, Nitin Madnani, Bonnie Dorr, and
Richard Schwartz. 2010. Ter-plus: paraphrase, se-
mantic, and alignment enhancements to translation
edit rate. Machine Translation, 23(2-3):117-127.

Mark Steedman and Jason Baldridge. 2011. Combi-
natory categorial grammar. In Non-Transformational
Syntax: Formal and Explicit Models of Grammar.
Wiley-Blackwell.

1179

Andreas Stolcke. 2002. SRILM - an extensible language
modeling toolkit. In Proceeding of the International
Conference on Spoken Language Processing.

Idan Szpektor, Hristo Tanev, Ido Dagan, and Bonaven-
tura Coppola. 2004. Scaling web-based acquisition of
entailment relations. In Proceedings of EMNLP, Pro-
ceedings of EMNLP.

Ashish Venugopal and Andreas Zollmann. 2009. Gram-
mar based statistical MT on Hadoop: An end-to-end
toolkit for large scale PSCFG based MT. Prague Bul-
letin of Mathematical Linguistics, 91.

Dekai Wu. 1997. Stochastic inversion transduction
grammars and bilingual parsing of parallel corpora.
Computational Linguistics, 23(3).

Kenji Yamada and Kevin Knight. 2001. A syntax-based
statistical translation model. In Proceedings of ACL.
Kazuhide Yamamoto. 2002. Machine translation by in-
teraction between paraphraser and transfer. In Pro-

ceedings of COLING.

Omar F. Zaidan. 2009. Z-MERT: A fully configurable
open source tool for minimum error rate training of
machine translation systems. The Prague Bulletin of
Mathematical Linguistics, 91:79-88.

Shiqi Zhao, Cheng Niu, Ming Zhou, Ting Liu, and Sheng
Li. 2008a. Combining multiple resources to improve
SMT-based paraphrasing model. In Proceedings of
ACL/HLT.

Shiqi Zhao, Haifeng Wang, Ting Liu, and Sheng Li.
2008b.  Pivot approach for extracting paraphrase
patterns from bilingual corpora. In Proceedings of
ACL/HLT.

Shiqi Zhao, Xiang Lan, Ting Liu, and Sheng Li. 2009.
Application-driven statistical paraphrase generation.
In Proceedings of ACL.

Liang Zhou, Chin-Yew Lin, Dragos Stefan Munteanu,
and Eduard Hovy. 2006. Paraeval: Using paraphrases
to evaluate summaries automatically. In Proceedings
of HLT/NAACL.

Andreas Zollmann and Ashish Venugopal. 2006. Syntax
augmented machine translation via chart parsing. In
Proceedings of WMTO06.



