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Abstract

Machine-produced text often lacks grammat-
icality and fluency. This paper studies gram-
maticality improvement using a syntax-based
algorithm based onCCG. The goal of the
search problem is to find an optimal parse tree
among all that can be constructed through se-
lection and ordering of the input words. The
search problem, which is significantly harder
than parsing, is solved by guided learning for
best-first search. In a standard word order-
ing task, our system gives a BLEU score of
40.1, higher than the previous result of 33.7
achieved by a dependency-based system.

1 Introduction

Machine-produced text, such asSMT output, often
lacks grammaticality and fluency, especially when
using n-gram language modelling (Knight, 2007).
Recent efforts have been made to improve grammat-
icality using local language models (Blackwood et
al., 2010) and global dependency structures (Wan et
al., 2009). We study grammaticality improvement
using a syntax-based system.

The task is effectively a text-to-text generation
problem where the goal is to produce a grammati-
cal sentence from an ungrammatical and fragmen-
tary input. The input can range from a bag-of-
words (Wan et al., 2009) to a fully-ordered sentence
(Blackwood et al., 2010). A general form of the
problem is to construct a grammatical sentence from
a set of un-ordered input words. However, in cases
where the base system produces fluent subsequences
within the sentence, constraints on the choice and

order of certain words can be fed to the grammati-
cality improvement system. The input may also in-
clude words beyond the output of the base system,
e.g. extra words from theSMT lattice, so that con-
tent word insertion and deletion can be performed
implicity via word selection.

We study the above task usingCCG (Steedman,
2000). The main challenge is the search problem,
which is to find an optimal parse tree among all that
can be constructed with any word choice and order
from the set of input words. We use an approximate
best-first algorithm, guided by learning, to tackle
the more-than-factorial complexity. Beam-search is
used to control the volume of accepted hypotheses,
so that only a very small portion of the whole search
space is explored. The search algorithm is guided by
perceptron training, which ensures that the explored
path in the search space consists of highly proba-
ble hypotheses. This framework of best-first search
guided by learning is a general contribution of the
paper, which could be applied to problems outside
grammaticality improvement.

We evaluate our system using the generation task
of word-order recovery, which is to recover the orig-
inal word order of a fully scrambled input sentence
(Bangalore et al., 2000; Wan et al., 2009). This
problem is an instance of our general task formu-
lation, but without any input constraints, or con-
tent word selection (since all input words are used).
It is straightforward to use this task to evaluate
our system and compare with existing approaches.
Our system gave 40.1 BLEU score, higher than the
dependency-based system of Wan et al. (2009), for
which a BLEU score of 33.7 was reported.
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2 The Grammar

Combinatory Categorial Grammar (CCG; Steedman
(2000)) is a lexicalized grammar formalism, which
associates words with lexical categories. Lexical
categories are detailed grammatical labels, typically
expressing subcategorisation information.CCG, and
parsing with CCG, has been described in detail
elsewhere (Clark and Curran, 2007; Hockenmaier,
2003); here we provide only a short description.

During CCGparsing, adjacent categories are com-
bined usingCCG’s combinatory rules. For example,
a verb phrase in English (S\NP ) can combine with
anNP to its left:

NP S\NP ⇒ S

In addition to binary rule instances, such as the
one above, there are also unary rules which operate
on a single category in order to change its type. For
example, forward type-raising can change a subject
NP into a complex category looking to the right for
a verb phrase:

NP ⇒ S/(S\NP)

Following Hockenmaier (2003), we extract the
grammar by reading rule instances directly from the
derivations in CCGbank (Hockenmaier and Steed-
man, 2007), rather than defining the combinatory
rule schema manually as in Clark and Curran (2007).

3 The Search Algorithm

The input to the search algorithm is a set of words,
each word having a count that specifies the maxi-
mum number of times it can appear in the output.
Typically, most input words can occur only once in
the output. However, punctuation marks and func-
tion words can be given a higher count. Depending
on the fluency of the base output (e.g. the output
of the baseSMT system), some constraints can be
given to specific input words, limiting their order or
identifying them as an atomic phrase, for example.

The goal of the search algorithm is to find an op-
timal parse tree (including the surface string) among
all that can be constructed via selecting and ordering
a subset of words from the input multiset. The com-
plexity of this problem is much higher than a typical
parsing problem, since there is an exponential num-
ber of word choices for the output sentence, each

with a factorial number of orderings. Moreover, dy-
namic programming packing for parsers, such as a
CKY chart, is not applicable, because of the lack of
a fixed word order.

We perform approximate search using a best-
first algorithm. Starting from single words, candi-
date parses are constructed bottom-up. Similar to a
best-first parser (Caraballo and Charniak, 1998), the
highest scored hypothesis is expanded first. A hy-
pothesis is expanded by applyingCCG unary rules
to the hypothesis, or by combining the hypothesis
with existing hypotheses usingCCG binary rules.

We use beam search to control the number of ac-
cepted hypotheses, so that the computational com-
plexity of expanding each hypothesis is linear in the
size of the beam. Since there is no guarantee that a
goal hypothesis will be found in polynomial time,
we apply a robustness mechanism (Riezler et al.,
2002; White, 2004), and construct a default output
when no goal hypothesis is found within a time limit.

3.1 Data Structures

Edges are the basic structures that represent hy-
potheses. Each edge is aCCG constituent, spanning
a sequence of words. Similar to partial parses in a
typical chart parser, edges have recursive structures.
Depending on the number of subedges, edges can
be classified intoleaf edges, unary edges andbinary
edges. Leaf edges, which represent input words,
are constructed first in the search process. Existing
edges are expanded to generate new edges via unary
and binaryCCG rules. An edge that meets the output
criteria is called agoal edge. In the experiments of
this paper, we define a goal edge as one that includes
all input words the correct number of times.

The signature of an edge consists of the cate-
gory label, surface string and head word of the con-
stituent. Two edges areequivalent if they share
the same signature. Given our feature definitions,
a lower scoring edge with the same signature as a
higher scoring edge cannot be part of the highest
scoring derivation.

The number of words in the surface string of an
edge is called thesize of the edge. Other important
substructures of an edge include a bitvector and an
array, which stores the indices of the input words
that the edge contains. Before two edges are com-
bined using a binaryCCG rule, aninput check is per-
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formed to make sure that the total count for a word
from the two edges does not exceed the count for
that word in the input. Intuitively, an edge can record
the count of each unique input word it contains,
and perform the input check in linear time. How-
ever, since most input words typically occur once,
they can be indexed and represented by a bitvector,
which allows a constant time input check. The few
multiple-occurrence words are stored in a count ar-
ray.

In the best-first process, edges to be expanded are
ordered by their scores, and stored in anagenda.
Edges that have been expanded are stored in achart.
There are many ways in which edges could be or-
dered and compared. Here the chart is organised as
a set of beams, each containing a fixed number of
edges with a particular size. This is similar to typical
decoding algorithms for phrase-basedSMT (Koehn,
2010). In each beam, edges are ordered by their
scores, and low score edges are pruned. In addition
to pruning by the beam, only the highest scored edge
is kept among all that share the same signature.

3.2 The Search Process

Figure 1 shows pseudocode for the search algorithm.
During initialization, the agenda (a) and chart (c)
are cleared. All candidate lexical categories are as-
signed to each input word, and the resulting leaf
edges are put onto the agenda.

In the main loop, the best edge (e) is popped from
the agenda. Ife is a goal hypothesis, it is appended
to a list of goals (goal), and the loop is continued
without e being expanded. Ife or any equivalent
edgeẽ of e is already in the chart, the loop continues
without expandinge. It can be proved that any edge
in the chart must have been combined withẽ, and
therefore the expansion ofe is unnecessary.

Edgee is first expanded by applying unary rules,
and any new edges are put into a list (new). Next,e
is matched against each existing edgeẽ in the chart.
e andẽ can be combined if they pass the input check,
and there is a binary rule in which the constituents
are combined.e andẽ are combined in both possible
orders, and any resulting edge is added tonew.

At the end of each loop, edges fromnew are added
to the agenda, andnew is cleared. The loop contin-
ues until a stopping criterion is met. A typical stop-
ping condition is thatgoal containsN goal edges.

a← INITAGENDA(input)
c← INIT CHART()
new← []
goal← []
while not STOP(goal, time):

e← POPBEST(a)
if GOALTEST(e)

APPEND(goal, e)
continue

for ẽ in c:
if EQUIV(ẽ, e):

continue
for e′ in UNARY(e, grammar):

APPEND(new, e′)
for ẽ in c:

if CANCOMBINE(e, ẽ):
e′ ← BINARY (e, ẽ, grammar)
APPEND(new, e′)

if CANCOMBINE(ẽ, e):
e′ ← BINARY (ẽ, e, grammar)
APPEND(new, e′)

for e′ in new:
ADD(a, e′)

ADD(c, e)
new← []

Figure 1: The search algorithm.

We setN to 1 in our experiments. For practical
reasons we also include a timeout stopping condi-
tion. If no goal edges are found before the timeout
is reached, a default output is constructed by the fol-
lowing procedure. First, if any two edges in the chart
pass the input check, and the words they contain
constitute the full input set, they are concatenated to
form an output string. Second, when no two edges in
the chart meet the above condition, the largest edge
ẽ in the chart is chosen. Then edges in the chart are
iterated over in the larger first order, with any edge
that passes the input check withẽ concatenated with
ẽ and ẽ updated. The final̃e, which can be shorter
than the input, is taken as the default output.

4 Model and Features

We use a discriminative linear model to score edges,
where the score of an edgee is calculated using the
global feature vectorΦ(e) and the parameter vector
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~w of the model.

SCORE(e) = Φ(e) · ~w

Φ(e) represents the counts of individual features
of e. It is computed incrementally as the edge is
built. At each constituent level, the incremental fea-
ture vector is extracted according to the feature tem-
plates from Table 1, and we use the termconstituent
level vector φ to refer to it. So for any edgee, φ(e)
consists of features from the top rule of the hierar-
chical structure ofe. Φ(e) can be written as the sum
of φ(e′) of all recursive subedgese′ of e, including
e itself:

Φ(e) =
∑

e′∈e
φ(e′)

The parameter update in Section 5 is in terms of con-
stituent level vectors.

The features in Table 1 represent patterns in-
cluding the constituent label; the head word of the
constituent; the size of the constituent; word,POS

and lexical category N-grams resulting from a bi-
nary combination; and the unary and binary rules
by which the constituent is constructed. They can
be classified roughly into “parsing” features (those
about the parse structure, such as the binary rule)
and “generation features” (those about the surface
string, such as word bigrams), although some fea-
tures, such as “rule + head word + non-head word”,
contain both types of information.

5 The Learning Algorithm

The statistical model plays two important roles in
our system. First, as in typical statistical systems, it
is expected to give a higher score to a more correct
hypothesis. Second, it is also crucial to the speed of
the search algorithm, since the best-first mechanism
relies on a model to find goal hypotheses efficiently.
As an indication of the impact of the model on effi-
ciency, if the model parameters are set to all zeros,
the search algorithm cannot find a result for the first
sentence in the development data within two hours.

We perform training on a corpus ofCCG deriva-
tions, where constituents in a gold-standard deriva-
tion serve as gold edges. The training algorithm
runs the decoder on each training example, updat-
ing the model when necessary, until the gold goal

condition feature

constituent + size
all edges constituent + head word

constituent + size + head word
constituent + headPOS

constituent + leftmost word
constituent + rightmost word

size> 1 consti. + leftmostPOSbigram
consti. + rightmostPOSbigram
consti. + lmostPOS+ rmostPOS

the binary rule
the binary rule + head word
rule + head word + non-head word
bigrams resulting from combination

binary POSbigrams resulting from combi.
edges word trigrams resulting from combi.

POStrigrams resulting from combi.
resulting lexical categary trigrams
resulting word +POSbigrams
resultingPOS+ word bigrams
resultingPOS+ word +POStrigrams

unary unary rule
edges unary rule + headw

Table 1: Feature template definitions.

edge is recovered. We use the perceptron (Rosen-
blatt, 1958) to perform parameter updates. The tra-
ditional perceptron has been adapted to structural
prediction (Collins, 2002) and search optimization
problems (Daumé III and Marcu, 2005; Shen et al.,
2007). Our training algorithm can be viewed as an
adaptation of the perceptron to our best-first frame-
work for search efficiency and accuracy.

We choose to update parameters as soon as the
best edge from the agenda is not a gold-standard
edge. The intuition is that all gold edges are forced
to be above all non-gold edges on the agenda. This
is a strong precondition for parameter updates. An
alternative is to update when a gold-standard edge
falls off the chart, which corresponds to the pre-
condition for parameter updates of Daumé III and
Marcu (2005). However, due to the complexity of
our search task, we found that reasonable training
efficiency cannot be achieved by the weaker alterna-
tives. Our updates lead both to correctness (edges in
the chart are correct) and efficiency (correct edges
are found at the first possible opportunity).
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During a perceptron update, an incorrect predic-
tion, corresponding to the current best edge in the
agenda, is penalized, and the corresponding gold
edge is rewarded. However, in our scenario it is not
obvious what the corresponding gold edge should
be, and there are many ways in which the gold
edge could be defined. We investigated a number
of alternatives, for example trying to find the “best
match” for the incorrect prediction. In practice we
found that the simple strategy of selecting the lowest
scored gold-standard edge in the agenda was effec-
tive, and the results presented in this paper are based
on this method.

After an update, there are at least two alterna-
tive methods to continue. The first is to reinitial-
ize the agenda and chart using the new model, and
continue until the current training example is cor-
rectly predicted. This method is calledaggressive
training (Shen et al., 2007). In order to achieve
reasonable efficiency, we adopt a second approach,
which is to continue training without reinitializing
the agenda and chart. Instead, only edges from the
top of the agenda down to the lowest-scoring gold-
standard edge are given new scores according to the
new parameters.

Figure 2 shows pseudocode for the learning al-
gorithm applied to one training example. The ini-
tialization is identical to the test search, except that
the list of goal edges is not maintained. In the main
loop, the best edgee is popped off the agenda. If it
is the gold goal edge, the training for this sentence
finishes. Ife is not a gold edge, parameter updates
are performed and the loop is continued withe be-
ing discarded. Only gold edges are pushed onto the
chart throughout the training process.

When updating parameters, the current non-gold
edge (e) is used as the negative example, and the
smallest gold edge in the agenda (minGold) is used
as the corresponding positive example. The model
parameters are updated by adding the constituent
level feature vector (see Section 4) ofminGold, and
subtracting the constituent level feature vector ofe.
Note that we do not use the global feature vector in
the update, since only the constituent level param-
eter vectors are compatible for edges with different
sizes. After a parameter update, edges are rescored
from the top of the agenda down tominGold.

The training algorithm iterates through all train-

a← INITAGENDA(input)
c← INIT CHART()
new← []
while true:

e← POPBEST(a)
if GOLD(e) and GOALTEST(e):

return
if not GOLD(e):

popped← []
n← 0
while n < GOLDCOUNT(a):

ẽ← POPBEST(a)
APPEND(popped, ẽ)
if GOLD(ẽ):

minGold← ẽ
n← n+ 1

~w← ~w − φ(e) + φ(minGold)
for ẽ in popped:

RECOMPUTESCORE(ẽ)
ADD(a, ẽ)

for ẽ in c:
RECOMPUTESCORE(ẽ)

continue
for e′ in UNARY(e, grammar):

APPEND(new, e′)
for ẽ in c:

if CANCOMBINE(e, ẽ):
e′ ← BINARY (e, ẽ, grammar)
APPEND(new, e′)

if CANCOMBINE(ẽ, e):
e′ ← BINARY (ẽ, e, grammar)
APPEND(new, e′)

for e′ in new:
ADD(a, e′)

ADD(c, e)
new← []

Figure 2: The learning algorithm.

ing examplesN times, and the final parameter vec-
tor is used as the model. In our experiments,N is
chosen according to results on development data.

6 Experiments

We use CCGBank (Hockenmaier and Steedman,
2007) for experimental data. CCGbank is theCCG

version of the Penn Treebank. Sections 02–21 are
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used for training, section 00 is used for development
and section 23 for the final test.

Original sentences from CCGBank are trans-
formed into bags of words, with sequence informa-
tion removed, and passed to our system as input
data. The system outputs are compared to the orig-
inal sentences for evaluation. Following Wan et al.
(2009), we use the BLEU metric (Papineni et al.,
2002) for string comparison. Whilst BLEU is not
an ideal measure of fluency or grammaticality, be-
ing based on n-gram precision, it is currently widely
used for automatic evaluation and allows us to com-
pare directly with existing work (Wan et al., 2009).

In addition to the surface string, our system also
produces theCCGparse given an input bag of words.
The quality of the parse tree can reflect both the
grammaticality of the surface string and the quality
of the trained grammar model. However, there is
no direct way to automatically evaluate parse trees
since output word choice and order can be differ-
ent from the gold-standard. Instead, we indirectly
measure parse quality by calculating the precision of
CCG lexical categories. SinceCCG lexical categories
contain so much syntactic information, they provide
a useful measure of parse quality. Again because the
word order can be different, we turn both the output
and the gold-standard into a bag of word/category
pairs, and calculate the percentage of matched pairs
as the lexical category precision.

For fair comparison with Wan et al. (2009), we
keep base NPs as atomic units when preparing the
input. Wan et al. (2009) used base NPs from Penn
Treebank annotation, while we extract base NPs
from the CCGBbank by taking as base NPs the NPs
that do not recursively contain other NPs. These
base NPs mostly correspond to the base NPs from
the Penn Treebank. In the training data, there are
242,813 Penn Treebank base NPs with an average
size of 1.09, and 216,670 CCGBank base NPs with
an average size of 1.19.

6.1 Development Tests

Table 2 shows a set of development experiment re-
sults after one training iteration. Three different
methods of assigning lexical categories are used.
The first (“dictionary”) is to assign all possible lex-
ical categories to each input word from the dictio-
nary. The lexical category dictionary is built using

Length Timeout
Method Timeout BLEU ratio ratio

0.5s 34.98 84.02 62.26
1s 35.40 85.66 57.87

dictionary 5s 36.27 89.05 45.79
10s 36.45 89.13 42,13
50s 37.07 92.52 32.41

0.5s 36.54 84.26 66.07
1s 37.50 86.69 58.22

β = 0.0001 5s 38.75 90.15 43.23
10s 39.14 91.35 38.36
50s 39.58 93.09 30.53

0.5s 40.87 85.66 61.27
1s 42.04 87.99 53.11

β = 0.075 5s 43.99 91.20 40.30
10s 44.23 92.14 35.70
50s 45.08 93.70 29.43

Table 2: Development tests using various levels of lexical
categories and timeouts, after one training iteration.

the training sections of CCGBank. For each word
occurring more than 20 times in the corpus, the dic-
tionary has an entry with all lexical categories the
word has been seen with. For the rest of the words,
the dictionary maintains an entry for eachPOSwhich
contains all lexical categories it has been seen with.
There are on average 26.8 different categories for
each input word by this method.

In practice, it is often unnecessary to leave lexi-
cal category disambiguation completely to the gram-
maticality improvement system. When it is reason-
able to assume that the input sentence for the gram-
maticality improvement system is sufficiently fluent,
a list of candidate lexical categories can be assigned
automatically to each word via supertagging (Clark
and Curran, 2007) on the input sequence. We use
the C&C supertagger1 to assign a set of probable
lexical categories to each input word using the gold-
standard order. When the input is noisy, the accuracy
of a supertagger tends to be lower than when the in-
put is grammatical. One way to address this problem
is to allow the supertagger to produce a larger list
of possible supertags for each input word, and leave
the ambiguity to the grammatical improvement sys-
tem. We simulate the noisy input situation by using

1http://svn.ask.it.usyd.edu.au/trac/candc/wiki/Download.
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Precision

dictionary 58.5%
β = 0.0001 59.7%
β = 0.075% 77.0%

Table 3: Lexical category accuracies. Timeout = 5s. 1
training iteration.

a small probability cutoff (β) value in the supertag-
ger, and supertag correctly ordered input sentences
before breaking them into bags of words. With aβ
value of 0.0001, there are 5.4 lexical categories for
each input word in the development test (which is
smaller than the dictionary case).

The average number of lexical categories per
word drops to 1.3 whenβ equals 0.075, which is the
value used for parsing newspaper text in Clark and
Curran (2007). We include thisβ in our experiments
to compare the effect of differentβ levels.

The table shows that the BLEU score of the gram-
maticality improvement system is higher when a su-
per tagger is used, and the higher theβ value, the
better the BLEU score. In practice, theβ value
should be set in accordance with the lack of gram-
maticality and fluency in the input. The dictionary
method can be used when the output is extremely
unreliable, while a small beta value can be used if
the output is almost fluent.

Due to the default output mechanism on timeout,
the system can sometimes fail to produce sentences
that cover all input words. We choose five different
timeout settings between 0.5s to 50s, and compare
the speed/quality tradeoff. In addition to BLEU, we
report the percentage of timeouts and the ratio of the
sum of all output sentence lengths to the sum of all
input sentence lengths.

When the timeout value increases, the BLEU
score generally increases. The main effect of a larger
timeout is the increased possibility of a complete
sentence being found. As the time increases from
0.5s to 50s using the dictionary method, for exam-
ple, the average output sentence length increases
from 84% of the input length to 93%.

Table 3 shows the lexical category accuracies us-
ing the dictionary, and supertagger with differentβ
levels. The timeout limit is set to 5 seconds. As
the lexical category ambiguity decreases, the accu-

Length dictionary β = 0.0001 β = 0.075

≤ 5 75.65 89.42 92.64
≤ 10 57.74 66.00 78.54
≤ 20 42.44 48.89 58.23
≤ 40 37.48 40.32 46.00
≤ 80 36.50 39.01 44.26
all 36.27 38.75 43.99

Table 4: BLEU scores measured on different lengths on
development data. Timeout = 5s. 1 training iteration.

racy increases. The best lexical category accuracy
of 77% is achieved when using a supertagger with
a β level 0.075, the level for which the least lexical
category disambiguation is required. However, com-
pared to the 93% lexical category accuracy of aCCG

parser (Clark and Curran, 2007), which also uses aβ
level of 0.075 for the majority of sentences, the ac-
curacy of our grammaticality improvement system
is much lower. The lower score reflects the lower
quality of the parse trees produced by our system.
Besides the difference in the algorithms themselves,
one important reason is the much higher complexity
of our search problem.

Table 4 shows the BLEU scores measured by dif-
ferent sizes of input. We also give some example
output sentences in Figure 3. It can be seen from
the table that the BLEU scores are higher when the
size of input is smaller. For sentences shorter than
20 words, our system generally produces reason-
ably fluent and grammatical outputs. For longer sen-
tences, the grammaticality drops. There are three
possible reasons. First, larger constituents require
more steps to construct. The model and search algo-
rithm face many more ambiguities, and error propa-
gation is more severe. Second, the search algorithm
often fails to find a goal hypothesis before timeout,
and a default output that is less grammatical than
a complete constituent is constructed. Long sen-
tences have comparatively more input words uncov-
ered in the output. Third, the upper bound is not 100,
and presumably lower for longer sentences, because
there are many ways to generate a grammatical sen-
tence given a bag of words. For example, the bag
{ cats, chase, dogs} can produce two equally fluent
and grammatical sentences.

The relatively low score for long sentences is un-
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(dictionary) our products There is no asbestos in now .
(β = 0.0001) in our products now There is no asbestos .
(β = 0.075) There is no asbestos in our products now .

(dictionary) No price for the new shares has been set .
(bothβ) No price has been set for the new shares .

(all) Federal Data Corp. got a $ 29.4 million Air Force contract for
intelligence data handling .

(dictionary) was a nonexecutive director of Rudolph Agnew and former chairman
of Consolidated Gold Fields PLC , this British industrial
conglomerate , 55 years old . named

(β = 0.0001) old Consolidated Gold Fields PLC , was named 55 years , former
chairman of Rudolph Agnew and a nonexecutive director of this
British industrial conglomerate .

(β = 0.075) Consolidated Gold Fields PLC , 55 years old , was named former
chairman of Rudolph Agnew and a nonexecutive director of this
British industrial conglomerate .

(dictionary) McDermott International Inc. said its Babcock & Wilcox unit
completed the sale of its Bailey Controls Operations for
Finmeccanica S.p . A. to $ 295 million .

(β = 0.0001) $ 295 million McDermott International Inc. for the sale of
its Babcock & Wilcox unit said its Bailey Controls Operations
completed to Finmeccanica S.p . A. .

(β = 0.075) McDermott International Inc. said its Bailey Controls
Operations completed the sale of Finmeccanica S.p . A. for its
Babcock & Wilcox unit to $ 295 million .

Figure 3: Example outputs on development data.

likely to be such a problem in practice, because
the base system (e.g. anSMT system) is likely to
produce sentences with locally fluent subsequences.
When fluent local phrases in the input are treated as
atomic units, the effective sentence length is shorter.

All the above development experiments were per-
formed using only one training iteration. Figure 4
shows the effect of different numbers of training it-
erations. For the final test, based on the graphs in
Figure 4, we chose the training iterations to be 8, 6
and 4 for the dictionary,β = 0.0001 andβ = 0.075
methods, respectively.

6.2 Final Accuracies

Table 5 shows the final results of our system, to-
gether with the MST-based (“Wan 2009 CLE”)
and assignment-based (“Wan 2009 AB”) systems
of Wan et al. (2009). Our system outperforms the

BLEU

Wan 2009 CLE 26.8
Wan 2009 AB 33.7
This paper dictionary 40.1

This paperβ = 0.0001 43.2
This paperβ = 0.075 50.1

Table 5: Final accuracies.

dependency grammar-based systems, and using a
supertagger with smallβ value produces the best
BLEU. Note that through the use of a supertagger,
we are no longer assuming that the input is a bag of
words without any order, and therefore only the dic-
tionary results are directly comparable with Wan et
al. (2009)2.

2We also follow Wan et al. (2009) by assuming each word is
associated with itsPOStag.
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7 Related Work

Both Wan et al. (2009) and our system use approx-
imate search to solve the problem of input word or-
dering. There are three differences. First, Wan et
al. use a dependency grammar to model grammati-
cality, while we useCCG. Compared to dependency
trees,CCG has stronger category constraints on the
parse structure. Moreover,CCG allows us to reduce
the ambiguity level of the search algorithm through
the assignment of possible lexical categories to input
words, which is useful when the input has a basic
degree of fluency, as is often the case in a grammat-
icality improvement task.

Second, we use learning to optimise search in or-
der to explore a large search space. In contrast, Wan
et al. break the search problem into a sequence of
sub tasks and use greedy search to connect them.
Finally, in addition to ordering, our algorithm fur-
ther allows word selection. This gives our system
the flexibility to support word insertion and deletion.

White (2004) describes a system that performs
CCG realization using best-first search. The search
process of our algorithm is similar to his work.
The problem we solve is different from realization,
which takes an input in logical form and produces
a corresponding sentence. Without constraints, the
word order ambiguities can be much larger with a
bag of words, and we use learning to guide our
search algorithm. Espinosa et al. (2008) apply hy-
pertagging to logical forms to assign lexical cate-
gories for realization. White and Rajkumar (2009)
further use perceptron reranking on N-best outputs
to improve the quality.

The use of perceptron learning to improve search
has been proposed in guided learning for easy-first
search (Shen et al., 2007) and LaSO (Daumé III and
Marcu, 2005). LaSO is a general framework for
various search strategies. Our learning algorithm is
similar to LaSO with best-first inference, but the pa-
rameter updates are different. In particular, LaSO
updates parameters when all correct hypotheses are
lost, but our algorithm makes an update as soon as
the top item from the agenda is incorrect. Our algo-
rithm updates the parameters using a stronger pre-
condition, because of the large search space. Given
an incorrect hypothesis, LaSO finds the correspond-
ing gold hypothesis for perceptron update by con-
structing its correct sibling. In contrast, our algo-
rithm takes the lowest scored gold hypothesis cur-
rently in the agenda to avoid updating parameters
for hypotheses that may have not been constructed.

Our parameter update strategy is closer to the
guided learning mechanism for the easy-first algo-
rithm of Shen et al. (2007), which maintains a queue
of hypotheses during search, and performs learning
to ensure that the highest scored hypothesis in the
queue is correct. However, in easy-first search, hy-
potheses from the queue are ranked by the score of
their next action, rather than the hypothesis score.
Moreover, Shen et al. use aggressive learning and
regenerate the queue after each update, but we per-
form non-agressive learning, which is faster and is
more feasible for our complex search space. Similar
methods to Shen et al. (2007) have also been used
in Shen and Joshi (2008) and Goldberg and Elhadad
(2010).

8 Conclusion

We proposed a grammaticality improvement system
using CCG, and evaluated it using a standard input
word ordering task. Our system gave higher BLEU
scores than the dependency-based system of Wan et
al. (2009). We showed that the complex search prob-
lem can be solved effectively using guided learning
for best-first search.

Potential improvements to our system can be
made in several areas. First, a large scale lan-
guage model can be incorporated into our model in
the search algorithm, or through reranking. Sec-
ond, a heuristic future cost (e.g. Varges and Mel-
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lish (2010)) can be considered for each hypothesis
so that it also considers the words that have not been
used, leading to better search. Future work also in-
cludes integration with anSMT system, where con-
tent word selection will be applicable.
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