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Abstract

Reranking models have been successfully ap-
plied to many tasks of Natural Language Pro-
cessing. However, there are two aspects of
this approach that need a deeper investiga-
tion: (i) Assessment of hypotheses generated
for reranking at classification phase: baseline
models generate a list of hypotheses and these
are used for reranking without any assess-
ment; (ii) Detection of cases where rerank-
ing models provide a worst result: the best
hypothesis provided by the reranking model
is assumed to be always the best result. In
some cases the reranking model provides an
incorrect hypothesis while the baseline best
hypothesis is correct, especially when base-
line models are accurate. In this paper we
propose solutions for these two aspects: (i)
a semantic inconsistency metric to select pos-
sibly more correct n-best hypotheses, from a
large set generated by an SLU basiline model.
The selected hypotheses are reranked apply-
ing a state-of-the-art model based on Partial
Tree Kernels, which encode SLU hypothe-
ses in Support Vector Machines with com-
plex structured features; (ii) finally, we apply
a decision strategy, based on confidence val-
ues, to select the final hypothesis between the
first ranked hypothesis provided by the base-
line SLU model and the first ranked hypothe-
sis provided by the re-ranker. We show the ef-
fectiveness of these solutions presenting com-
parative results obtained reranking hypothe-
ses generated by a very accurate Conditional
Random Field model. We evaluate our ap-
proach on the French MEDIA corpus. The re-
sults show significant improvements with re-
spect to current state-of-the-art and previous
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re-ranking models.

1 Introduction

Discriminative reranking is a widely used approach
for several Natural Language Processing (NLP)
tasks: Syntactic Parsing (Collins, 2000), Named En-
tity Recognition (Collins, 2000; Collins and Duffy,
2001), Semantic Role Labelling (Moschitti et al.,
2008), Machine Translation (Shen et al., 2004),
Question Answering (Moschitti et al., 2007). Re-
cently reranking approaches have been successfully
applied also to Spoken Language Understanding
(SLU) (Dinarelli et al., 2009b).

Discriminative Reranking combines two models:
a first SLU model is used to generate a ranked list
of n-best hypotheses; a reranking model sorts the
list based on a different score and the final result
is the new top ranked hypothesis. The advantage of
reranking approaches is in the possibility to learn di-
rectly complex dependencies in the output domain,
as this is provided in the hypotheses generated by
the baseline model.

In previous approaches complex features are ex-
tracted from the hypotheses for both training and
classification phase, but there are very few stud-
ies on approaches that can be applied to search in
the hypotheses space generated by the baseline SLU
model. Moreover, to keep overall computational
cost reasonable, the size of the n-best list is typically
small (few tens). This is a limitation since the larger
is the hypotheses space generated, the more likely is
to find a better hypothesis. On the other hand, re-
ranking a large set of hypotheses is computationally
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expensive, thus a strategy to select the best hypothe-
ses to be re-ranked would overcome this problem.

Another aspect of reranking that deserves to be
deeper studied is its applicability.  Although a
reranking model improves the baseline model in the
overall performance, in some cases the reranked best
hypotheses can contain more mistakes than the base-
line best hypothesis. A strategy to decide when the
reranking model should be applied and when the
first hypothesis of the baseline model is more accu-
rate would improve reranking performances.

In this paper, we propose two new models for
improving discriminative reranking: (a) a seman-
tic inconsistency metric that can be applied to SLU
hypotheses to select those that are more likely to
be correct; (b) a model selection strategy based on
the confidence scores provided by the baseline SLU
model and the reranker. This provides a decision
function that detects if the original top ranked hy-
pothesis is more accurate than the reranked best hy-
pothesis.

Our re-ranking strategies turn out to be effective
on very accurate baseline models based on state-of-
the-art Conditinal Random Fields (CRF) implemen-
tation (Lavergne et al., 2010). We evaluate our ap-
proach on the well-known French MEDIA corpus
for SLU (Bonneau-Maynard et al., 2006). The re-
sults show that our approach significantly improves
both “traditional” reranking approaches and state-
of-the-art SLU models.

The remainder of the paper is organized as fol-
lows: in Section 2 we introduce the SLU task. Sec-
tion 3 describes our discriminative reranking frame-
work for SLU, in particular the baseline model
adopted, in sub-section 3.1, and the reranking
model, in sub-section 3.2. Section 4 describes
the two strategies proposed in this paper for SLU
reranking, whereas the experiments to evaluate our
approaches are described in Section 5. Finally, after
a discussion in Section 6, in Section 7 we draw some
conclusions.

2 Spoken Language Understanding

Spoken Language Understanding is the task of rep-
resenting and extracting the meaning of natural lan-
guage sentences. Designing a general meaning rep-
resentation which can capture the semantics of a
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spoken language is very complex. Therefore, in
practice, the meaning representations depend on the
specific application domain being modeled.

For the corpus used in this work, the semantic rep-
resentation is defined in an ontology described in
(Bonneau-Maynard et al., 2006). As an example,
given the following natural language sentence trans-
lated from the MEDIA corpus:

“Good morning I would like to book an hotel room in Lon-

don”

The semantic representation extraction for the
SLU task is performed in two steps:

1. Automatic Concept Labeling
Null{Good morning} command-task{I would like to book}
object-bd{an hotel room} localization-city{in London}

2. Attribute-Value Extraction

command-task|[reservation| localization-

city[London]

object-bd[hotel]

command-task, object-bd and localization-city
are three domain concepts, called also “attributes”,
defined in the ontology and Null is the concept for
words not associated to any concept. As shown in
the example, Null concepts are removed from the fi-
nal output since they don’t bring any semantic con-
tent with respect to the application domain. reserva-
tion, hotel and London are the normalized attribute
values, defined also in the application ontology. This
representation is usually called attribute-value repre-
sentation.

In the last decade several probabilistic models
have been proposed for the Automatic Concept La-
beling step: in (Raymond et al., 2006) a conceptual
language model encoded in Stochastic Finite State
Transducers (SFST) is proposed. In (Raymond and
Riccardi, 2007), the SFST-based model is compared
with Support Vector Machines (SVM) (Vapnik,
1998) and Conditional Random Fields (CRF) (Laf-
ferty et al., 2001). Moreover, in (Hahn et al., 2008a)
two more models are applied to SLU: a Maximum
Entropy (EM) model and a model coming from
the Statistical Machine Translation (SMT) commu-
nity (it is actually a log-linear combination of SMT
models). Among these models, CRF has shown in
general superior performances on sequence labeling
tasks like Named Entity Recognition (NER) (Tjong
Kim Sang and De Meulder, 2003), Grapheme-to-
Phoneme transcription (Sejnowski and Rosenberg,



1987) and also Spoken Language Understanding
(Hahn et al., 2008a).

In addition to individual systems, more recently
also some system combination approaches have
been tried on SLU. In (Hahn et al., 2010), two such
approaches are compared, one based on weighted
ROVER (Fiscus, 1997) while the other is the rerank-
ing approach proposed in (Dinarelli et al., 2009b).
Both system combination approaches are applied on
the MEDIA corpus, thus we will refer to (Hahn et
al., 2010) for a comparison with our approach.

Like the other tasks mentioned above, SLU is usu-
ally a supervised learning task, this means that mod-
els are learned from annotated data. This is an im-
portant aspect to take into account when designing
SLU systems. In this respect accurate SLU models
can in part alleviate the problem of manually anno-
tating data.

The second step of SLU, that is Attribute Value
Extraction (from now on AVE) is performed with
two approaches: a) Rule-based approaches apply
Regular Expressions (RE) to map the words realiz-
ing a concept into a normalized value. Regular ex-
pressions are defined for each attribute-value pair.
Given a concept and its realizing surface form, if a
RE for that concept matches the surface, the corre-
sponding value is returned.

An example of surfaces that can be mapped into
the value hotel given the concept object-bd is:

1. an hotel room
2. a hotel room
3. the hotel

Note that these surfaces share the same keyword
for the concept object-bd, which is “hotel”. Thus,
a possible rule extracted from data, for the concept
object-bd can be:

Robject—bd(S) =

if S = “an hotel room” or
S = “a hotel room” or

S = “the hotel” then
return “hotel”

end

This kind of rules can be easily refined using reg-
ular expressions, so that they can capture all possible
linguistic patterns containing the triggering keyword
(“hotel” in the example).
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b) The other approach used for attribute value ex-
traction is based on probabilistic models. In this case
the model learns from data the conditional probabil-
ity of values V, given the concept C' and the cor-
responding sequence of words W realizing the con-
cept: P(V|W,C).

The most meaningful work about AVE ap-
proaches in SLU tasks is (Hahn et al., 2010).

The model used in this work for Automatic Con-
cept Labeling is based on CRF. For the Attribute-
Value Extraction phase we use a combination of
rule based and probabilistic approaches. The first
is made of regular expressions, as explained above.
The probabilistic approach is based again on CRF.

3 Reranking Framework

This section describes the different models involved
in the pipeline realising our reranking framework:

e Conditional Random Fields

e Semantic Inconsistency Metric for hypotheses
selection, which is optional and is applied only
at the classification phase

e Support Vector Machines with Partial Tree Ker-
nel

e Decision Strategy to detect when the top ranked
hypothesis of the baseline model is more accu-
rate than the reranked best hypothesis

It is important to underline that the phases in-
volved in the reranking framewrok are distinguished
for a matter of clarity. In principle, the phases
from the hypotheses selection to the last, the deci-
sion strategy, can be thought of as a whole reranking
model.

In the next two subsection we describe the two
models used for hypotheses generation and for
reranking: CRF and SVM with kernel methods. The
two improvements proposed in this paper and listed
above are presented in a dedicated section (4).

3.1 Conditional Random Fields

CRFs have been proposed for the first time for se-
quence segmentation and labeling tasks in (Lafferty
et al., 2001). This model belongs to the family of
exponential or log-linear models. Its main charac-
teristics are the possibility to include a huge number



of features, like the Maximum Entropy (ME) model,
but computing global conditional probabilities nor-
malized at sentence level, instead of position level
like in ME. In particular this last point results very
effective since it solves the label bias problem, as
pointed out in (Lafferty et al., 2001).

Given a sequence of N words WlN = W1, ..., WN
and its corresponding sequence of concepts C{ =
c1, ..., cn, CRF trains the conditional probabilities

N M
1
PN wl) = = H exp < E Am - h,,,,(cnl,c”,wZJrg))
n=1 m=1

M

where )\,, are the training parameters.
hm(cn,l,cn,w;:fg) are the feature functions
capturing conditional dependencies of concepts and
words. Z is a probability normalization factor in

order to model well defined probability distribution:

N
z=> [ H@En-1,en,w}"3) 2
~N n=1

here ¢,—; and ¢, are the concepts hypoth-
esized for the previous and current words,

H (5n_1,6n7w2f§) is an abbreviation for

Z%:l Am P (Cnfla Cn, wa%)

The CRF model used for the Attribute-Value Ex-
traction phase learns in the same way the conditional
probability P(V{N|CN, W{V). In particular we use
attributes-words concatenations on the source side
and attribute values on the target side.

Two particular effective implementations of CRFs
have been recently proposed. One is described in
(Hahn et al., 2009) and uses a margin based criterion
for probabilities estimation. The other is described
in (Lavergne et al., 2010) and has been implemented
in the software wapiti'. The latter solution in partic-
ular trains the model using two different regulariza-
tion factors at the same time:

Gaussian prior, used as [2 regularization and used
in many softwares to avoid overfitting;

Laplacian prior, used as // regularization (Riezler
and Vasserman, 2010), which has the effect to filter
out features with very low scores.

'available at http://wapiti.limsi.fr
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The two regularization parameters are used to-
gether in the model implementing the so-called elas-
tic net regularization (Zou and Hastie, 2005):

2
1) + oAl + 23 3

A is the set of parameters of the model introduced
in equation 1, [() is the minus-logarithm of equa-
tion 1, used as loss function for training CRF. ||A||;
and ||\||2 are the /7 and [2 regularization, respec-
tively, while p; and p2 are two parameters that can
be optimized as usual on development data or with
cross validation.

As explained in (Lavergne et al., 2010), using //
regularization is an effective way for feature selec-
tion in CRF at training time. Note that other ap-
proaches have been proposed for feature selection,
e.g. in (McCallum, 2003). This type of features se-
lection, performed directly at training time, yields
very accurate models, since only the most meaning-
ful features are kept in the final model, which guar-
antee a strong robustness on unseen data.

In this work we refer in particular to the CRF im-
plementation described in (Lavergne et al., 2010).

3.2 SVM and Kernel Methods

Our reranking model is based on SVM (Vapnik,
1998) with the use of the Partial Tree Kernel defined
in (Moschitti, 2006).

SVMs are well-known machine learning algo-
rithms belonging to the class of maximal-margin lin-
ear classifiers (Vapnik, 1998). The model represents
a hyperplane which separates the training examples
with a maximum margin. The hyperplane is learned
using optimization theory and is represented in the
dual form as a linear combination of training exam-
ples:

2i=1.1 YitiTiT +b =0,

where 7;,7 € [1,..,1] are training examples rep-
resenting objects o; and o in any feature space, y; is
the label associated with z; and «; are the lagrange
multipliers. The dual form of the hyperplane shows
that SVM training depends on the inner product be-
tween instances. Kernel methods theory (Shawe-
Taylor and Cristianini, 2004), allows us to substitute
the inner product with a so-called kernel function,

—

computing the same result: K (0;,0) = @; - Z.



The interesting aspect of using such formulation
is the possibility to compare objects in arbitrar-
ily complex feature spaces implicitly, i.e. without
knowing the features to be used. Since in real world
scenarios data cannot be classified using a simple
linear classifier, kernel methods can be used to carry
out learning in complex feature spaces. In this work
we use the Partial Tree Kernel (PTK) (Moschitti,
2006).

3.3 Reranking Model

In order to give an effective representation to SLU
hypotheses in SVM, since we are using PTK, we
need to represent as trees SLU hypotheses like the
one described in section 2.

This problem is easily solved by transforming the
hypotheses into trees like the one depicted in fig-
ure 1. Although there may be more formal solutions
to represent semantic information of SLU hypothe-
ses as trees, we would like to remark that the tree
structure shown in figure 1 contains all the key in-
formation needed for our purposes: the first level of
the tree represents the concept sequence annotated
on surface form. The second level of the tree al-
low to implicitly represent the segmentation of each
concept, while the third level, i.e. the leaves, are the
input words. Moreover, from figure 1 we removed
word categories associated to words in order to keep
the figure readable. Word categories are provided
together with the corpus as an application knowl-
edge base. They comprise domain categories like
city names, hotel names, street names etc., and some
domain independent categories like numbers, dates,
months etc. The categories are used at the same level
of words, they provide a generalization over words
and alleviate the effect of Out-of-Vocabulary (OOV)
words.

The CRF model used as baseline generates the
n most likely conceptual annotations for each input
sentence. These are ranked by the global conditional
probability of the concept sequence, given the input
word sequence of CRF. The n-best list produced by
the baseline model is the list of candidate hypotheses
H,, Hy, .., H,, used in the reranking step.

The candidate hypotheses are organized into
pairs, e.g. (Hy, Hs) or (Hy, Hs). We build train-
ing pairs such that a reranker can learn to select the
best one between the two hypotheses in a pair, i.e.
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the more correct hypothesis with respect to a refer-
ence annotation and a given metric. In particular,
we compute the edit distance of each hypothesis in
the list, with respect to the manual annotation taken
from the corpus. The best hypothesis Hj is used
to build positive instances for the reranker as pairs
(Hyp, H;) fori € [1..n] and i # b, negative instances
are built as (H;, Hy), with same constraints on index
1. This means that, if » hypotheses are generated for
a sentence, 2 - n instances are generated from them.
Note that by construction of pairs the model is sym-
metric, this provides a property that will be exploited
at classification phase, as described in (Shen et al.,
2003b).

Hypotheses are then converted into trees like the
one shown in figure 1. Pairs of trees e, = (t; k, %),
for k varying along all the training or classification
instances, are given as input to the SVM model to
train the reranker using the following reranking ker-
nel:

KR(eLeg) = PTK(tlyl,tLg)+PTK(t211,t272) 4)

PTK(t1,1,t2,2) — PTK(t21,t1,2),

where e; and ey are two pairs of trees to be com-
pared.

The reranking kernel in equation 4, consisting in
summing four different kernels, has been proposed
in (Shen et al., 2003b) for syntactic parsing rerank-
ing, where the basic kernel was a Tree Kernel, and
the idea was taken in turn from (Heibrich et al.,
2000), where pairs where used to learn preference
ranking. The same idea appears also, in a slightly
different form, in early work about reranking, e.g.
(Collins and Duffy, 2002). The same reranking
schema has been used also in (Shen et al., 2004)
for reranking different candidate hypotheses for ma-
chine translation.

For classification, observing that the model is
symmetric and exploiting kernel properties, we can
use, as classification instances, simple hypotheses
instead of pairs. More precisely we use pairs where
the second hypothesis is empty, i.e. (H;,0), for
i € [1..n]. This simplification allow a relatively fast
classification phase, since only n instances are gen-
erated for each sentence, instead of n2. This simpli-
fication has been proposed in (Shen et al., 2003b).
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Figure 1: An example of semantic tree constructed from an SLU hypothesis from the MEDIA corpus and used in PTK

4 Hypotheses Selection Criteria

This section describes the main contribution of our
work: first, a semantic inconsistency metric based
on the AVE phase of SLU and allowing to select hy-
potheses generated by the baseline model; second, a
strategy to decide, after the reranking phase, if it is
more likely that the baseline best hypothesis is more
accurate than the best reranked hypothesis and al-
lowing to recover the mistake. Similar ideas have
been proposed in (Dinarelli et al., 2010), here we
propose a significant evolution and we give a much
wider description and evaluation.

4.1 Hypotheses Selection via Attribute Value
Extraction (AVE)

In previous reranking approaches (Collins, 2000;
Collins and Duffy, 2002; Shen et al., 2003a; Shen
et al., 2003b; Shen et al., 2004; Collins and Koo,
2005; Kudo et al., 2005; Dinarelli et al., 2009b), few
hypotheses are generated with the baseline model,
ranked by the model probability. These are then
used for the reranking model. An interesting strat-
egy to improve reranking performance is the selec-
tion of the best set of hypotheses to be reranked.

In this work we propose a semantic inconsistency
metric (SIM) based on the attribute-value extraction
phase that allows to select better n-best hypotheses.
We combine the scores provided by the rule based
approach and the CRF approach for AVE, comput-
ing a confidence measure.

The rule-based approach for AVE is defined by
a set of rules that map concepts and their realiz-
ing words into the corresponding value. The rules
are extracted from the training data, thus they are
defined to extract correct values from well formed
phrases annotated with correct concepts. This means
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that when the corresponding words are annotated
with a wrong concept, the extracted value will prob-
ably be wrong. We use this property to compute a
semantic inconsistency value for hypotheses, which
in turn allows to select hypotheses with higher prob-
abilities to be correct.

We show the application of SIM using the same
example of Section 2. For space issues we ab-
breviate command-task with com-task, object-bd
with obj-bd and localization-city with loc-city. We
also suppose to have already removed Null concepts.
From the same sentence, the three first hypotheses
that may be generated by the baseline model are:

1. obj-bd{/ would like to book} obj-bd{an hotel room} loc-
city{in London}

2. com-task{I would like to book} obj-bd{an hotel room} loc-
city{in London}

3. com-task{/ would like to book} obj-bd{an hotel} obj-
bd{room} loc-city{in London}

Two of these annotations show typical errors of an
SLU model:
(i) wrong concepts annotation: in the first hypothe-
sis the phrase “I would like to book™ is erroneously
annotated as obj-bd;
(i) wrong concept segmentation: in the third hy-
pothesis the phrase “an hotel room” is split in two
concepts.

If we apply the AVE module to these hypotheses
the result is:

1. obj-bd[] obj-bd[hotel] loc-city[london]

2. cmd-task[reservation] obj-bd[hotel] loc-city[london]

3. cmd-task[reservation] obj-bd[hotel] obj-bd[] loc-city[london]
As we can see the first concept obj-bd in the first

hypothesis has an empty value since it was incor-
rectly annotated and, therefore, it is not supported



MEDIA training dev test
# sentences 12,908 1,259 3,005

words  concepts | words  concepts words  concepts
# tokens 94,466 43,078 | 10,849 4,705 | 25,606 11,383
# vocabulary 2,210 99 838 66 1,276 78
# singletons 798 16 338 4 494 10
# OO0V rate [%] - - 1.33 0.02 1.39 0.04

Table 1: Statistics of the MEDIA training

by words from which the AVE module can extract
a correct value. In this case, the output of AVE is
empty. In the same way, in the third hypothesis, the
AVE module cannot extract a correct value from the
phrase “room” since it doesn’t contain any keyword
for a obj-bd concept.

For each hypothesis, our SIM simply counts the
number of wrong (or empty) values. In the example
above, we have 1, 0 and 1 for the three hypothe-
sis, respectively. Accordingly, the most accurate hy-
pothesis under SIM is the second, which is also the
correct one.

In order to combine the SIM score computed by
the rule-based AVE module with the score provided
by the CRF AVE model, we consider per-concept
scores from both approaches. In particular, we for-
malize the definition of the SIM metric above on a
concept ¢; as STM (¢;,w, ™). The value of SIM
is simply 0 if the rule-based AVE module can extract
a value from the surface form wl1 ~"™ realizing the
concept ¢;. 1 otherwise. For each concept in a hy-
pothesis, we compute its semantic consistency s(c;)
as

,,,,,

(&)

i w
where P(vi|ci,wi1 ") is the conditional prob-
ability output by the CRF model for the value v;,
given the concept ¢; and its realizing surface wll et
Equation 5 means that the CRF score provided for a
given value is halved if SIM returns 1, i.e. if the
AVE module cannot extract any value. Otherwise
the score output by the CRF AVE model is kept
unchanged. The semantic inconsistency metric of
an hypothesis H} containing the concept sequence
C’{V = ¢1, ..., cy 1s then defined as

N

S(Hy) = s(cs)

i=1

©)
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and evaluation sets used for all experiments.

Using S(Hj) as semantic inconsistency metric,
we generate a huge number of hypotheses with the
baseline model and we select only the top n-best. We
use these hypotheses in the discriminative reranking
model, instead of the original n-best generated by
the CRF model. For simplicity, in general context
we denote S(Hj) as SIM.

4.2 Wrong Rerank Rejection

After the reranking model is applied, the first hy-
pothesis is selected as final result. This choice as-
sumes that the new hypothesis is more accurate than
the one provided by the baseline model. In gen-
eral this assumption is not true. Indeed, a reranking
model must be carefully tuned in order to correctly
rerank wrong first best hypotheses but keeping the
original baseline best for correct hypotheses. When
the baseline model is relatively accurate, the latter
case occurs in most of the cases. In this situation it
becomes hard to train an accurate reranking model.

Our idea to overcome this problem is to apply the
reranking model and then post-process results to de-
tect when the original best hypothesis is actually bet-
ter than the reranked best.

For this purpose we propose a simple strategy
based on the scores computed by the two models in-
volved in reranking: CRF for the baseline and SVM
with PTK for reranking.

Let H..; and Hgrp be the best hypothesis of the
CRF and reranking (RR) models, respectively. Let
Serf(Herp) and Serp(Hgg) be the scores of the
CRF model for H..y and Hrp. In the same way,
let Srr(Hcr ) and Spr(HRR) be the scores of the
reranking model on the same hypotheses. We define
the confidence margin of the CRF model the quan-
tity: Mcrf = Scrf(Hcrf) - Scrf<HRR)'

In the same way we define the confidence mar-
gin of the RR model: Mpggr Srr(Herp) —
SrRrR(HRR).

We compute two thresholds T,y and Trp for the



Average score Feature type
0.0528186 Pref2
0.044189 CATEGORY-2
0.0355579 CATEGORY
0.0354006 Pref3-2
0.0338949 Pref4-2
0.0332647 Suff3-2
0.0314831 Suff2
0.030613 Suff4-2
0.0165602 Suffl
0.000579602 Prefl

Table 2: Ranks of average score given by the CRF model to feature
types

two margins with respect to error rate minimization
(with a “line search” algorithm).

We select the final best interpretation hypothesis
for a given sentence with the decision function:

Hgr

Hcrf

BestHypothesis = { otherwise.

Since this strategy allows to recover from rerank-
ing mistakes, we call it Wrong Rerank Rejection
(WRR).

S Experiments

The data used in our experiments are taken from
the French MEDIA corpus (Bonneau-Maynard et
al., 2006). The corpus is made of 1.250 Human-
Machine dialogs acquired with a Wizard-of-Oz ap-
proach in the domain of informtation and reservation
of French hotels. The data are split into training, de-
velopment and test set. Statistics of the corpus are
presented in table 1.

For our CRF models, both Automatic Concept An-
notation and Attribute Value Extraction SLU phases,
we used wapiti> (Lavergne et al., 2010). The CRF
model for the first SLU phase integrates a tradi-
tional set of features like word prefixes and suffixes
(of length up to 5), plus some Yes/No features like
“Does the word start with capital letter ?”, “Does
the word contain non alphanumeric characters ?”,
“Is the word preceded by non alphanumeric char-
acteris ?” etc. The CRF model for AVE integrates
only words, prefixes and suffixes (length 3 and 4)
concatenated with concepts. Since in this case la-
bels are attribute values, which are a huge set with

Zavailable at http://wapiti.limsi.fr
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if M(:'rf < T(:'r'f and MRR > Trr

MEDIA Text Input DEV TEST
Model Attr Attr+Val Attr Attr+Val
CRF 12.1% 14.8% 11.5% 13.8%
CRF+RR 12.0% 14.6% 11.5% 13.7%
CRF+RRs1 M 11.7% 13.9% 11.3% 13.4%
CRF+RRwRR 11.2% 13.4% 11.3% 13.0%

Table 3: Results of baseline CRF model and reranking models on
MEDIA text input

respect to concepts (700 VS 99), using a lot of fea-
tures would make model training problematic. De-
spite the reduced set of features, training error rate
at both token and sentence level is under 1%. We
didn’t carry out optimization for parameters p; and
p2 of the elastic net (see section 3.1), default values
lead in most cases to very accurate models.

Reranking models based on SVM and PTK have
been trained with “SVM-Light-TK 3. Kernel param-
eters M and SVM parameter C have been optimized
on the development set, as well as thresholds for the
WRR (see section 4.2).

Concerning hypotheses generation, for training
we generate 100 hypotheses, we select the best with
respect to the edit distance and the reference anno-
tation and we keep a total of 10 hypotheses to build
pairs. For classification, with the “standard” rerank-
ing approach we generate and we keep the 10 best
hypotheses. While using SIM for hypotheses selec-
tion, we generate 1.000 hypotheses and we keep the
10 best with respect to SIM. 1.000 is the best thresh-
old between oracle accuracy and computational cost
for evaluating the hypotheses.

Experiments have been performed on both man-
ual and automatic transcriptions of dialog turns. For
automatic transcriptions the WER of the ASR is
30.3% on development set and 31.4% on test set.

All results are reported in terms of Concept Er-
ror Rate (CER), which is the same as WER, but it is
computed on concept sequences. In all cases we give
results for both attributes only and attributes and val-
ues extraction

5.1 Results

In order to understand feature relevance, in table 2
we report feature types ranked by the average score
given by the CRF model. Each type correspond to
features at any position with respect to the target

3available at http://disi.unitn.it/moschitti/Tree-Kernel.htm
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Figure 2: Optimization of the PTK M parameter and C parameter of SVM

MEDIA Speech Input DEV TEST

Model Attr Attr+Val Attr Attr+Val
CRF 24.1% 29.1% 23.7% 27.6%
CRF+RR 23.9% 29.1% 23.5% 27.6%
CRF+RRs1 M 23.9% 28.3% 23.2% 26.8%
CRF+RRwRR 23.3% 27.5% 22.7% 26.1%

Table 4: Results of baseline CRF model and reranking models on
MEDIA speech input

word, with label unigrams. In contrast observation
unigrams are distinguished from bigrams using suf-
fixes -1 and -2 respectively. Feature types wrd are
words converted to lower case, Wrd are words kept
with original capitalization. Feature types Pren are
word prefixes of length n, Sufn are word suffixes of
length n. CATEGORY features are word categories
(see section 3.3). As we can see from the table,
although feature relevance depends of course from
the task, surprisingly word prefixes of length 2 are
the most meaningful features. As expected, CATE-
GORY features are also very relevant features, since
they provide a strong generalization over words. An-
other expected outcome is the fact that prefixes and
suffixes of length 1 are the least relevant features.

In figure 2(a), 2(b) and 2(c) we show the curves
resulting from optimization of parameters of rerank-
ing models. In particular we optimized the M kernel
parameter (i decay factor, see (Moschitti, 2006) for
details), and the C SVM parameter, i.e. the scale
factor for the soft margin (please refer to (Vapnik,
1998) for SVM details). Figure 2(b) shows the learn-
ing time as a function of the C SVM parameter. This
gives an idea of how long takes training our rerank-
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ing models.

In table 3 and 4 we report comparative results
over the baseline CRF model, the baseline rerank-
ing model (CRF+RR) and the reranking models ob-
tained applying the two improvements proposed in
this work (CRF+RRgsry and CRF+RRywRrR). As
we can see, the baseline reranking model does not
improve significantly the baseline CRF model. This
outcome is expected since we don’t use any other in-
formation in the reranking model than the semantic
tree shown in figure 1. Previous approaches like for
example (Collins and Duffy, 2002), use the baseline
model score as feature, as that the reranking model
cannot do worst than the baseline model. As we
pointed out in section 4.2, this solution require a fine
tuning of the reranking model, especially when the
baseline model is relatively accurate. In our case,
the CRF model has a Sentence Error Rate of 25.0%
on the MEDIA test set. This means that 75% of
the times the best hypothesis of CRF is correct. In
turn this implies that the reranking model must not
rerank 75% of times and rerank the other 25% of
times, someway contrasting the evidence provided
by the baseline model score. In contrast, using our
WRR strategy, we can tune the reranking model to
maximize reranking effect and recover from rerank-
ing errors applying WRR. As shown in tables 3 and
4, we consistently improve CRF baseline as well
as reranking baseline CRF+RR, especially applying
both SIM and WRR (CRF+RRywy rr). Comparing
our results with those reported in (Hahn et al., 2010),
we can see that our model reaches, and even im-



MEDIA Test set | OER[%] | correct found/present
Model

CRF 9.5 2359/2657
CRF+RR 9.5 2375/2657
CRF+RRs1M 7.5 2381/2758
CRF+RRw RR 7.5 2444/2758

Table 5: Analysis over 10-best hypotheses for CRF baseline and the
reranking models showing the effect of hypotheses selection

MEDIA Text Input DEV TEST
Model Pair Attr+Val Attr+Val
CRF vs. CRF+RR 0.2235 0.4075
CRF vs. CRF+RRs1 M 0.0299 0.065
CRF vs. CRF+RRw RR 0.0044 1.9998E-4
CRF+RR vs. CRF+RRs 10 s 0.002 5.9994E-4
CRF+RR vs. CRF+RRw RR 4.9995E-4 9.999E-5
CRF+RRSU% VS. CRF+RRWRR 0.1355 0.0031

Table 6: Significance tests on results of models described in this
work. The significance test is based on computationally-intensive ran-
domizations as described in (Yeh and Church, 2000).

proves in some cases, state-of-the-art performance.
This is particularly meaningful since best results re-
ported in (Hahn et al., 2010) are obtained combining
6 different SLU models.

In table 5 we report some statistics to show the
effect of SIM on the 10-best hypotheses list. It is
particularly interesting to see that when hypothe-
ses selection is applied, oracle error rate (OER)
drops of 2% points from an already accurate OER
of 9.5%. This is reflected also by the number of ora-
cles present in the 10-best list without applying and
applying SIM. We pass from 2657 without SIM to
2758 applying our hypotheses selection metric.

Finally, in table 6 we report statistical signifi-
cance tests over the models described in this work.
We used the significance test described in (Yeh
and Church, 2000), it is based on computationally-
intensive randomizations of data and tests the null
hypothesis, i.e. the lower the score, the higher the
statistical significance of results difference. Scores
in table 5 reflect results given in terms of CER. We
can see that when the difference between results is
small, this is not statistically significant, when the
score is above 0.05, the difference between the two
corresponding models is not significant. We can thus
conclude that the reranking model we propose, using
hypotheses selection and reranking errors recover,
significantly improves baseline CRF model and “tra-
ditional” reranking models.
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6 Discussion

Although the new ideas proposed in this paper are
effective and interesting, an important issue is their
applicability to other tasks and domains. In this re-
spect, it is sufficient to note that our ideas comes
from the multi-stage nature of the task and of the
proposed reranking framework. SLU is performed
in two intertwined steps, since attribute values are
extracted from syntactic chunks annotated with con-
cept in the first step. This allows to use the model for
the second step to validate the output of the first step,
and vice versa, which is the principle of our hypothe-
ses selection metric. There are many other tasks,
in NLP and in other domains, that can be modeled
with multiple steps and thus the same idea of “val-
idation” of the output of one step with the other’s
model output can be applied. An example is syntac-
tic parsing, where in most cases parsing is performed
upon POS tagging output.

7 Conclusions

In this paper we propose two improvements for
reranking models to be integrated in a reranking
framework for Spoken Language Understanding.
The reranking model is based on a CRF baseline
model and Support Vector Machines with the Par-
tial Tree Kernel for the reraning model. The two
improvements we propose are: i) hypotheses selec-
tion criteria, used before applying reranking to select
better hypotheses amongst those generated by CRF.
ii) a strategy to recover from reranking errors called
Wrong Rerank Rejection.

We presented a full set of comparative results
showing the viability of our approach. We can reach
performances of state-of-the-art models, improving
them in some cases, especially on automatic tran-
scriptions coming from ASR (speech input).

In particular, the effectiveness of hypotheses se-
lection is shown reporting the improvement of the
Oracle Error Rate on the 10-best hypotheses list.
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