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Abstract

An entity in a dialogue may be old, new,
or mediated/inferrable with respect to the
hearer's beliefs. Knowing the information
status of the entities participating in a dia-
logue can therefore facilitate its interpreta-
tion. We address the under-investigated prob-
lem of automatically determining the informa-
tion status of discourse entities. Specifically,
we extend Nissim’s (2006) machine learning
approach to information-status determination
with lexical and structured features, and ex-
ploit learned knowledge of the information
status of each discourse entity for coreference
resolution. Experimental results on a set of
Switchboard dialogues reveal that (1) incor-
porating our proposed features into Nissim’s
feature set enables our system to achieve state-
of-the-art performance on information-status
classification, and (2) the resulting informa-
tion can be used to improve the performance
of learning-based coreference resolvers.

Introduction

a previously-mentioned entity. Information status
is a subject that has received a lot of attention in
theoretical linguistics (Halliday, 1976; Prince, 1981,
Hajicova, 1984; Vallduvi, 1992; Steedman, 2000).

Knowing the information status of discourse enti-
ties can potentially benefit many NLP applications.
One such task is anaphora resolution. While there is
general belief that definite descriptions are mostly
anaphoric, Vieira and Poesio (2000) empirically
show that only 30% of these NPs are anaphoric.
Without being able to determine whether an NP is
anaphoric, an anaphora resolver will attempt to re-
solve every NP, potentially damaging its precision.
Sincenewentities are by definition new to the hearer
and therefore cannot refer to a previously-introduced
NP, knowledge of information status could be used
to improve anaphora resolution.

Despite the potential usefulness of information
status in NLP tasks, there has been little work on
learningthe information status of discourse entities.
To investigate the plausibility of learning informa-
tion status, Nissim et al. (2004) annotate a set of
Switchboard dialogues with such informattorand

Information statusis not a term unfamiliar to re- subsequently present a rule-based approach and a
searchers working on discourse processing prokearning-based approach to acquiring such knowl-
lems. It describes the extent to which a discourse erdge from the manual annotations (Nissim, 2006).
tity, which is typically a noun phrase (NP), évail-
able to the hearer given the speaker’s assumptiordescribe a learning approach to the under-studied
about the hearer’s beliefs. According to Nissim eproblem of determining the information status of

al. (2004), a discourse entity can bew old, or me-

diated Informally, a discourse entity is (19ld to
the hearer if it is known to the hearer and has prdeatures and structured features based on syntactic
viously been referred to in the dialogue, (Bwif

it is unknown to her and has not been previously re-

Our goals in this paper are two-fold. First, we
discourse entities that extends Nissim’s (2006) fea-
ture set with two novel types of features: lexical

parse trees. Second, we employ the automatically

These and other linguistic annotations on the Switchboard

ferred to; and (3)nediatedf it is newly mentioned giaiogues were later released by the LDC as part of the NXT
in the dialogue but she can infer its identity fromcorpus, which is described in detail in Calhoun et al. (2010)
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acquired knowledge of information status for corefinferred from already-mentioned entities or is gener-
erence resolution. Experimental results on Nissim etlly known to the hearer. More specifically, an entity
al.'s (2004) corpus of Switchboard dialogues shovis mediatedf (1) it is a generally known entity (e.g.,
that (1) adding our linguistic features to Nissim’sthe Earth China and most proper names), (2) it is
feature set enables our system to outperform her sysbound pronoun, or (3) it is an instanceboidging
tem by 8.1% in F-measure, and (2) learned knowld.e., an entity that is inferrable from a related entity
edge of information status can be used to improveentioned earlier in the dialogue). As an example,
coreference resolvers by 1.1-2.6% in F-measure. consider the following sentences.

The rest of this paper is organized as follows. We (3a)
first illustrate with examples the concepts raéw
old, and mediatedentities. Then, we describe the (3b)
dataset and the feature set that Nissim (2006) used
in her approach. After that, we introduce our lexi-
cal and structured features. Fina”y, we evaluate the In Examp|e 3a, by the time the hearer processes
determination of information status as a Standalorme second occurrence thfe doo[ she has a|ready
task and in the context of coreference resolution. had a mental en'“ty Corresponding tte door(af_

. . ter processing the first occurrence). As a result, the

2 Old, New, and Mediated Entities second occurrence dfie dooris anold entity. In
Since the concepts ofd, new, andmediatecentities Example 3b, on the other hand, the hearer is not as-
are not widely known to researchers working outsidéumed to have any mental representation of the door
the area of discourse processing, in this section w@ question, but she can infer that the door she saw
will explain them in more detail. was part of Mary’s house. Hence, this occurrence of

The termsold and new information have meant the dooris amediatedentity. In general, an entity
a variety of things over the years (Allerton, 1978that is related to an earlier entity via a part-whole
Prince, 1981; Horn, 1986). Since we use Nissinfelation or a set-subset relationmeediated
et al’'s (2004) corpus for training and evaluationNew. An entity isnewif it has not been introduced
the definitions of these concepts we present here drethe dialogue and the hearer cannot infer it from
those that Nissim et al. used to annotate their copreviously mentioned entities.
pus. According to Nissim et al., their definitions are | case more than one class is appropriate for
built upon Prince’s (1981), and the categorizatiory given entity, Nissim et al. employ additional tie-
into old, new andmediatedentities resemble those preaking rules. Suppose, for instance, that we have
of Strube (1998) and Eckert and Strube (2001).  two occurrences dEhinain a dialogue. The second
Old. As mentioned before, an entity &dd if itis  occurrence can be labeled@d (because it is coref-
both known to the hearer and has been mentioned énential with an earlier entity) anediatedbecause
the conversation. More precisely, an entityold if it is a generally known entity). According to Nissim
(1) it is coreferential with an entity introduced ear-et al.’s rules, the entity will be labeled akl.
lier, (2) it is a generic pronoun, or (3) it is a personal
pronoun referring to the dialogue participants. T Dataset
exemplify, consider the following sentences.

He passed by the door of Mary’s house and
saw thatthe door was painted purple.

He passed by Mary’s house and saw that
the door was painted purple.

We employ Nissim et al.'s (2004) dataset, which
(1) I'was angry that he destroyeay tent. comprises 147 Switchboard dialogues. A total of
(2) You cannot leave until the testis over. 68,992 NPs are annotated with information status:

51.2% of them are labeled akl, 34.5% asnediated
In Example 1,myis anold entity because it is (henceforttmed, and 14.3% asew Nissim (2006)
coreferent witH. In Example 2,Youis anold entity  randomly split the instances created from these NPs
because it is a generic pronoun. into a training set (for classifier training), a develop-

Mediated. An entity ismediatedf it has not been ment set (for feature development), and an evalua-

previously introduced in the conversation, but can bgon set (for testing). Hence, the NPs from the same
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Training Test Feature Values

old | 31358 (51.7%)| 3931 (47.4%) full prev mention numeric

med | 20778 (34.2%)| 3036 (36.6%) mention time {first,second,more

new | 8567 (14.1%) | 1322 (16.0%) partial prev mention | {yes,no,NA

total | 60703 (100%)| 8289 (100%) determiner {bare,def,dem,indef,poss,§JA
NP type {pronoun,common,proper,other

Table 1: Information status distribution of NPs. | NP length numeric -
grammatical role {subject,subjpass,pp,other
document may be split across different sets. Table 2: Nissim’s feature set.

Unlike Nissim (2006), we partition the 147 dia-
logues (rather than the instances) into a training set L
(117 dialogues) and a test set (30 dialogues). In The seven feature_s are all mtwtlv_ely useful_ for
other words, we dmot randomize the instances, asdetermlnlng information status. For instance, if an

we believe that it represents an unrealistic evaludyP» NP and a discourse entity that appears before

tion setting, for the following reasons. First, in pracAt ave the same string (full prev mention), then,
tice, the test dialogues may not be available until te& 'Ikely to be arold entity. Mention time is the cat-

time. Second, we may want to examine how a Sy§_gorica| version of full prev mention and therefore

tem performs on a given dialogue. Finally, randomServes to deteadld entities. Partial prev mention

izing the instances does not allow us to apply learnd§ Useful for detecting mediated entities, especially
knowledge of information status to coreference redl10Se that have a set-subset relation with a preceding

olution, which needs to be performed for each dia€"tity- For instanceyour dogswould be considered
logue. The information status distribution of the Np& Partial previous mention afy dogsor my three

in the training and test sets are shown in Table 1. 909 The value “NA’ stands for “not applicable”,
and is used for pronouns. Determiners and NP type

4 Baseline System are likely to be helpful for all three categories. For
instance, indefinite NPs and pronouns are likely to
In this section, we describe our baseline systenie newandold, respectively. The “NP length” fea-
which adopts a machine learning approach to deteture is motivated by the observation thdd entities
mining the information status of a discourse entity. tend to contain less lexical materials thaew enti-
Building SVM classifiers for information-status ~ ti€s. For instance, subsequent referenceBaack

determination. We employ the support vector Obamamay simply beObama

machine (SVM) learner as implemented in theéApplying the classifiers. To determine the infor-
SVM!i9ht package (Joachims, 1999) to train threenation status of an NP in a test dialogue, we create
binary classifiers, one for predicting each of then instance for it as during training and present it
three possible classes (i.egw old, andmed, us- independently to the three binary SVM classifiers,
ing a linear kernel in combination with thene- each of which returns a real value representing the
versus-alltraining schemé. Each training instance signed distance of the instance from the hyperplane.
represents a single NP and consists of the sev@e assign the instance to the class that is associated
morpho-syntactic features that Nissim (2006) usedith the most positive classification value.

in her learning-based approach (see Table 2 for an

overview). Following Nissim, we extract the NPs5 Our Features

directly from the gold-standard annotations, but the o
features are computed entirely automatically. We propose to extend Nissim's (2006) feature set
with two types of features.
2SVM was chosen because it provides the option to employ
kernels. The reason why we train three binary classifiererat 5.1 Lexical Features

than just one multi-class classifier (using S¥Rf*ic!es#) is that ) ) .
SVM™ulticlass does not permit the use of a non-linear kernelAS discussed, an entity should be labeledasiif it

which we will need to incorporate structured features later  has not been introduced in the dialogue but is gener-
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ally known to a human. Whether an entity is “generdled via domain adaptation technigues and should
ally known” may be easily determined by a humamot be a reason against lexicalization.

but not by a machine, since world knowledge is in-

volved in the decision process. In particular, Nis®-2 Structured Features
sim’s feature set does not contain any features thht Nissim’'s (2006) feature set, there are a couple of
encode the notion of a “generally known” entity.  features that capture NP-internal information, such

Hence, it would be desirable to augment Nissim’ass determiner, NP length, and NP type. However,
feature set with features that indicate whether an ethere is only one feature that captures the syntactic
tity is generally known or not. One way to do this iscontext of an NP, grammatical role, which is com-
to (1) create a list of generally known entities, anguted based on the parse tree in which the NP re-
then (2) create a binary feature that has the valusdes. This is arguably a very shallow representation
Trueif and only if the entity under consideration ap-of its syntactic context. We hypothesize that we can
pears in this list. The question, then, is: how catrain more accurate information-status classifiers if
we obtain the list of generally known entities? Wewe have access to a richer representation of syntac-
may manually assemble this list, but this could b&ic context. This motivates us to employ syntactic
a labor-intensive task. As a result, we propose tparse treedirectly as features.
acquirethis kind of world knowledge automatically = Before describing how this can be done, recall
from annotated data. that in a traditional learning setting, the feature set

Specifically, we augment Nissim's feature seemployed by an off-the-shelf learning algorithm typ-
with the set ofunigramsthat appear in the training ically consists offlat features (i.e., features whose
data. Given a training/test instance (i.e., discourselues are discrete- or real-valued, as the ones de-
entity), we compute the values of its unigram feascribed in the previous section). Advanced machine
tures (henceforthexical feature}y as follows. For learning algorithms such as SVMs, on the other
each unigram, we check if it appears in the strinpand, have enabled the use sifuctured features
representing the discourse entity. If so, its featur@.e., features whose values are structures such as
value is 1; otherwise, its value is 0. For instance, iparse trees), owing to their ability to empldgr-
the entity isthe red hatthen all of its lexical features nelsto efficiently compute the similarity between
exceptthe red, andhatwill have a value of 0. two potentially complex structures.

It should perhaps not be too difficult to see why Perhaps the main advantage of employing struc-
these lexical features are useful for the informationtured features isimplicity. To understand this ad-
status classifier: these features enable the SVW¥antage, consider learning in a setting where we can
learner to determine the extent to which a unigraronly employ flat features. If we want to use informa-
correlates with each class. For instance, from the ation from a parse tree as features in this setting, we
notated data, the learner will learn that any instanceill need to design heuristics to extract the desired
of China cannot be labeled asew, and the deci- parse-based features from parse trees. For certain
sion of whether it should be amld entity or amed tasks, designing a good set of heuristics can be time-
entity depends on whether it is coreferential with @onsuming and sometimes difficult. On the other
previously-mentioned entity. Hence, the use of lexhand, SVMs enable a parse tree to be employed di-
ical features allows the learner to implicitly acquirerectly as a structured feature, obviating the need to
some world knowledge. design such heuristics.

We believe that lexicalization is an important step Given two parse trees (as features), we com-
towards building high-performance text-processingute their similarity using a convolution tree ker-
systems. In fact, lexicalized models have demomel (Collins and Duffy, 2001), which efficiently enu-
strated their effectiveness in other areas of languageerates the number of common substructures in the
processing, such as syntactic and semantic parsirig/o trees via dynamic programming. Note, however,
While lexicalized models may be less portable tahat while we want to use a parse tree directly as a
new genres and domains than their unlexicalizefitature, we dmotwant to use thentireparse tree as
counterparts, we believe that this issue can be haa-feature. Specifically, while using the entire parse
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tree enables a richer representation of the syntactice need to employ aompositekernel to combine
context than using partial parse tree, the increasedthem. Specifically, we define and employ the fol-
complexity of the tree also makes it more difficultlowing composite kernel:

for the SVM learner to make generalizations. .

To strike a better balance between having a rich Ke(Fy, o) = Ko (Fy, Bo) + Ko (1, F),
representation of the context and improving thevhereF; andF; are the full set of features that rep-
learner’s ability to generalize, we extract a substrudesent the two entities under consideration, &hd
ture from a parse tree and use it as the value of tf@d K> are the kernels we are combining. To ensure
structured feature of an instance. Specifically, giveiat both kernels contribute equally to the compos-
an instance corresponding to discourse entjtwe ite kernel, we normalize the values they return to the
extract the substructure from the parse tree contaif@nge [0,1].
ing e as follows. Letn(e) be the root of the sub-
tree that spans all and only the wordseinand let
Parent(n(e)) be its immediate parent node. We (1)Next, we evaluate the effectiveness of our features
take the subtree rooted Rurent(n(e)), (2) replace in improving information-status classification.
each leaf node in this subtree with a node labeled _ _

X, (3) replace the subtree rootedree) with a leaf -1 Results and Discussion

node labeledy, and (4) use the subtree rooted aResults of four information-status classification sys-
Parent(n(e)) as the structured feature for the in-tems are shown in Table 3. Under Original Nis-
stance corresponding to Intuitively, the first three sim, we have the results copied verbatim from Nis-
steps aim to provide generalizations by simplifyingsim’s (2006) paper. Baseline is the aforementioned
the tree. For instance, step (1) allows us to focus dpaseline system, which is trained using Nissim’s fea-
using a small window as the context. Steps (2) andire set. Baseline+Lexical is the system trained us-
(3) help generalization by ignoring the words withining Nissim’s feature set augmented with lexical fea-
e and its context. Note that using two labetsand tures. Finally, Baseline+Both is the system trained
Y, enables the kernel to distinguish the discourse ensing Nissim’s feature set augmented with both lex-
tity under consideration from its context within thisical and structured features. For each system, we
substructure. In addition, we simply use a singlshow the recall (R), precision (P), and F-measure (F)
node {) to represent the discourse entity, since angf each of the three classesid, new, andmed Be-
NP-internal information has presumably been cadere we describe the results, two points deserve men-
tured by the flat features. We compute these strution. First, as noted earlier, Nissim partitioned the
tured features using hand-annotated parse trees. dialogues into training and test folds in a different

While structured features have been employed favay than us. In particular, Original Nissim and the
a multitude of tasks in syntax, semantics, and inremaining three systems were not evaluated on the
formation extraction such as syntactic parsing (e.gsame set of test instances. Hence, the Original Nis-
Collins (2002)), semantic parsing (e.g., Moschittsim results are not directly comparable with those of
(2004)), named entity recognition (e.g., Cumby anthe other systems. We show them here just to pro-
Roth (2003), and relation extraction (e.g., Zelenkeide another point of reference. Second, the results
et al. (2003)), the same is not true for discoursef the remaining three systems were obtained by ag-
processing tasks. We hope that our use of strugregating the results of three binary SVM classifiers,
tured features for information-status classificatioras described eatrlier.
can promote their use in discourse processing. Comparing Baseline and Baseline+Lexical, we
see that augmenting Nissim’s feature set with lexical
features improves the F-measure scores on all three
Recall that the flat features are computed using @asses. In particular, the F-measure and recall for
linear kernel, while the structured features are conmedrise considerably by 3.0 and 7.8, respectively.
puted using a tree kernel. If we want our learner td his provides indirect empirical support for our ear-
make use of more than one of these types of featurd®r hypothesis that thenedclass can benefit from
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Original Nissim Baseline Baseline+Lexical Baseline+Both
R P F| R P F| R P F| R P F
old 915 941 928 91.2 858 885 88.7 91.7 90.2 93.0 95.2 94.1
med 876 681 76.6/84.7 627 721 925 63.2 75.1 89.1 709 79.0
new 22.3 56.3 32.0 30.2 66.4 415 32.1 68.3 43.7 344 715 46.5
| Accuracy | 79.5 | 74.1 | 76.3 | 82.2 |
Table 3: Per-class performance of four information-statassifiers.
the shallow world knowledge that these lexical fea- C— | old med new
tures help to “extract” from annotated data. Gl
. . . . old | 3656 257 18
Comparing Baseline+Lexical and Baseline+Both, med| 167 2706 163
we see that the addition of structured features en- new | 17 850 455

ables a further boost to performance: F-measure in-

creases by 2.8-3.9 for the three classes. These fepje 4: Confusion matrix for the Baseline+Both
sults substantiate our hypothesis that employing @assifier. C=Classifier tag; G=Gold tag
richer representation of syntactic context is benefi-

cial to information-status classification.

Comparing Baseline and Baseline+Both, we seeest-performing information-status classifier, Base-
that F-measure improves considerably by 5-6.9 fdine+Both. The rows and the columns correspond
the three classes. Overall, these results provide sug-the gold tags and the classifier tags, respectively.
gestive evidence that both types of features are efs we can see, these numbers seem to suggest the
fective at improving an information-status classifiefin-between” nature of mediated entities: when an
that employs Nissim'’s features. old or newentity is misclassified, it is typically mis-

For further comparison, we show the classificaclassified asned(rows 1 and 3); however, when a
tion accuracies of the four systems in the last rofnedentity is misclassified, it is equally likely to be
of Table 3. As we can see, adding lexical featureglisclassified asld andnew(row 2).
to the baseline features improves accuracy by 2.2%, These results are perhaps not surprisingly, since
and adding structured features further improves a#tuitively med entities bear some resemblance to
curacy by 5.9%. Our two types of features, whefoth old and new entities. For instance, the simi-
used in combination with Nissim’s features, improvdarity betweermedandold stems from the fact that
the baseline substantially by an accuracy of 8.1%. different instances of the same entity (eghing

Note that while our results and Original Nissim'sCan receive one of these two labels, with the deci-
are not directly comparable, the two systems ardlon dependent on whether the entity was previously
consistent in terms of the relative performance fofientioned in the dialogue. On the other hanid

the three classes: best fald and worst fonew The andneware similar in that it may sometimes be dif-
poor performance fonewis largely a consequence ficult even for a human to determine whether certain

of its low recall, which can in turn be attributed to its€Ntiti€S should be labeled asedor new since the
lower representation in the dataset. Since masy decision depends on whether she believes these en-

instances are misclassified, a natural question is: afieS aregenerally knowror not.
these instances misclassifiedad or med® Simi-
lar questions can be raised fold andmed despite

their substantially higher recall values thaew Anaphoricity determination refers to the task of de-

To answer these questions, we need to betteézrmining whether an NP is anaphoric or not, where

understand the kind of errors made by our apan NP is considered anaphoric if it is part of a (non-

proach. Consequently, we show in Table 4 the corsingleton) coreference chain but is not the head of

fusion matrix generated from the test set for outhe chain (Ng and Cardie, 2002). In other words, an
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Anaphoricity Baseline+Ana | Baseline+Lexical+Ang Baseline+Both+Ang

R P F R P F R P F R P F
old 914 86.6 88.9 91.3 87.3 89.3 90.8 91.7 91.3 | 92.8 949 939
med 843 631 722 849 64.1 731 923 64.7 76.1 | 88.7 711 789
new 30.8 66.4 42.1 311 66.9 425 32.9 68.7 445 | 34.1 717 46.2
| Accuracy | 74.7 | 75.1 | 77.6 | 82.0 |

Table 5: Impact of knowledge of anaphoricity on the inforimtstatus classifiers.

NP is anaphoric if and only if it has an antecedent. presence of the structured features, the anaphoricity

Given this definition, anaphoricity determinationfeatures do not contribute positively to overall per-
bears resemblance to information-status classificiermance. Hence, in the coreference experiments in
tion. For instance, aold entity is anaphoric, since it the next section, we will not employ anaphoricity
has been introduced earlier in the conversation arigiatures for information-status classification.
therefore have an antecedent. Similarlynew or
medentity is non-anaphoric, since the entity has no?
been previously introduced in the conversation angdince the significance of information-status classi-
therefore cannot have an antecedent. fication stems in part from the potential benefits it

There has been a lot of recent work on anaphoridsrings to higher-level NLP applications, we deter-
ity determination (e.g., Bean and Riloff (1999),mine whether our information-status classification
Uryupina (2003), Ng (2004), Denis and Baldridgesystems can offer benefits to learning-based coref-
(2007), Versley et al. (2008), Ng (2009), Zhou anderence resolution. Since the 147 information-status
Kong (2009)). Given the similarity between this taskannotated dialogues are also coreference annotated,
and information-status classification, a natural quesve use them in our coreference evaluation. To our
tion is: will the anaphoricity features previously de-knowledge, our work represents the first attempt to
veloped by coreference researchers be helpful foeport coreference results on this dataset.
information-status classification? To answer this
question, we (1) assemble a feature set composéd: Coreference Models
of the 26 anaphoricity features previously used byVhile the so-called mention-pair coreference model
Rahman and Ng (200§)and then (2) repeat the ex- has dominated coreference research for more than
periments in Table 3, except that we augment tha decade since its appearance in the mid-1990s, a
feature set used in each of these experiments withimber of new coreference models have been pro-
the anaphoricity features we assembled in step (1)posed in recent years. To investigate whether these

Results with the anaphoricity features are showRéwer, presumably more sophisticated, coreference
in Table 5. Under Anaphoricity, we have the resultgnodels can better exploit the automatically acquired
obtained using only the 29 anaphoricity features. Aiformation-status information, we will evaluate the
we can see, these results are comparable to thdégefulness of information-status information when
obtained using the Baseline features. Comparinigsed in combination with two different coreference
each of Baseline+Ana and Baseline+Lexical+Ananodels, the aforementioned mention-pair model and
with the corresponding experiments in Table 3, wéhe recently-developed cluster-ranking model.
see that the addition of anaphoricity features yields 1 1 Mention-Pair Model

a mild performance improvement, which is consis- L. mention-pair (MP) model, proposed by Aone
tent over all three classes. However, comparing the

last column of the two tables, we can see that in thand Bennett (1995) and McCarthy and Lehnert

Application to Coreference Resolution

&995), is a classifier that determines whether two

*These 26 features are derived from those employed by ng\;lps are co-referring or not. Each Instan(@BPj_,
and Cardie’s (2002) anaphoricity determination systeme Sé\R:) corresponds to two NPsyp; and NR;, and is
Footnote 2 of Rahman and Ng (2009) for details. represented by 39 features. Table 1 of Rahman and
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Ng (2009) contains a detailed description of thesactive NP so that the highest-ranked cluster is the
features. Linguistically, they can be divided intoone to which the active NP should be linked. Em-
four categories: string-matching, grammatical, seploying a ranker addresses the first weakness, as
mantic, and positional. They can also be categorizeal ranker allows all candidates to be compasid
based on whether they are relational or not. Specifinultaneously Considering preceding clusters rather
cally, relational features capture the relationship behan antecedents as candidates addresses the second
tweenNp; andNR,, whereas non-relational featuresweakness, asluster-levefeatures (i.e., features that
capture the linguistic property of one of these NPs.are defined over any subset of NPs in a preceding
We follow Soon et al's (2001) method for cre-cluster) can be employed.
ating training instances. Specifically, we create (1) Since the CR model ranks preceding clusters, a
a positive instance for each anaphoric NR. and training instancei(c;, NR,) represents a preceding
its closest antecedemtp;; and (2) a negative in- clusterc; and an anaphoric NRR,. Each instance
stance fornm, paired with each of the intervening consists of features that are computed based solely
NPs, NP1, NP2, ..., NR._;. The classification on NB, as well as cluster-level features, which de-
associated with a training instance is either positivecribe the relationship between and NR,. Mo-
or negative, depending on whether the two NPs ate/ated in part by Culotta et al. (2007), we create
coreferent. To train the MP model, we use the SVMIluster-level features from threlational features in
learner from SVM9"* (Joachims, 1999). our feature set using four predicategoNE, MOST-
After training, the classifier is used to identify anFALSE, MOST-TRUE, andALL . Specifically, for each
antecedent for an NP in a test text. Specifically;elational featurex, we first conver into an equiv-
each NPNR,, is compared in turn to each preced-alent set of binary-valued features if it is multi-
ing NP,NP;, from right to left, and selectsp; as its  valued. Then, for each resulting binary-valued fea-
antecedent if the pair is classified as coreferent. THare x,, we create four binary-valued cluster-level
process terminates as soon as an antecedent is fodedtures: (1INONE-X; is true whenx, is false be-
for NB; or the beginning of the text is reached. tweenNR, and each NP ir;; (2) MOST-FALSE-X,,
Despite its popularity, the MP model has twas true wherx, is true betweemnn, and less than half
major weaknesses. First, since each candidate gbut at least one) of the NPs i; (3) MOST-TRUE-
tecedent for an NP to be resolved (hencefortm@n X, is true whenx,, is true betweemnp, and at least
tive NP is considered independently of the othershalf (but not all) of the NPs ir;; and (4)ALL -X; is
this model only determines how good a candidat&ue whenx, is true betweemn, and each NP ia;.
antecedent is relative to the active NP, but not how We train a cluster ranker to jointly learn
good a candidate antecedent is relative to other caanaphoricity determination and coreference reso-
didates. So, it fails to answer the critical question ofution using SVM¥"*’s ranker-learning algorithm.
which candidate antecedent is most probable. Se8pecifically, for each NPNR,, we create a train-
ond, it has limitations in its expressiveness: the ining instance betweenn, andeachpreceding clus-
formation extracted from the two NPs alone may nater c; using the features described above. Since we
be sufficient for making a coreference decision.  are learning a joint model, we need to provide the
. ranker with the option to start a new cluster by creat-
7.12  Cluster-Ranking Model ing an additional training instance that contains fea-
The cluster-ranking (CR) model, proposed byyres that solely describesn.. The rank value of
Rahman and Ng (2009), addresses the two weak-training instancé(c;, NB,) created fomn, is the
nesses of the MP model by combining the strengthgk of ¢; among the competing clusters. Nf, is
of the entity-mentiormodel (e.g., Luo et al. (2004), anaphoric, its rank is sH if NR, belongs taz;, and
Yang et al. (2008)) and theention-rankingmodel | o\ otherwise. IfNR, is non-anaphoric, its rank is
(e.g., Denis and Baldridge (2008)). Specificallyy o\ unless it is the additional training instance de-
the CR model ranks the preceding clusters for ag:riped above, which has rankdH.
* “For this and subsequent uses of the SVM learner in our After training, the cluster ranker processes the
experiments, we set all parameters to their default values.  NPS in a test text in a left-to-right manner. For each
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active NPNR,, we create test instances for it by pairthe weights of the edges in the alignment divided by
ing it with each of its preceding clusters. To allowthe total number of NPs in the response and the key,
for the possibility thatvp, is non-anaphoric, we cre- respectively.

ate an additional test instance that contains features ) )

that solely describe the active NP (similar to whaf -2-2 Results and Discussion

we did in the training step above). All these test in- As our baseline, we employ our coreference mod-
stances are then presented to the ranker. If the adéis to generate NP partitions on the test documents
tional test instance is assigned the highest rank valwgthoutusing any knowledge of information status.
by the ranker, thenn, is classified as non-anaphoricResults, reported in terms of recall (R), precision
and will not be resolved. Otherwisep, is linked to  (P), and F-measure (F) using Bnd ¢3-CEAF, are

the cluster that has the highest rank. shown in row 1 of Table 6. As we can see, the
baseline achieves®8F-measures of 69.2 (MP) and
7.2 Coreference Experiments 74.5 (CR) and CEAF F-measures of 61.6 (MP) and

68.5 (CR). These results suggest that the CR model
is stronger than the MP model, corroborating previ-

The training/test split we use in the coreferenceus empirical findings (Rahman and Ng, 2009).
experiments is the same as that in the information- Next, we examine the impact of learned knowl-
status experiments. Specifically, we use the trairedge of information status on the performance of a
ing set to train both the information-status classifiecoreference model. Since knowledge of information
and our coreference models, apply the informatiorstatus enables a coreference model to focus on re-
status classifier to each discourse entity in the tesblving only theold entities, we hypothesize that the
set, and have the coreference models resolve afisulting model will have a higher precision than one
and only those NPs that are labeledadd by the that does not employ such knowledge. An equally
information-status classifier. Our decision to allowmportant question is: will the F-measure of the re-
the coreference models to resolve only diéenti-  sulting model improve? Since we are employing
ties is motivated by the fact thatedandnewentities  knowledge of information status ingapeline coref-
havenotbeen previously introduced in the conversaerence architecture where information-status classi-
tion and therefore do not have antecedents. The NRsation is performed prior to coreference resolution,
used by the coreference models are the same as thesrs made by the (upstream) information-status
accessible to the information-status classifier. classifier may propagate to the (downstream) coref-

We employ two scoring programs:BBagga and erence system. Given this observation, we hypoth-
Baldwin, 1998) andy3-CEAF (Luo, 2005), to score esize that the answer to the aforementioned ques-
the output of a coreference model. Given a goldton depends in part on the accuracy of information-
standard (i.e., key) partitionk P, and a system- status classification. In particular, the higher the
generated (i.e., response) partitioRP, B3> com- accuracy of information-status classification is, the
putes the recall and precision of each NP and awnore likely the F-measure of the downstream coref-
erages these values at the end. Specifically, for eaehrence model will improve. To test this hypothe-
NP, Np;, B3 first computes the number of NPs thatsis, we conduct experiments where we employ the
appear in botl P; andR P}, the clusters containing knowledge provided by the three information-status
NP in K P and RP, respectively, and then divides classifiers which, as discussed earlier, perform at
this number by| K P;| and |RP;| to obtain the re- varying levels of accuracy — the first one using only
call and precision olp;, respectively. On the other Nissim’s features, the second one using both lexical
hand, CEAF finds the best one-to-one alignmerand Nissim’s features, and the last one using Nis-
between the key clusters and the response clusteiisn’s features in combination with lexical and parse-
using the Kuhn-Munkres algorithm (Kuhn, 1955),based features — for our coreference models.

where the weight of an edge connecting two cluste 5Since gold-standard NPs are used in our experiments,

is equal to th_e _number of NPs that appear in botBeaF precision is always equal to CEAF recall. For brevity,
clusters. Precision and recall are equal to the sum @& only report F-measure scores for CEAF in the table.
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Mention-Pair Model Cluster-Ranking Model

B3 CEAF B3 CEAF
System R P F F R P F F
No knowledge of information status 78.6 61.8 69.2 61.6 || 78.2 71.1 74.5 68.5
Nissim features only 73.4 673 70.2 62.1 || 73.6 77.4 754 69.7
Nissim+Lexical features 71.0 695 70.2 619 | 73.7 77.3 754 69.9
Nissim+Lexical+Parse features 741 668 703 623 || 77.3 74.0 75.6 71.1
Perfect information status 76.7 68.1 721 66.4 || 77.1 795 78.3 74.2

Table 6: B and CEAF coreference results.

Results of the coreference models employingf the Nissim system was not adversely affected.
knowledge provided by the three information-status Finally, we investigate whether our coreference
classifiers are shown in rows 2—4 of Table 6. As exsystem could be improved if it had access to per-
pected, B precision increases in comparison to thdect knowledge of information status (taken directly
baseline, regardless of the coreference model and tlhiem the gold-standard annotations). This experi-
scoring program. In addition, employing knowledgement will allow us to determine whether the useful-
of information status always improves coreferencaess of knowledge of information status for coref-
performance: F-measure scores increase by 1.@rence resolution is limited by the accuracy in com-
1.1% (B*) and 0.3-0.7% (CEAF) for the MP model, puting such knowledge. Results are shown in the
and by 0.9-1.1% (B and 1.2-2.6% (CEAF) for last row of Table 6. As we can see, using per-
the CR model. These results suggest that the thréect information-status knowledge yields a corefer-
information-status classifiers have achieved the levehce system that improves those that employs auto-
of accuracy needed for the coreference models toatically acquired information-status knowledge by
improve. On the other hand, it is somewhat surprist.8—4.1% (MP) and 2.7-3.1% (CR) in F-measure.
ing that the three information-status classifiers havEhis indicates that the accuracy in computing such
yielded coreference systems that perform at esseknowledge does play a role in determining its use-
tially the same level of performance. fulness for coreference resolution.

To understand why better information-status clasg Conclusions
sification results do not necessarily yield better
coreference performance, we take a closer look &te examined the problem of automatically deter-
the results of the coreference resolver employingnining the information status of discourse entities in
Nissim’s features (henceforthisim) and the re- spoken dialogues. In particular, we augmented Nis-
solver employing our Nissim+Lexical+Parse feasim'’s feature set with two types of features: lexical
tures (henceforth BLL-FEATURE). Among theold features, which capture in a shallow manner world
entities that were correctly classified using our feaknowledge implicitly encoded in the annotated data;
tures and incorrectly classified by Nissim’s featuresand syntactic parse trees, which provide a richer rep-
we found that the precision of theUEL-FEATURE resentation of the syntactic context in which a dis-
system suffered (since in many cases the corefetourse entity appears than grammatical roles. Re-
ence models identified wrong antecedents for thesilts on 147 Switchboard dialogues demonstrated
old entities) whereas the INSIM system remained the effectiveness of these features: we obtained a
unaffected (since the entities were misclassified argignificant improvement of 8.1% in accuracy over
would not be resolved by the models). In additiona information-status classifier trained on Nissim’s
although manynedandnewentities were correctly feature set. In addition, we evaluated information-
classified using our features and incorrectly classstatus classification in the context of coreference
fied (asold) using Nissim’s features, we found thatresolution, and showed that automatically acquired
in many cases no antecedents were identified fénowledge of information status can be profitably
these misclassified entities and hence the precisiased to improve coreference systems.
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