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Abstract taken by SemEval-2010 Task 7, which focused on
_ _ . the ability to recognize (a) an argument’s selectional
Metonymic language is a pervasive phe- regiriction for predicates such asrive at cance]
nomenon. Metonymic type shifting, or ar- oo 2ng (b) the type of coercion that licensed
gumenttype coercionresults in a selectional . . .
restriction violation where the argument's se- a correct mterpretatlon. of the mgtonymy. Details of
mantic class differs from the class the predi-  the task are reported in (Pustejovsky et al., 2010).
cate expects. In this paper we present an un-  Approaches to metonymy based on this task are lim-
supervised method that learns the selectional ited, however, because (a) the task is focused only on
restriction of arguments and enables the de-  semantically non-ambiguous predicates and (b) the
tection of argument coercion. This method  gelectional restrictions of the arguments were cho-
also generates an enhanped prObab'l'SF'C r€S0- sen from a pre-defined set of six semantic classes
lution of logical metonymies. The experimen- . . .
(artifact, document, event, location, proposition, and

tal results indicate substantial improvements -
the detection of coercions and the ranking of ~ Sound). However, metonymy coercion systems ca-

metonymic interpretations. pable of providing the interpretations of questions
(Q1) and (Q2) clearly cannot operate with the sim-
1 Introduction plifications designed for this task.

Metonymic language is pervasive in today’s social Inspired by recent advances in modeling selec-
interactions. For example, it is typical to find questional preferences with latent-variable models (Rit-

tions that require metonymic resolution: ter et al., 2010;0 Seaghdha, 2010), we propose
(Q1) Did you enjoy War and Peace? an unsupervised model for learning selectional re-

(Q2) Does anyone have any advice on how to staﬁrictions. The model assumes that (1) arguments
a bowling team® have a single selected class exemplified by the se-
lectional restriction, and (2) the selected class can

In order to process such questions and capture tB% inferred from the data, in part by modeling how

intention of the per.son that. pgsed them, COEICIONS,ercive each predicate is. The model is capable of
are ”e‘?ded- ngstlc:n QD)is mterpr,(’ated as Wheth&ﬁerating with both ambiguous and disambiguated
you enjoyedreading War and Pegce ’ Wh”? _(QZ) predicates, producing superior results for predicates
IS m'Ferpreted as gsklng for _adV|ce @nganizing  ihat have been disambiguated. The selectional re-
formmg or registeringa bowling team. The qual_—_ strictions and coercions detected by the model re-
ity of the answers therefore depends on the ab'“t}ﬂorted in this paper can be used to enhance the logi-
to (1) recognize when me_:tonym|c language is uSe‘i}al metonymy approach reported in Lapata and Las-
f';md (_2) to pr°d9ce coercions that c_aptl_Jre the USelcarides (2003). The experimental results show a sig-
intention. One important step in this direction was,it -t improvement in the ranking of interpreta-

Both questions taken from Yahoo Answers. tions.
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The rest of this paper is organized as followsselectional restrictions (Rumshisky et al., 2007) but
Section 2 discusses related work. Section 3 deone of these provide a sufficient framework for de-
tails unsupervised models that inform detection afermining if a specific argument violates its predi-
metonymies. Section 4 outlines a method for disantate’s selectional restriction.
biguating ambiguous predicates. Section 5 describgs . . .
the enhanced interpretation of logical metonymie Unsuper_wsed L earning of Sdlectional
when conventional constraints are known. Section 6 Restrictions
outlines our implementation and experimental demn predicate-argument structures, predicates impose
sign. Section 7 presents our experimental results gelectional restrictions in the form of semantic ex-
three broad tasks: (i) semantic class induction, (iipectations on their arguments. Whenever the seman-
coercion detection, and (jii) logical metonymy inter-tic class of the argument meets these constraints a
pretation. Section 8 summarizes the conclusions. selectionoccurs. For example, the predicateear’
imposes the semantics related to sound on the ar-
gument Yoice€. Because the semantic class for
Lapata and Lascarides (2003) propose a probabilisyoice’ conforms to these constraints, we call its se-
tic ranking model for logical metonymies. They esmantic class theelected classHowever, when the
timate these probabilities using co-occurrence fresemantic class of the argument violates these con-
quencies of predicate-argument pairs in a corpustraints, we follow Pustejovsky et al. (2010) and re-
Shutova (2009) extends this approach to providgyr to this as acoercion In this case, we call the
sense-disambiguated interpretations from WordNefgument's semantic class tbeerced classFor ex-
(Fellbaum, 1998) by using the alternative interpreample, ‘hear speakeris a coercion where the ar-

tations to disambiguate polysemous words. Shutoygument class, person, is implicitly coerced into the
and Teufel (2009) extend this approach further byoice of the speaker, a sound.

clustering these sense-disambiguated interpretations _

into distinct groups of meaning (e.dread browse 31 A BaselineModel

look througf} and {Write’ produce work On} for We consider the LDA-based selectional prefer-

“enjoy booK). Not only do these approaches as€nce model reported i©® Séaghdha (2010) as a

sume |Ogica| metonymies have a|ready been iderlilase“ne for modeling selectional restrictions. For-

tified, but they are susceptible to providing interpremally, we define our LDA baseline model as follows.

tations that are themselves logical metonymies (e.d-€t V' be the predicate vocabulary size, lebe the

finish bool. In this paper, we propose an enhanceargument vocabulary size, and lEtbe the number

ment to resolving logical metonymies by ruling outof argument classes. Lef be thei'" (non-unique)

event-invoking predicates in order to provide mor@rgument realized by predicateLetc; be the class

semantically valid interpretations. for af. Let#” be the class distribution for predicate
Recently, the resolution of several linguistic prob? and ¢* be the argument distribution for clags

lems has benefited from Latent Dirichlet Alloca-The graphical model for this LDA is shown in Fig-

tion (LDA) (Blei et al., 2003) modelsO Séaghdha Ure 1(a). The generative process for LDA is:

(2010) examines several selectional preference mod-

els based on LDA in predicting human judgements For each argument clags= 1..K:

on predicate-argument plausibility. Both LDA and 1. Choose)" ~ Dirichlet(5)

an extension, ROOTH-LDA (based on Rooth et al. For each unique predicate=1..V:

(1999)), perform well at predicting plausibility on 2. Choose&” ~ Dirichlet(c)

unseen predicate-argument pairs. Inspired by these For every argument= 1..n":

results, we propose to extend selectional preference 3. Choose} ~ Multinomial(®")

models in order to learn selectional restrictions. 4. Choose:! ~ Multinomial(¢®i )
Alternatively, unsupervised algorithms exist that

both induce semantic classes (Rooth et al., 1998pllowing Griffiths and Steyvers (2004), we col-

Lin and Pantel, 2001) and cluster predicates by thelapsef and ¢ and estimate the model using Gibbs
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Figure 1: Graphical models for (a) LDA, and (b) coercion LOADA).

Sampling. This yields the update equation: for each argument by ¢}, wherez} chooses be-
tween the selected and coerced class. The variable

fok +a far + 5 o o e . . !

(1) =z} is similar to switching variables in other graph-
fot Ko fi+ AB ical models such as Chemudugunta et al. (2007)
Wheref,;. is the frequency of argumentbeing as- and Reisinger and Mooney (2010), where switch-
signed clasg; fi is the frequency of clask being ing variables are used to choose between a back-
assigned to any argumenf;,. is the frequency of ground distribution and a document-specific distri-
predicatev having an argument of clagsand f,, is  bution. In this case, the switching variable chooses
the total number of non-unique arguments for predsetween a specific class and a predicate-specific dis-
icatev. tribution. The graphical model for cLDA is shown
32 A Coercion Model in Figure 1(b). Note that cLDA is virtually equiva-
Jentto LDAwhenr” is 1 andy; is small because the

tional restriction modeling. Namely: (1) there isSelected class will be ignored. In this way, highly co-

one selected class per predicate, and (2) the pre&]r_cive predic_ates have less of an impact or_l the argu-
cate’s selected class can be chosen from the clas$BENt clustering because they are more reliant on the
of its arguments. To accomplish this, we must alsgultinomial 6. We use Gibbs sampling to perform

account for the coerciveness of each predicate. \{0del inference and collapsg ¢, andr, integrat-
assign a latent variable® for each predicate that ing them out using multinomial-Dirichlet conjugacy

controls how coerciver should be. The additional (the Beta distribution used hyis just a special case
hyper-parameters, and~; act as priors on®. The of the Dirichlet with only two parameters). _
generative process for this coercion LDA model, |N€ update formula for the selected classs:

p(ci = kla”;a, B) o

We now incorporate our assumptions for sele

which we denote cLDA, is: p(s¥ = kla’, c’,x"; «a, B)
For each argument clags= 1..K: ~ olv 1.
1. Chooses* ~ Dirichlet(3) o HP (afls” = k; B)
For each unique predicate= 1..V: !
2. Choose® ~ Uniform(1,K) ~ H Javk + 8 @)
3. Choos#" ~ Dirichlet(c)? fe+ Ap

4. Choose ~ Betafy, 71) iesv
For every argument= 1..n":
5. Choose;} ~ Multinomial(6*)
6. Chooser} ~ Bernoulli(r)
7. If ¥ = 1, Choose:? ~ Multinomial(¢®)
Else Choose! ~ Multinomial(¢*")

Wheren" is the number of argument observations
for predicatev; SV is the set of arguments ofthat
are selections; anfl,». is the frequency of word;
being assigned to clagsfor any predicate. We then
samplec! andz; jointly:
The model variable® represents the selected class
for predicatev. The coerced class is represented plei = ]:’xzp = q|8:’C$’xf’a:5i"B;7)v .

2With the exception that the probability of drawing the se- o pley=ks a)plei=g; y)plails AR 6)
lected class” is zero. This can be seen as drawing the multi- Jor +a Jog +7q faz + B 3)

nomial#® from a Dirichlet distribution with/-1 components. Jot+ Ka foo+7 + for + 0 fo + AB
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Wheref,,, fuo, andf,; is the frequency of values Co(v,a) = P(a|s’)
that equalg, 0, and 1, respectively, for predicate

fa- is the frequency of word being in class and =% )
. is the frequency all words being in classwhere C3(v,a) = Pz, = 0[v,a)
z is defined as being equal towhenz} = 1, or s* B Diery LY 5

Note that Equation (2) results in a sampling of Wheres" is the selected class for predicatel;
the selected class far proportional to the number is the set of predicate-argument instances for pred-
of arguments in each class for fulfilling our sec- icatev and argument; andz; is O for a selection
ond assumption. Also note from Equation (3), theénd 1 for a coercion. Of the three metrics, is the
second term corresponds to the coerciveness of theost direct measure of a coercion as it represents
predicate. When the predicate is very coercive, thiéne average decision the model learned on the same
marginal probability associated wittf = 0 willbe  predicate-argument pair. Howevef requires a
very low. If all predicates become entirely coercivelarge sample of instances for a particular predicate
mostz values will become 1 and the cLDA will be- and argument, and so may be quite sparse. In prac-
come almost equivalent to an LDA model. tice, these different metrics have their own strengths
and weaknesses and the best performing method of-

) ) ten depends on the final task.
3.3 Coercion Detection

After the latent parameters have been estimateé, Predicate Sense Induction

we still require a method to determine if a givenour assumption of a single selected class per predi-
predicate-argument pair is a coercion or not. Weate ignores predicate polysemy. However, the same
assign a score if0, 1] instead of a binary value. |exical item may have multiple meanings, each with
Higher scores (near 1) indicate high likelihood ofy separate selected class. We therefore propose a
selection, while lower scores (near 0) indicate coeinethod of partitioning a predicate’s arguments by
cion. The LDA model must rely on a scoring methodhe induced senses of the predicate. This allows sep-
using the predicate-class and argument-class Mi¥rate induced predicates to each select a separate ar-
tures: gument class. Consider the vdite, which has at
least two distinct common senses: (1) to shoot or
P(k[v)P(alk) propel an object (e.g., to fire a gun), and (2) to lay

K
Cl(’U>a) Z

f( someone off (e.g., to fire an employee). The first
k

& sense selects a weapon (e.g., gun, bullet, rocket),
0r¢ (4) i
k¥a while the second sense selects a person (e.g., em-
Ployee, coach, apprentice).

Specifically, we employ tiered clustering
(Reisinger and Mooney, 2010) using the words
d’n the predicate’s context. Tiered clustering is a

; . . discrete clustering method, as opposed to methods
for cLDA by including the proportion of the :selectedSuch as (Brody and Lapata, 2009) that assign a

classs? in 6. Note that sincé and¢ are integrated .~ . .
. . distribution of word senses to each word instance.
out for both LDA and cLDA, we instead use their_. .
) . . Tiered clustering has several advantages over
frequencies smoothed with and 3, respectively, . . . .
S . . o : other discrete clustering approaches. First, tiered
which is their maximum likelihood estimate. : C
clustering learns a background word distribution in
The cLDA model contains two useful parametersaddition to the clusters. This reduces the impact that
that can identify selections and coercions: the sevords common to most senses have on the cluster-
lected classs and the coercion indicatar. This ing process and allow clusters to form around only
yields two more coercion scoring metrics: the most salient words. Second, tiered clustering
983
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Cluster 1| Cluster 2| Cluster 3 Cluster 4 i i imi i i i
(8300 | (1665 | (18.749) | (11839) In this section, we limit our discussion of logical

shots ball hire gun metonymy to the verb-object case, its correspond-

gun puck letter | imagination ing baseline for ranking interpretations, and our pro-
Israeli hired Yeltsin grill d h H imil b l
missiles | owner | minister Iaser posed en ancements. owever, similar baselines
rockets | shots | workforce cells exist for other types of logical metonymy, such as
officers | coaches | executives)  engine adjective-noun and noun-noun. Since our enhance-
soldiers net employee brain o .
rounds | circle | managers ! ment does not depend on any syntactic information
bullets | Johnson | hired engines beyond the predicate-argument instances needed for
weapons | Williams union fire

Section 3.2, it could easily be applied to those as
Table 1: Context word clusters resulting from tiered cluswvell.
tering for the_verbfire (includes the number of unique Lapata and Lascarides (2003) propose a proba-
words belonging to each cluster). bilistic ranking model where the probability of an
interpretatione for a verb-object pair, o) is pro-
uses a Chinese Restaurant Process (CRP) priorfertional to the probability of all three in a verb-
control both the formation of new clusters (sensedhterpretation-object pattefh. For example, the
and the bias toward larger clusters (more commaprobability thatread is the correct interpretation of
senses). This conforms with our intuition of how"enjoy bookis proportional to the likelihood of see-
word senses are distributed: a few common sens#¥ “enjoy reading bodkexpressed as a syntactic
with a gradual transition to a long tail of rare senseglependency in a sufficiently large corpus. Due to
When deciding which cluster to use for a giverflata sparsity, they approximate this likelihood of
predicate-argument pair, we use the cluster mo§eeing the object given the verb and interpretation
associated with the argument. to simply the likelihood of seeing the object given
We use a 10-token window around the predicatthe interpretation. We denote this logical metonymy
as features. The result of predicate induction on th@nking method a& My 1, formally defined as:
verbfire is shown in Table 4. The first three clusters

can be interpreted to be about (1) firing weapons, (2) LML v,0) = Pe(v;e,0)

sport-related shots (e.g.fired the puck), and (3) = P(e)Pe(v|e)Pe(ole, v)
lay-offs. One must be careful in choosing the param- ~ P.(e)P.(v|e)P:(ole)

eters for induction, however, as it is possible to par- fo(v, ) f(0, )

tition a unique word sense such that coercions and ~ W ()

selections are placed in a separate clusters. Section 6

discusses our parameter selection experiments. WhereF, and f. indicate probability and frequency,
respectively, derived from corpus counts. See Lap-
ata and Lascarides (2003) for a detailed explanation
Logical metonymies are a unique class of coercionsf how these frequencies are obtained.

due to the fact that their eventive interpretation can This model, which we consider our baseline, is
be derived from verbal predicates. For instance, fomy partially correct as the corpus will contain co-
the logical metonymy é€njoy book, we know that ercions that form invalid interpretations. Consider
readis a good candidate interpretation because (ihe phrases énjoy finishing a bodkand “enjoy
books are objects whose purpose is to be read agfcussing a bodk Both “finish book and “dis-

(2) reading is an event that may be enjoyed. Weuss bookare coercions (and logical metonymies)

therefore expect to see many instances of br#ad  themselves, and do not form a valid interpretatton.
booK and “enjoy reading (Lapata and Lascarides,
2003). Conversely, for coercions with non-eventive °*They use two patternsv“eing o” and “v to e o”, wheree
interpretations, such astrive at meeting the in- 'S tilgged é}zavefb-f ot - A e
terpretation lpcation of is more dependent on the , ,-O" évidence of the frequency of these phrases, at the time
. \ . . of this writing, “enjoy finishing a bodkand “enjoy finishing
predicate grrive) than the function of its argument e ook have a combined 728 Google hits, whilerfjoy dis-
(meeting. cussing a bodkand “enjoy discussing the bobkave a com-
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Thus, when discovering interpretations for logicabiscover the relative value @®. and P,

metonymies, we must be aware of the selectional re-

strictions of candidate interpretations. LMwr(e;v,0) = w1 Pe(v, e,0)+wa Py(e,0) (11)
We propose to incorporate the coercion probabil- _ _

ity learned by our cLDA model in order to rank only Where wi and w, are learmned weights. We dis-

those interpretations that are considered selection§USS how the parameters b/ and L My are
learned in the experimental setup below.

LM'(e;v,0) = P(v,¢,0,2 = 0) ®) & Experimental Setup

However, due to the approximations made to estide use the NYT subsection of the English Gigaword
mate P.(v, e, 0), this probability cannot be directly Fourth Edition (Parker et al., 2009) for a total of
calculated as not all the frequencies reflect verbt.8M newswire articles. The Stanford Dependency
object counts. Instead, we can combine the corpiarser (de Marneffe et al., 2006) is used to extract
probability P.(v, e, 0) with the probability that the verb-object relationsdpbj) that form the input to our
verb-object pair €, o) is a coercion in our model. model. To reduce noise, we keep only verbs listed in
We denote this probability’, (e, 0), and it may be VerbNet (Kipper et al., 1998) with at least 100 ar-
derived from the scoring metrics in Equations (4)gument instances, discardimgve and say, which
(5), or (6) above. We further propose three methodsre too semantically flexible to select from clear se-
for enhancing the M, ;, baseline using’;(e,0) to  mantic classes and so common they distort the class
approximate Equation 8. distributions. This results in 4,145 unique verbs with
A naive method for including information from 51M argument instances (388K unique arguments).
our cLDA model is to consider the corpus prob-Additionally we use the dependency parser to ex-
ability, P.(v,e,0) and the coercion probability, tract open clausal complements of verbs (e.like"
P, (e, 0), to be independent: to swinf) for use in logical metonymy interpreta-
tion. We believe this to be a more reliable alter-
LMinp(e;v,0) = Fe(v,e,0)Pr(e;0) (9 native to the phrase chunk extraction patterns used
In other words, the rank of an interpretation is dic)" Lapata and Lascarides (2003). We keep c_IausaI
. o . complementsXcomy) where the dependent is either
tated by the unweighted combination of its corpus o . .
> . . . a gerund or infinitive in order to estimat&(v|e) in
probability P, and its coercion probability?,. How- .
" . . Equation (7).
ever, these two quantities are not likely to be inde- : . .
For tiered clustering we use the same implemen-

pendent. Most instances wherés used with either . . -
. . . tation as Reisinger and Mooney (204 partition
v oro are in fact selectivé.We therefore experiment : :
the surface form of the verb into one or more in-

with two shallow learning methods for combiningduced forms. Instead of using a fixed number of

these two quantities. . ) . . :
. . _— iterations, the clustering was run for 100 iterations
The first method is a filtering approach where a . _ :
threshold is learned faP..: past the best recorded log-likelihood in order to find
; the best possible fit to the data. We tuned the hyper-
P.(v,e,0) if Py(e,0) >4 parameters by maximizing the log-likelihood on a
LMrp(e;v,0) = $ L =7 (10) : :
0 otherwise small held-out set of 20 predicate-argument pairs
_ (10 selections, 10 coercions). The resulting parti-
Where the threshpld is learned from a developmenttions were fairly conservative, yielding 12,332 in-
set. We expect this model could suffer from noiy  duced verbs or about 3 induced verb forms for every
values or to simply choose a threshold of zero due tyrface form, with 305 verbs not being partitioned at
the prominence of.. all.
Finally, we include a weighted linear model to We implemented both LDA and cLDA as de-

- scribed in Sections 3.1 and 3.2. For theand g3
bined 7,040 Google hits.

SFor comparison, énjoy reading a bodkand “enjoy read- bAvailable  at  http://github.com/joeraii/UTML-Latent-
ing the book have a combined 6.5 million Google hits Variable-Modeling-Toolkit
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hyper-parameters, we used the MALLET (McCali_induced predicates? N Y
. # classes 10 25 50 10 25 50
IUm, 2002) defaults of 1.0 and 0.1, reSpeCtlver, for NMI 382 | 448 | 389 | 435 | 391 | .383
both LDA and cLDA. We used the 20 predicate Rand -7;7 -;33 73; -762 -;23 -;80
, : F1 425 | 319 | .192 | 543 | .311| .205
argument pairs mentioned above to tune-ffgyper- | LPA \—gs(cy 553 513 | 444 | 525 | 476 | 341
parameters as well as the number of iterations. Both B5(E) | 453 | 351 | 223 | 521 | .324 | 234
MUC | .545 | .545 | 531 | .500 | 532 | 544
v and~; were set to 100. We o_bs_erveq that fo S T e o e
both LDA and cLDA, longer runs (in iterations) re- Rand | .736 | .719 | .716 | .788 | .734 | .711
sulted in improved model log-likelihood but infe-| ¢ pa F1 448 | 201 | .183 | 567 | .329 | .184
: . . . . B°(C) | 575 | 484 | 312 | 593 | 495 | .313
rior results in terms of detecting coercions. It is B5(E) | 473 321 205| 556 | .346 | 205
not uncommon in topic modeling for model likeli- MUC | 500] 521] 507 [ 595 [ 541 [ 571

hood to not be completely correlated with the score  Taple 2: Clustering scores for induced classes.
on the task for which the topic model was intended
(see Chang et al. (2009)). Both LDA and cLDA
were found to perform best at 50 iterations on thi§earch over the ranggt.0, 0.9, ..., 0.2, 0.1107?,
data, after which their class distributions were les&0~": - -, 107} for bothw; andws.
“smooth” and became_ rigidly asspcia_ted with just & Results and Discussion
few classes, thus having a negative impact on coer-
cion detection. While further iterations hurt coer-7.1 Semantic Class Induction
cion detection, only minor gains in model likelihood For the evaluation of the argument classes in-
are seen. We believe the small number of iteratiorduced by our method, we use a subset of the Word-
necessary for the model to converge is therefore Mdet lexicographer files, which correspond to coarse-
function of the data. In traditional topic modeling,grained semantic classes. We chose this form of
documents are generally of similar size (i.e., withirevaluation because, unlike a named entity corpus,
an order of magnitude). But in our data, many predao sentential context is required and is therefore
icates have 10,000 times more instances than othergore consistent with the information available to
We have not yet empirically explored the impact obur model. We use six of the larger, more seman-
using a more uniform number of arguments for eactically coherent WordNet classes: artifact, person,
predicate. This issue also makes it difficult to takglant, animal, location, and food. We consider each
multiple samples, which we experimented with unof these a cluster and compare them to clusters com-
successfully. posed of the top ten non-polysemous words (accord-
Our a priori intuition was that as the numbering to WordNet) in each of the classes generated
of classes was increased, LDA would improve andly both the baseline (LDA) and our model (cLDA).
cLDA would degrade due to its assumption of a sinWords not in both sets of clusters are removed. The
gle selected class. However, this did not always be#esult of this evaluation, compared with six cluster-
out in the results for every task described belowng metrics, is shown in Table 2. For descriptions of
As such, instead of choosing a specific number dfiMI, Rand, and cluster F-measure, see Manning et
classes for each model, we describe results for eagh (2008); for the B metrics (Cluster and Element),
model with K = 10, 25, and 50. see Bagga and Baldwin (1998); for the MUC met-
For logical metonymy, bottL My and LMy, ric, see Vilain et al. (1995). Each metric has differ-
require learned parametersM7; needs a learned ent strengths and biases in regards to the number and
threshold whileL My needs two learned weights. distribution of clusters, so all are provided to give a
For both, we split the data set into two partitionsgeneral picture of class induction performance.
learn the optimal threshold/weights on one patrtition, The best performing model on all metrics is cLDA
and use it as the parameters for the other partitiowith induced predicates using 10 classes. However,
Both methods are trained on the final scoring metri@s the number of classes is increased and the gran-
described in Section 7.3. For threshold learning, thiglarity of the induced classes becomes more fine-
involves finding the optimal cut-off to maximize thegrained, LDA (predictably) outperforms cLDA on
score. For weight learning, we use an exhaustiv@ost metrics. This is consistent with our intuition
986



induced predicates N Y is a direct result of the sampling for the predicate-

# classes 10 25 50 10 25 50 . .
DA o 7241 787 805 697 | 701 | 734 argument pair in question and can thus be expected
C1 80.6 | 812 | 80.9 | 76.2 | 784 | 77.5 | to perform poorly on rare predicate-argument pairs.

cLDA [ 754 | 759 | 789 | 73.5| 68.3 | 808 : LT
o 578708674709 572 7ar] Civen that many of the arguments in this data are

Table 3: Accuracy on SemEval-2010 Task 7 data. '@r€ Or unseen in the Gigaword data (e.garicel
Renault), Cs’s poor performance is understandable.

that a single-class assumption degrades as the numThe use of predicate sense induction based on
ber of classes increases. tiered clustering to overcome the single-class as-
For this evaluation, predicate induction also imSumption caused significant degradation in perfor-
proved LDA for smaller numbers of classes, but nofance on this task. Using automatically induced
to the degree that it improved cLDA. Without pred-Predicates instead of the surface form caused an av-
icate induction, LDA outperforms cLDA on all six €rage degradation of 2.6 points across the twelve
metrics for 25 and 50 classes. With predicate intests. A potential explanation for this is that
duction, LDA outperforms cLDA on only one metric the evaluated predicates have a single dominant
for 25 classes and five metrics for 50 classes. Thiggnse, meaning the single class assumption may be
the induced predicates do reduce the negative infalid for these predicates (the task-defined selected

pact caused by the single selected class assumpti‘éiﬁsses are: location farrive, event forcanceland
for semantic class induction. f|n|Sh, pl’OpOSition fordeny and Sound fOIheal).

) ) Therefore it would be interesting to evaluate it on
7.2 Coercion Detection a set of highly polysemous predicates with multi-
For the evaluation of coercion detection, we Usgje dominant senses. Furthermore, the introduction
the SemEval-2010 Task 7 data (Pustejovsky et apf predicate sense induction was designed to help
2010). This data uses the most common sense fef pA, and the performance degradation for these
each of five predicatesa(rive, cance| deny fin- pine tests was not as large as it was for LDA. For
ish, and heal) with a total of 2,070 sentences an-c| pA, C; had an average degradation of 3.5 points
notated with the argument’s source type (the ard¢sompared to LDA'SC, average degradation of 6.5
ment's semantic class) and target type (the predipints. cLDA's C, had an average degradation of
cate’s selected class for that argument). We ignor@my 2.5 points and’; was actually improved by 2.1
the actual argument classes and evaluate on the COf6ints. This suggests that there is value in assign-
cion type, which is a selection when the source anlq gifferent selected classes via sense induction, but
target type match, and a coercion otherwise. that the two-step approach is not beneficial for these
In order to evaluate unsupervised systems on thismmon predicates. This could be overcome by a
data, we use the corresponding training set (1,033int approach of inducing predicate classes while
examples) to learn a threshold for coercion dete&imultaneously detecting coercions, as the presence

tion. At test time, if the model output is below theof many coercions would be an indicator that more
threshold, a coercion is inferred. Otherwise itis conmduced predicates are necessary.

sidered a selection. Therefore, the better a model
can rank selections over coercions, the more accé-3 Logical Metonymy Interpretation
rate threshold it will learn. The results for this eval- For the evaluation of logical metonymy, we use
uation are shown in Table 3. The baseline for thipoth an existing data set and a newly created data
task (threshold = 0, or all selections) is 67.4. set. Shutova and Teufel (2009) annotated 10 verb-
The best overall model on this data is cLDA us-object logical metonymies from Lapata and Las-
ing theC; coercion scoring method (Equation (4)).carides (2003) with sense-disambiguated interpreta-
This method consistently outperforms the baselingons and organized the interpretations into clusters
LDA, especially for smaller numbers of classes, perepresenting different possible meanings. For evalu-
forming best withK' = 25. The second metri@;’;, ation purposes we ignore the sense annotations and
was not as reliable. The third metriC3, performed clusters and consider all lexical matchings of one
poorly on the task. As discussed in Section 83, of the annotated interpretations to be correct. The
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induced predicates? N Y
# classes 10 | 25 | 50 10 | 25 [ 50
LMLy 0.381 0.365

LDA C1 0.415| 0.406 | 0.383 | 0.386 | 0.412 | 0.395
LMinp C1 0.408 | 0.412| 0.412 | 0.407 | 0.468 | 0.439
cLDA Co 0.415| 0.447 | 0.419| 0.414 | 0.415| 0.434
Cs 0.416 | 0.453 | 0.455 | 0.395 | 0.416 | 0.402
LDA C1 0.599 | 0.568 | 0.588 | 0.479 | 0.520 | 0.551
LMry C1 0.571 | 0.644 | 0.751 | 0.497 | 0.620 | 0.708
cLDA Cy 0.544 ] 0.496 | 0.633 | 0.457 | 0.635 | 0.660
[F) 0.601 | 0.677 | 0.767 | 0.472 | 0.622 | 0.571
LDA Ch 0.383 | 0.381 | 0.379 | 0.365 | 0.356 | 0.361
LMy C1 0.380 | 0.387| 0.381| 0.386 | 0.377 | 0.321
cLDA Co 0.317 | 0.342 | 0.350 | 0.338 | 0.340 | 0.345
Cs 0.378 | 0.370 | 0.350 | 0.387 | 0.382 | 0.384

Table 4: Mean average precision (MAP) scores on the Shutydeufel (2009) data set. The bold items indicate the
best scores with/without induced predicates as well agirsin using a threshold-based interpretation method.

induced predicates? N Y
# classes 10 | 25 | 50 10 [ 25 [ 50
LM, 0.274 0.248
LDA Ci 0.291| 0.286 | 0.294 | 0.263 | 0.267 | 0.255
LMinp C1 0.296 | 0.298 | 0.285 | 0.280 | 0.274 | 0.288
cLDA Co 0.291] 0.287 | 0.288 | 0.283 | 0.271 | 0.285
C3 0.318 | 0.317 | 0.333 | 0.298 | 0.285 | 0.307
LDA C1 0.478 | 0.534 | 0.534 | 0.414 | 0.495 | 0.479
LMy Ci 0.449] 0504 | 0.541 | 0.391 | 0.495 | 0513
cLDA Co 0.505 | 0.478 | 0.456 | 0.398 | 0.429 [ 0.440
C3 0.449] 0.496 | 0577 | 0.382 | 0.439 | 0.446
LDA Ci 0.276 | 0.270 | 0.271 | 0.248 | 0.251 | 0.249
LMy C1 0.271] 0.272| 0.270 | 0.257 | 0.259 | 0.265
cLDA Co 0.274] 0.274| 0.266 | 0.250 | 0.259 | 0.261
C3 0.271] 0.273| 0.274 | 0.253 | 0.262 | 0.259

Table 5: Mean average precision (MAP) scores on 100 logietbnymies manually annotated with interpretations.
The bold items indicate the best scores with/without indyzeedicates as well as using/not using a threshold-based
interpretation method.

data contains an average of 11 interpretations peasing mean average precision (MAP):
metonymy and has a reported 70% recall. 0
In order to create a larger data set, we identified \ap _ 1 3 > _n—1 Preqn) x rel(n) (12)
100 verb-object logical metonymies, including those Q= interpgq)
used in Lapata and Lascarides (2003). Three anno-
tators were asked to provide up to five interpreta¥vhere@ is the number of metonymies evaluated;
tions for each metonymy (they were not providedV iS the number of interpretations ranked; prec(
with any verbs from which to choose, only the verbis the precision at rank; rel(n) = 1 if interpreta-
object pair). The annotators provided an average §Pn n is valid, O otherwise; and interpg(is the
4.6 interpretations per metonymy. Because our goAtimber of valid interpretations for the metonymy
was recall, inter-annotator agreement was necess¥Ye rank all 4,145 verbs as interpretations except for
ily low, and each logical metonymy had an averagéose removed by the threshold technique, as they
of 11.7 unique interpretations. All annotators agreefiave a score of zero. This can gie\/ry artifi-
on at least one interpretation for 40 metonymiesSially high MAP scores since it may remove some
while for 14 they had no interpretations in comnon. valid interpretations that are low-ranking. However,
Since logical metonymy interpretation is usua”ysmce a smaller, higher precision list may be useful

evaluated as a ranking task, we score our methof Many applications we still consider MAP a valid
metric and indicate both the highest scoring method

7 Data available at and the highest scoring non-threshold method. The
http://www.hit.utdallas.edu/kirk/data/lmet.zip results on the Shutova and Teufel (2009) data are
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shown in Table 4. The results on our own data are/anf). However, the verbs used in our data set had a
shown in Table 5. greater number of WordNet senses attested in a cor-

The scores reported in the Shutova and Teuf@us than the SemEval data (an average of 4.4 senses
(2009) data are noticeably higher than the data wier our data versus 3.0 senses for the SemEval data).
annotated. Since the metonymies in our data areTdis suggests the potential value of sense induction
super-set of those in their data, and since for thoder highly polysemous predicates and further moti-
metonymies our annotators provided approximatelyates the integration of sense induction within a se-
the same number of interpretations (110 versus 120&ctional restriction model.
this likely indicates the remaining metonymies i
our data are more difficult.

In all cases the best reported scores use cLDAVe have presented a novel topic model that ex-
Unlike coercion detection on the SemEval d&tg, tends an unsupervised selectional preference model
performs very well, achieving the highest score¢LDA) to an unsupervised selectional restriction
when no predicate sense induction is used. Also umodel (cLDA) using two assumptions. For the first
like coercion detection, LDA scores do not increas@ssumption, that each predicate has a single selected
as the number of classes increase. We suspect bethss, we proposed a predicate induction method to
these differences have to do with the fact that the asvercome predicate polysemy. This improved re-
guments in this data are far more common. Sincsults for semantic class induction but proved harmful
LDA is a selectional preference model and its cofor detecting coercions on common predicates with
ercion scores correspond roughly to the plausibility single, dominant sense. For the second assump-
of seeing a predicate-argument pair, it is less able tibn, that the selected class can be inferred from the
distinguish coercions in common arguments. data, we proposed a sampling method based on the

Of the logical metonymy ranking methods,classes of the predicate’s arguments. Superior per-
LMy consistently produces the highest MAPformance on coercion detection shows the merit of
scores. However, as stated before, by using a cut-affis assumption.
and removing low-ranking valid interpretations, the Additionally, we proposed methods for improving
MAP score is increased, which might not be applicaan existing task, logical metonymy interpretation,
ble to some applications. The best non-thresholdagsing the learned parameters of our model, showing
ranking method i€, My p, which naively combines positive results.
the LMy, score with the coercion probability. In 1 is clear that our model may be improved by
almost every case this beats dut/yyr. Upon in- more accurate predicate sense induction. To this
spection, we observed that the range of scale for thgyq we plan to develop a model that simultane-
LM, scores are very inconsistent. This can makgysly induces predicates and learns coercions, using

it difficult to learn a linear model using these scoregnowledge of a predicate’s coerciveness to inform
as features, and as a result the learned weights Wef induction mechanism.

forced to ignore the coercion score and rely entirely
on LM;. We attempted other scaling methodsAcknowledgements
such as a rank-based method, but these had poor rewe would like to thank Diarmuid® Séaghdha,
sults as well, so we leave the problem of the supeBryan Rink, and Anna Rumshisky for several help-
vised learning these weights to future work. ful conversations during the course of this work.

Using induced senses did not result in the drasde thank Mirella Lapata and Ekaterina Shutova for
tic and consistent degradation in performance seenaking the data from their experiments available
on the SemEval data, and the highest non-threshotd well as the organizers of SemEval-2010 Task 7
result for the Shutova and Teufel (2009) data useir the associated data set. Additionally, we thank
predicate induction. Both metonymy data sets werBrikanth Gullapalli, Aileen McDermott, and Bryan
limited to the verbs found in Lapata and LascarideRink for annotating the data set used in our exper-
(2003), which are still quite commorattempt be- iment. Finally, we thank the anonymous reviewers
gin, enjoy, expect finish, prefer, start, survive try, for their suggestions on improving this work.
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