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Abstract

This paper investigates improving supervised
word segmentation accuracy with unlabeled
data. Both large-scale in-domain data and
small-scale document text are considered. We
present a unified solution to include features
derived from unlabeled data to a discrimina-
tive learning model. For the large-scale data,
we derive string statistics from Gigaword to
assist a character-based segmenter. In addi-
tion, we introduce the idea about transductive,
document-level segmentation, which is de-
signed to improve the system recall for out-of-
vocabulary (OOV) words which appear more
than once inside a document. Novel features'
result in relative error reductions of 13.8% and
15.4% in terms of F-score and the recall of
OOV words respectively.

1 Introduction

Chinese sentences are written in continuous se-
quence of characters without explicit delimiters such
as space characters. To find the basic language units,
i.e. words, segmentation is a necessary initial step
for Chinese language processing. Previous research
shows that word segmentation models trained on la-
beled data are reasonably accurate. In this paper,
we investigate improving supervised word segmen-
tation with unlabeled data.

We distinguish three types of unlabeled data,
namely large-scale in-domain data, out-of-domain
data and small-scale document text. Both large-scale

You can download our derived features at
http://www.coli.uni-saarland.de/~wsun/
semi-cws—feats-emnlpll.tgz.
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in-domain and out-of-domain data is popular for en-
hancing NLP tasks. Learning from these two types
of unlabeled data normally involves semi-supervised
learning. The difference between them is that out-
of-domain data is usually used for domain adapta-
tion. For a number of NLP tasks, there are relatively
large amounts of labeled training data. In this sit-
uation, supervised learning can provide competitive
results, and it is difficult to improve them any further
by using extra unlabeled data. Chinese word seg-
mentation is one of this kind of tasks, since several
large-scale manually annotated corpora are publicly
available. In this work, we first exploit unlabeled in-
domain data to improve strong supervised models.
We leave domain adaptation for our future work.

We introduce the third type of unlabeled data with
a transductive learning, document-level view. Many
applications of word segmentation involve process-
ing a whole document, such as information retrieval.
In this situation, the text of the current document
can provide additional useful information to seg-
ment a sentence. Take the word “Z £ #2/elastane”
for example”. As a translated terminology word, it
lacks compositionality. Moreover, this word appears
rarely in general texts. As a result, if it does not ap-
pear in the training data, it is very hard for statis-
tical models to recognize this word. Nevertheless,
when we deal with an article discussing an elastane
company, this word may appear more than once in
this article, and the document information can help
recognize this word. This idea is closely related to
transductive learning in the sense that the segmen-
tation model knows something about the problem it

This example is from an article indexed as chtb_0041 in the
Penn Chinese Treebank corpus.
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is going to resolve. In this work, we are also con-
cerned with enhancing word segmentation with the
document information.

We present a unified “feature engineering” ap-
proach for learning segmentation models from both
labeled and unlabeled data. Our method is a simple
two-stage process. First, we use unannotated corpus
to extract string and document information, and then
we use these information to construct new statistics-
based and document-based feature mapping for a
discriminative word segmenter. We are relying on
the ability of discriminative learning method to iden-
tify and explore informative features, which play
central role to boost the segmentation performance.
This simple solution has been shown effective for
named entity recognition (Miller et al., 2004) and
dependency parsing (Koo et al., 2008). In their im-
plementations, word clusters derived from unlabeled
data are imported as features to discriminative learn-
ing approaches.

To demonstrate the effectiveness of our approach,
we conduct experiments on the Penn Chinese Tree-
bank (CTB) data. CTB is a collection of docu-
ments which are separately annotated. This anno-
tation style allows us to evaluate our transductive
segmentation method. Our experiments show that
both statistics-based and document-based features
are effective in the word segmentation application.
In general, the use of unlabeled data can be moti-
vated by two concerns: First, given a fixed amount
of labeled data, we might wish to leverage unla-
beled data to improve the performance of a super-
vised model. Second, given a fixed target perfor-
mance level, we might wish to use unlabeled data
to reduce the amount of annotated data necessary
to reach this target. We show that our approach
yields improvements for fixed data sets, even when
large-scale labeled data is available. The new fea-
tures result in relative error reductions of 13.8% and
15.4% in terms of the balanced F-score and the re-
call of out-of-vocabulary (OOV) words respectively.
By conducting experiments on data sets of varying
sizes, we demonstrate that for fixed levels of perfor-
mance, the new features derived from unlabeled data
can significantly reduce the need of labeled data.

The remaining part of the paper is organized as
follows. Section 2 describes the details of our sys-
tem, especially the design of the derived features.
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B | Current character is the start of a word con-
sisting of more than one character.

E | Current character is the end of a word con-
sisting of more than one character.

I | Current character is a middle of a word con-
sisting of more than two characters.

S | Current character is a word consisting of
only one character.

Table 1: The start/end representation.

Section 3 presents experimental results and empir-
ical analysis. Section 4 reviews the related work.
Section 5 concludes the paper.

2 Method

2.1 Discriminative Character-based Word
Segmentation

The Character-based approach is a dominant word
segmentation solution for Chinese text process-
ing. This approach treats word segmentation as a
sequence tagging problem, assigning labels to the
characters indicating whether a character locates at
the beginning of, inside or at the end of a word. This
character-by-character method was first proposed
by (Xue, 2003), and a number of discriminative
sequential learning algorithms have been exploited,
including structured perceptron (Jiang et al., 2009),
the Passive-Aggressive algorithm (Sun, 2010),
conditional random fields (CRFs) (Tseng et al.,
2005), and latent variable CRFs (Sun et al., 2009).
In this work, we use the Start/End representation to
express the position information of every character.
Table 2.1 shows the meaning of each character
label. For example, the target label representation
of the book title “&X 25 BH i #E ¥ F4 % H i/ The Se-
cret Journal of Premier Zhao Ziyang” is as follows.

SO ST SN BT
B I E B E S B E B E

Key to our approach is to allow informative fea-
tures derived from unlabeled data to assist the seg-
menter. In our experiments, we employed three
different feature sets: a baseline feature set which
draws upon “normal” information from labeled
training data, a statistics-based feature set that uses
statistical information derived from a large-scale in-
domain corpus, and a document-based feature set



that uses information encoded in the surrounding
text.

2.2 Baseline Features

In this work, to train a good traditional supervised
segmenter, our baseline feature templates includes
the ones described in (Sun et al., 2009; Sun, 2010).
These features are divided into two types: char-
acter features and word type features. Note that
the word type features are indicator functions that
fire when the local character sequence matches a
word uni-gram or bi-gram. Dictionary containing
word uni-grams and bi-grams is collected from the
training data. To conveniently illustrate, we de-
note a candidate character token ¢; with a context
++-Ci—1CiCit1.... We USE C[s,¢] tO eXpress a string that
starts at the position s and ends at the position e.
For example, c|;.;, 1) expresses a character bi-gram
c;C;i+1. The character features are listed below.

o Character uni-grams: cs (1 —3 < s <1+ 3)
o Character bi-grams: cscs+1 (1—3 < 5 < 1+3)

e Whether c; and ¢, are identical, for i — 2 <
s <1+ 2.

e Whether ¢, and ¢, 9 are identical, for i — 4 <
s <1+ 2.

The word type features are listed as follows.

e The identity of the string ¢[,.;) (i — 6 < s < 9),
if it matches a word from the list of uni-gram
words;

e The identity of the string c|;..] (1 < e < i+ 6),
if it matches a word; multiple features could be
generated.

e The identity of the bi-gram c[y.; 1)¢[;.¢) (i —6 <
s,e < 1+ 6), if it matches a word bi-gram from
the list of uni-gram words.

e The identity of the bi-gram ¢[4.;|C[;11.¢) (i —6 <
s,e < 1+ 6), if it matches a word bi-gram;
multiple features could be generated.
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Idiom In linguistics, idioms are usually presumed
to be figures of speech contradicting the principle of
compositionality. As a result, it is very hard to rec-
ognize out-of-vocabulary idioms for word segmen-
tation. Nonetheless, the lexicon of idioms can be
taken as a close set, which helps resolve the problem
well. In our previous work (Sun, 2011), we collect
12992 idioms from several free online Chinese dic-
tionaries. This linguistic resource is publicly avail-
able’. In this paper, we use this idiom dictionary to
derive the following feature.

e Does c; locate at the beginning of, inside or
at the end of an idiom? If the string [y
(s < 1) matches an item from the idiom lexi-
con, the feature template receives a string value
“E-IDIOM”. Similarly, we can define when this
feature ought to be set to “B-IDIOM” or “I-
IDIOM”. Note that all idioms are larger than
one character, so there is no “S-IDIOM” fea-
ture here.

2.3 Statistics-based Features

In order to distill information from unlabeled data,
we borrow ideas from some previous research on
unsupervised word segmentation. The statistical in-
formation acquired from a relatively large amount
of unlabeled data are designed as features correlated
with the position where a character locates in a word
token. These features are based on three widely used
criteria.

2.3.1

Empirical mutual information is widely used in
NLP. Informally, mutual information compares the
probability of observing = and y together with the
probabilities of observing x and y independently. If
there is a genuine association between x and y, the
I(z,y) = log pﬁij‘@) should be greater than 0.

Some previous work claimed that the larger
the mutual information between two consecutive
strings, the higher the possibility of the two strings
being combined together. We adopt this idea in our
character-based segmentation model. The empiri-
cal mutual information between two character bi-
grams is computed by counting how often they ap-
pear in the large-scale unlabeled corpus. Given a

Mutual Information

*http://www.coli.uni-saarland.de/~wsun/
idiom.txt.



Chinese character string ¢|; 2., 1), the mutual infor-
mation between substrings ¢; _o.;_1) and c¢[;;;11) 18
computed as:

p(¢[i—2:i+1])
p(c[if2:i71] )p(c[i:i+l])

MI(C[i72:i71} ) C[i:iJrl]) = log

For each character c;, we incorporate the MI of the
character bi-grams into our model. They include,

o MI(cli—9:i—1]s Clizit1))s
° MI(C[i_lgi}y C[i+1:i+2])‘

2.3.2 Accessor Variety

When a string appears under different linguistic
environments, it may carry a meaning. This prin-
ciple is introduced as the accessor variety criterion
for identifying meaningful Chinese words in (Feng
et al., 2004). This criterion evaluates how indepen-
dently a string is used, and thus how likely it is that
the string can be a word. Given a string s, which
consists of [ (I > 2) characters, we define the left
accessor variety of L., (s) as the number of distinct
characters that precede s in a corpus. Similarly, the
right accessor variety R, (s) is defined as the num-
ber of distinct characters that succeed s.

We first extract all strings whose length are be-
tween 2 and 4 from the unlabeled data, and calculate
their accessor variety values. For each character c;,
we then incorporate the following information into
our model,

e Accessor variety of strings with length 4:
L%v(c[i:i-i-?)])’ Lgv<c[i+1:i+4])’ Rév(c[i—&i])’
Rav(c[i74:ifl])§

e Accessor variety of strings with length 3:
L%v(c[i:iJrQ])’ sz(c[iJrl:iJrS])’ REU(C[FQ:@']),
Rav(c[i—S:i—I]);

e Accessor variety of strings with length 2:
L?w(c[i:i—i-l])’ L?w(c[i—i-lzi+2])’ sz(c[z‘—u]),
R?w(c[i—2:i—1])'

2.3.3 Punctuation as Anchor Words

Punctuation marks are symbols that indicate the
structure and organization of written language, as
well as intonation and pauses to be observed when
reading aloud. Punctuation marks can be taken as
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perfect word delimiters, and can be used as anchor
words to harvest lexical knowledge. The preced-
ing and succeeding strings of punctuations carry ad-
ditional wordbreak information, since punctuations
should be segmented as a word. Note that such in-
formation is biased because not all words can appear
before or after punctuations. For example, punctua-
tions can not be followed by particles, such as “ 7,
“%” and “1 which are indicators of aspects. Nev-
ertheless, our experiments will show this kind of in-
formation is still useful for word segmentation.

When a string appears many times preceding or
succeeding punctuations, there tends to be word-
breaks succeeding or preceding that string. To uti-
lize the wordbreak information provided by punctu-
ations, we extract all strings with length [(2 < [ <
4) which precede or succeed punctuations in the un-
labeled data. We define the left punctuation variety
of L, (s) as the number of times a punctuation pre-
cedes s in a corpus. Similarly, the right punctua-
tion variety ng(s) is defined as the number of how
many times a punctuation succeeds s. These two
variables evaluate how likely a string can be sepa-
rated at its start or end positions.

We first gather all strings surrounding punctua-
tions in the unlabeled data, and calculate their punc-
tuation variety values. The length of each string is
also restricted between 2 and 4. For each charac-
ter c;, we import the following information into our
model,

e Punctuation variety of strings with length 4:
L;l)v(c[i:i+3])’ Rgfu(c[i—&i]);

e Punctuation variety of strings with length 3:
L]?;U(C[iii+2])’ Rgv<c[i—2:i]);

e Punctuation variety of strings with length 2:
L2, (Ciig))s B2y (1))

Punctuations can be viewed as mark-up’s of Chi-
nese text. Our motivation to use the punctuation in-
formation to assist a word segmenter is similiar to
(Spitkovsky et al., 2010) in a way to explore “artifi-
cial” word (or phrase) break symbols. In their work,
four common HTML tags are successfully used as
raw phrase bracketings to improve unsupervised de-
pendency parsing.



2.3.4 Binary or Numeric Features

The derived information introduced above is all
expressed as real values. The natural way to in-
corporate these statistics into a discriminative learn-
ing model is to directly use them as numeric fea-
tures. However, our experiments show that this sim-
ple choice does not work well. The reason is that
these statistics actually behave non-linearly to pre-
dict character labels. For each type of statistics, one
weight alone cannot capture the relation between its
value and the possibility that a string forms a word.
Instead, we represent these statistics as discrete fea-
tures.

For the mutual information, this is done by round-
ing down decimal number. The integer part of each
MI value is used as a string feature. For the ac-
cessor variety and punctuation variety information,
since their values are integer, we can directly use
them as string features. The accessor variety and
punctuation variety could be very large, so we set
thresholds to cut off large values to deal with the
data sparse problem. Specially, if an accessor va-
riety value is greater than 50, it is incorporated as
a feature “> 507; if the value is greater than 30
but not greater than 50, it is incorporated as a fea-
ture “30 — 507; else the value is individually in-
corporated as a string feature. For example, if the
left accessory variety of a character bi-gram cj;.; ;1]
is 29, the binary feature “L2 (c[;.;41))=29" will be
set to 1, while other related binary features such as
“Lgv(c[i:iJrl]) = 157 or “L?LU(C[i:i+1]) > 507 will
be set to 0. Similarly, we can discretize the punc-
tuation variety features. However, we only set one
threshold, 30, for this value. These thresholds can
be tuned by using held-out data.

2.4 Document-based Features

It is meaningless to derive statistics of a document
and use it for word segmentation, since most doc-
uments are relatively short, and values are statisti-
cally unreliable. Our experiments confirm this idea.
Instead, we propose the following binary features
which are based on the string count in the given doc-
ument that is simply the number of times a given
string appears in that document. For each character
¢;, our document-based features include,

e Whether the string count of ¢, is equal to that
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of ¢[s;i41) (1 —3 < s < 7). Multiple features
are generated for different string length.

e Whether the string count of cy;.,) is equal to that
of ¢j_1.e) (0 < e < i+ 3). Multiple features
are generated for different string length.

The intuition is as follows. The string counts of
C[s:] and ¢[q;41) being equal means that when ¢y,
appears, it appears inside c[,.;;1]. In this case, ¢4
is not independently used in this document, and this
feature suggests the segmenter not assign a “S” or
“E” label to the character c¢;. Similarly, the string
counts of ¢;.,] and ¢|;_1.. being equal means ¢y
is not independently used in this document, and this
feature suggests segmenter not assign a “S” or “B”
label to c;. We do not directly use the string counts
to prevent a bias towards longer documents.

3 Experiments

3.1 Setting

The SIGHAN Bakeoffs provide several large-scale
labeled data for the research on Chinese word seg-
mentation. Although these data sets are labeled on
continuous run texts, they do not contain the docu-
ment boundary information. CTB is a segmented,
part-of-speech tagged, and fully bracketed corpus
in the constituency formalism. It is also an popu-
lar data set to evaluate word segmentation methods,
such as (Jiang et al., 2009; Sun, 2011). CTB is a
collection of documents which are separately anno-
tated. This annotation style allows us to calculate
the so-called document-based features and to further
evaluate our approach. In this paper, we use CTB 6.0
as our main corpus and define the training, develop-
ment and test sets according to the Chinese sub-task
of the CoNLL 2009 shared task*. Table 2 shows the
statistics of our experimental settings.

Dataset # of sent. # of words # of char.
Training 22277 609060 1004266
Devel. 1763 49646 83710
Test 2557 73152 121008

Table 2: Training, development and test data on CTB 6.0

*We would like to thank Prof. Nianwen Xue for the help
with the division of the data



Chinese Gigaword is a comprehensive archive
of newswire text data that has been acquired over
several years by the Linguistic Data Consortium
(LDC). The large-scale unlabeled data we use in
our experiments comes from the Chinese Gigaword
(LDC2005T14). We choose the Mandarin news text,
i.e. Xinhua newswire. This data covers all news
published by Xinhua News Agency (the largest news
agency in China) from 1991 to 2004, which contains
over 473 million characters.

F-score is used as the accuracy measure. Define
precision p as the percentage of words in the decoder
output that are segmented correctly, and recall r as
the percentage of gold standard output words that are
correctly segmented by the decoder. The (balanced)
F-score is 2pr/(p + r). We also report the recall of
OOV words. Note that, all idioms in our extra idiom
lexicon are added into the in-vocabulary word list.

CRFsuite (Okazaki, 2007) is an implementation
of Conditional Random Fields (CRFs) (Lafferty
et al.,, 2001) for labeling sequential data. It is a
speed-oriented implementation, which is written in
pure C. In our experiments, we use this toolkit to
learn global linear models for segmentation. We use
the stochastic gradient descent algorithm to resolve
the optimization problem, and set default values for
other learning parameters.

3.2 Main Results

Table 3 summarizes the segmentation results on the
development data with different configurations, rep-
resenting a few choices between baseline, statistics-
based and document-based feature sets. In this table,
the symbol “+” means features of current configura-
tion contains both the baseline features and new fea-
tures for semi-supervised or transductive learning.
From this table, we can clearly see the impact of fea-
tures derived from the large-scale unlabeled data and
the current document. Comparison between the per-
formance of the baseline and “+MI” shows that the
widely used mutual information is not helpful. Both
good segmentation techniques and valuable labeled
corpora have been developed, and pure supervised
systems can provide strong performance. It is not
a trial to design new features to enhance supervised
models.

There are significant increases when accessor va-
riety features and punctuation variety features are
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Devel. P R Fs—1  Rgov
Baseline 9541 9552 9546 77.68
+MI 95.50 9548 9549 77.98
+AV(2) 95.85 96.04 9594 79.31
+AV(2,3) 9595 96.19 96.07 80.61
+AV(2,3,4) 96.14 9599 96.07 81.83
+PU(2) 95.86 96.07 95.97 79.70
+PU(2,3) 9598 96.25 96.11 80.42
+PU2,3,4) 96.00 96.19 96.10 80.53
+MI+AV(2,3,4)+PU(2,3,4)

96.17 96.22 96.19 80.42
+DOC 95.69 95.64 95.66 79.89
+MI+AV(2,3,4)+PU(2,3,4)+DOC

96.21 96.23 96.22 81.75

Table 3: Segmentation performance with different feature
sets on the development data. Abbreviations: MI=mutual
information; AV=accessor variety; PU=punctuation va-
riety; DOC=document features. The numbers in each
bracket pair are the lengths of strings. For example,
PU(2,3) means punctuation variety features of character
bi-grams and tri-grams are added.

separately added. Extending the length of neigh-
boring string helps a little from 2 to 3. Al-
though the OOV recall increases when the length
is extended from 3 to 4, there is no improve-
ment of the overall balanced F-score. The
line “+MI+AV(2,3,4)+PU(2,3,4)” shows the perfor-
mance when all statistics-based features are added.
The combination of the “AV” and “PU” features
gives further helps. This system can be seen as a
pure semi-supervised system. The line “+DOC” is
the result when document-based features are added.
In spite of its simplicity, the document-based fea-
tures can help the task. However, when we combine
statistics-based features with document-based fea-
tures, we cannot get further improvement in terms
of F-score.

Table 4 shows the segmentation perfor-
mance on the test data set. The final re-
sults of our system are achieved with the
“+MI+AV(2,3,4)+PU(2,3,4)+DOC” feature config-
uration. The new features result in relative error
reductions of 13.8% and 15.4% in terms of the
balanced F-score and the recall of OOV words
respectively.
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Figure 2: Scatter plot of feature score against feature value.

side is the R?

pU (C[i:i+ 1] feature.

Test P R Fs—1  Roov
Baseline 95.21 9490 95.06 75.52
Final 95.86 95.62 95.74 79.28

Table 4: Segmentation performance on the test data.

3.3 Learning Curves

We performed additional experiments to evaluate the
effect of the derived features as the amount of train-
ing data is varied. Figure 1 displays the F-score
and the OOV recall of systems with different feature
sets when trained on smaller portions of the labeled
data. Note that there is no change in the configura-
tion of the unlabeled data. We can clearly see that
the derived features obtain consistent gains regard-
less of the size of the training set. The improvement
976

Feature value Feature value

The left side shows is wa(c[i;iﬂ] feature while the right

is more significant when little labeled data is ap-
plied. Both statistics-based features and document-
based features can help improve the overall perfor-
mance. Especially, they can help to recognize more
unknown words, which is important for many appli-
cations. The F-score of semi-supervised models, i.e.
models trained with statistics-based features, does
not achieve further improvement when document-
based features are added. Nonetheless, the OOV re-
call obtains slightly improvements.

It is interesting to consider the amount by which
derived features reduce the need for supervised data,
given a desired level of accuracy. The change of
the F-score in Figure 1 suggests that derived fea-
tures reduce the need for supervised data by roughly
a factor of 2. For example, the performance of the
model with extra features trained on 500k characters



is slightly higher than the performance of the model
with only baseline features trained on the whole la-
beled data.

3.4 Feature Analysis

We discussed the choice of using binary or numeric
features in Section 2.3.4. In our experiment, when
the accessor variety and punctuation variety infor-
mation are integrated as numeric features, they do
not contribute. To show the non-linear way that
these features contribute to the prediction problem,
we present the scatter plots of the score of each
feature (i.e. the weight multiply the feature value)
against the value of the feature. Figure 2 shows
the relation between the score and the value of
the punctuation variety features. For example, the
weight of the binary feature “L2,(cji.i41) = 26
combined with the label “B” learned by the final
model is 0.815141, so the score of this combina-
tion is 0.815141 x 26 = 21.193666 and a point
(26,21.193666) is drawn. These plots indicate the
punctuation variety features contribute to the final
model in a very complicated way. It is impossible
to use one weight to capture it. The accessor va-
riety features affect the model in the same way, so
we do not give detailed discussions. We only show
the same scatter plot of the L2, (cj;.;+1)) feature tem-
plate in Figure 3.
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Figure 3: Scatter plot of feature score against feature
value for L2, (¢fi.i11])-

4 Related Work

Xu et al. (2008) presented a Bayesian semi-
supervised approach to derive task-oriented word
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segmentation for machine translation (MT). This
method learns new word types and word distribu-
tions on unlabeled data by considering segmentation
as a hidden variable in MT. Different from their con-
cern, our focus is general word segmentation.

The “feature-engineering” semi-supervised ap-
proach has been successfully applied to named en-
tity recognition (Miller et al., 2004) and depen-
dency parsing (Koo et al., 2008). These two papers
demonstrated the effectiveness of using word clus-
ters as features in discriminative learning. More-
over, Turian et al. (2010) compared different word
clustering algorithms and evaluated their effect on
both named entity recognition and text chunking.

As mentioned earlier, the feature design is in-
spired by some previous research on word segmen-
tation. The accessor variety criterion is proposed to
extract word types, i.e. the list of possible words,
in (Feng et al., 2004). Different from their work,
our method resolves the segmentation problem of
running texts, in which this criterion is used to de-
fine features correlated with the character position
labels. Li and Sun (2009) observed that punctuations
are perfect delimiters which provide useful informa-
tion for segmentation. Their method can be viewed
as a self-training procedure, in which extra punctu-
ation information is incorporated to filter out auto-
matically predicted samples. We use the punctua-
tion information in a different way. In our method,
the counts of the preceding and succeeding strings
of punctuations are incorporated directly as features
into a supervised model.

In machine learning, transductive learning is a
learning framework that typically makes use of un-
labeled data. The goal of transductive learning is
to only infer labels for the unlabeled data points in
the test set rather than to learn a general classifica-
tion function that can be applied to any future data
sets. This means that the test data is known as a
priori knowledge and can be used to construct bet-
ter hypotheses. Although the idea to explore the
document-level information in our work is similar
to transductive learning, we do not use state-of-the-
art transductive learning algorithms which involve
learning when they meet the test data. For real-world
applications, our approach is efficient by avoiding
re-training.



5 Conclusion and Future Work

In this paper, we have presented a simple yet effec-
tive approach to explore unlabeled data for Chinese
word segmentation. We are concerned with large-
scale in-domain data and the document text. Ex-
periments show that our approach achieves substan-
tial improvement over a competitive baseline. Es-
pecially, the informative features derived from un-
labeled data lead to significant improvement of the
recall of unknown words. Our immediate concern
for future work is to exploit the out-of-domain data
to improve the robustness of current word segmen-
tation systems. The idea would be to extract do-
main information from unlabeled data and define
them as features in our unified approach. The word-
based approach is an alternative for word segmenta-
tion. This kind of segmenters sequentially predicts
whether the local sequence of characters make up a
word. A natural avenue for future work is the exten-
sion of our method to the word-based approach. The
word segmentation task is similar to constituency
parsing, in the sense of finding boundaries of lan-
guage units. Another interesting question is whether
our method can be adapted to resolve constituency
parsing.
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