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Abstract

We discuss and analyze the problem of find-
ing a distribution that minimizes the relative
entropy to a prior distribution while satisfying
max-norm constraints with respect to an ob-
served distribution. This setting generalizes
the classical maximum entropy problems as
it relaxes the standard constraints on the ob-
served values. We tackle the problem by in-
troducing a re-parametrization in which the
unknown distribution is distilled to a single
scalar. We then describe a homotopy between
the relaxation parameter and the distribution
characterizing parameter. The homotopy also
reveals an aesthetic symmetry between the
prior distribution and the observed distribu-
tion. We then use the reformulated problem to
describe a space and time efficient algorithm
for tracking theentire relaxation path. Our
derivations are based on a compact geomet-
ric view of the relaxation path as a piecewise
linear function in atwo dimensional space
of the relaxation-characterization parameters.
We demonstrate the usability of our approach
by applying the problem to Zipfian distribu-
tions over a large alphabet.
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generalizations of the maximum entropy principle
to language processing is the work of Berger, Della
Pietrax2, and Lafferty (Berger et al., 1996, Della
Pietra et al., 1997). The original formulation of
max-ent cast the problem as the task of finding the
distribution attaining the highest entropy subject to
equality constraints. While this formalism is aes-
thetic and paves the way to a simple dual in the form
of a unique Gibbs distribution (Della Pietra et al.,
1997), it does not provide sufficient tools to deal
with input noise and sparse representation of the
target Gibbs distribution. To mitigate these issues,
numerous relaxation schemes of the equality con-
straints have been proposed. A notable recent work
by Dudik, Phillips, and Schapire (2007) provided a
general constraint-relaxation framework. See also
the references therein for an in depth overview of
other approaches and generalizations of max-ent.
The constraint relaxation surfaces a natural param-
eter, namely, a relaxation value. The dual form of
this free parameter is the regularization value of pe-
nalized logistic regression problems. Typically this
parameter is set by experimentation using cross val-
idation technique. The relaxed maximum-entropy
problem setting is the starting point of this paper.

In this paper we describe and analyze a frame-

Maximum entropy (max-ent) models and its dualvork for efficiently tracking the entire relaxation
counterpart, logistic regression, is a popular and epath of constrained max-ent problems. We start in
fective tool in numerous natural language processec. 2 with a generalization in which we discuss the
ing tasks. The principle of maximum entropy wagproblem of finding a distribution that minimizes the
spelled out explicitly by E.T. Jaynes (1968). Ap-relative entropy to a given prior distribution while
plications of maximum entropy approach to naturasatisfying max-norm constraints with respect to an
language processing are numerous. A notable embserved distribution. In Sec. 3 we tackle the prob-
ample and probably one of the earliest usages at&m by introducing a re-parametrization in which the
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unknown distribution is distilled to a single scalar.v is a relaxation parameter. We ukg rather than
We next describe in Sec. 4 a homotopy between theitself for reasons that become clear in the sequel.
relaxation parameter and the distribution character- We next describe the dual form of (1). We derive
izing parameter. This formulation also reveals athe dual by introducing Lagrange-Legendre multi-
aesthetic symmetry between the prior distributiompliers for each of the constraints appearing in (1).
and the observed distribution. We use the reformu-et a;' > 0 denote the multiplier for the constraint
lated problem to describe in Secs. 5-6 space and tir@;*_ pj < 1/v and ay > 0 the multiplier for the
efficient algorithms for tracking thentirerelaxation constraintg; — p; > —1/v. In addition, we use as
path. Our derivations are based on a compact gghe multiplier for the constrain}_; m;p; = 1. fter
ometric view of the relaxation path as a piecewisgome routine algebraic manipulations we get that the
linear function in atwo dimensional space of the Lagrangian is,

relaxation-characterization parameters. In contrast __ i o

to common homotopy methods for the Lasso Os- 2-j=1 " <pj log <u_j> +a;(gj —pj) + TJ)

borne et al. (2000), our prpcedure for track_lng the 4y <Z@21 m;p; — 1) ' 2)
max-ent homotopy results in an uncharacteristically J

low complexity bounds thus renders the approacho find the dual form we take the partial derivative
applicable for large alphabets. We provide prelimeof the Lagrangian with respect to eagh equate to
inary experimental results with Zipf distributions inzero, and get thdbg (22 ) +1 — ;4 = 0, which

Sec. 8 that demonstrate the merits of our approacpnp”es thatp; ~ u,egfj We now employ the fact
J J '

Finally, we conclude in Sec. 9 with a brief discus—that(p m) € A to get that the exact form far; is
u;es

sion of future directions.

. . Pi= (3
2 Notationsand Problem Setting D g M€

_ Using (3) in the compact form of the Lagrangian we
We denote vectors with bold face letters, €.89. gptain the following dual problem
Sums are denoted by calligraphic letters, e\Md.=
m;. We use the shortharja] to denote the set - " m;

(%Jintejgers{l, ...,n}. The n;{h ]dimensional sim- max— ¢ log(Z) — ijqjaj * Z 7J|O‘j| '
plex, denoted\, consists of all vectorp such that, =t =t @
> j—1p; = landforallj € [n], p; > 0. We gen-
eralize this notion to multiplicity weighted vectors.
Formally, we say that a vectgrwith multiplicity m

whereZ = 370 mju;e®. We make rather little
use of the dual form of the problem. However, the
. . e e complementary slackness conditions that are neces-
is in the simplex(p, m) € A, if 327, m;p; = 1, sary for optimality to hold play an important role in

and for allj € [_n]' pj 20, andmj. > 0. the next section in which we present a reformulation
The generalized relaxed maximum-entropy prob-

_ _ . _ : of the relaxed maximum entropy problem.
lem is concerned with obtaining an estimptagiven
a prior distributionu and an observed distributian 3 Problem Refor mulation

such that the relative entropy betwegmandw is as . . . .
ird Nl v First note that the primal problem is a strictly con-

small as possible while and q are within a given . .

vex function over a compact convex domain. Thus,
max-norm tolerance. Formally, we cast the follow- . . . i
: : o its optimum exists and is unique. Let us now charac-
ing constrained optimization problem, . . .

terize the form of the solution. We patrtition the set
of indices in[n] into three disjoint sets depending on

n
min » m;p;log <p—3> , (1) whether the constrainp; — ¢;| < 1/v is active and
P ’LLj

j=1 its form. Concretely, we define
such that(p,m) € A : |p — gl < 1/v. The I = {lsjsnip=¢-1/v}
vectorsu andgq are dimensionally compatible with Iy = {1<j<nl|lpj—ql<1/v} (5
p, namely,(g,m) € Aand(u,m) € A. The scalar I, = {1<j<n|pj=q¢;+1/v} .
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structure of the general solution. Note that are
interchangeable withy,q. We can thus swap the
roles of the prior distribution with the observed dis-
; tribution and obtain an analogous characterization.
S In the next section we further explore the depen-

Figure 1: The cz:apping function. dence ofy, onv. The structure we reveal shortly
serves as our infrastructure for deriving efficient al-
Recall thatZ — Z}@:l mjuje®. Thus, from gorithms for following the regularization path.

(3) we can rewritep; = uje® /Z. We next use 4
the complementary slackness conditions (see for in-
stance (Boyd and Vandenberghe, 2004)) to furthén order to explore the dependency;0bn v let us
characterize the solution. For agiye 7 we must introduce the following sums

havea; = 0 andoz;r > ( thereforea; > 0, which

The function u(v)

immediately implies thap; > u;/Z. By definition M = > mi=> my
we have thap; = ¢; — 1/v for j € I_. Combin- jelt JeI-
ing these two facts we get that/Z < ¢; —1/v for U = Z m;u;

j € I_. Analogous derivation yields that;/Z >
q; +1/vfor j € 1. Last, if the sefl, is not empty
then for eachj in I, we must haven” = 0 and Q = Z mjdj - ©)
af =0 thusa; = 0. Resorting again to the def-

inition of p from (3) we get thap; = u;/Z for  Fixing v and using (9), we can rewrite (8) as follows
j € Iy. Sincelp; —q;| < 1/vforj € Iy we

get that|u;/Z — ¢;| < 1/v. To recap, there ex- pU—-—vQ+M=0 . (10)
ists Z > 0 such that the optimal solution takes the
following form, Clearly, so long as the partition ¢f] into the sets
I.,1 I is intact, there is a simple linear relation
q — /v w/Z<q—1/v betweeny and . The number of possible subsets
pj =19 uj/Z luj/Z —q;|l <1/v . (6) I_, Iy, I, is finite. Thus, the rangd < v < o
g +1/v  wuj/Z>q+1/v decomposes into a finite number of intervals each

of which corresponds to a fixed partition fef] into
T.,1_,1Iy. Ineach interval is a linear function of
v, unlessly is empty. Letv,, be the smallest value
for which I is empty. Letu, be its corresponding

value. If I is never empty for any finite value of
we definev,, = o = 0o. Clearly, replacingv, i)
with (kv, ku) for anyx > 1 andv > vy yields

1 the same feasible solution ds(kv) = Ii(v),

pj=aj+  Flpuy —vg;) (") I (av) = I_(»). Hence, as far as the original prob-
lem is concerned there is no reason to go past
during the process of characterizing the solution. We
recap our derivation so far in the following lemma.

We next introduce an key re-parametrization
definingp = v/Z. We also denote by'(-) the
capping function?(z) = max{—1,min{1,z}}. A
simple illustration of the capping function is given
in Fig. 1. Equipped with these definition we cal
rewrite (6) as follows,

Givenu, g, andv, the value ofu can be found by
using)_; m;p; = >_,; m;q; = 1, which implies

dof Lemmad.l For 0 < v < vy, the value ofu as
G(vyp) €Y miF(uuj —vg) =0 . (8) defined by (7) is a unique. Further, the functiof)
J=1 is a piecewise linear continuous functiorzinWhen
We defer the derivation of the actual algorithm for’ = Voo 18UING 11 = pioor /voo keeps (7) valid.
computing (and in turnp) to the next section. In We established the fact thatfv) is a piecewise lin-
the meanwhile let us continue to explore the rictear function. The lingering question is how many
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linear sub-intervals the function can attain. To study sof
this property, we take a geometric view of the plane
defined by(v, u). Our combinatorial characteriza-

tion of the number of sub-intervals makes use of the 30}

401

following definitions of lines ifR?, =
201
lrj = Awp) lujp—qr =+1} (11) ol
- = Awp) lujp—qv=-1} (12) S
b = {v,p) | pUd —vQ+ M =0} ,(13) L

where—oco < v < coand;j € [n]. The nexttheorem Figyre 2: An illustration of the functiop(r) for a syn-
gives an upper bound on the number of linear seghetic3 dimensional example.

ments the function() may attain. While the bound
is quadratic in the dimension, for both artificial data
and real data the bound is way too pessimistic.

Theorem 4.2 The piecewise linear functiop ()
consists of at most? linear segments for € R ;.

Proof Since we showed that thatv) is a piece-
wise linear function, it remains to show that it
has at mostrn? linear segments. Consider the
two dimensional functionG(v, ) from (8). The
(v, ) plane is divided by the2n straight lines H

oo, sl b1 oy Lo |n.to at mostznszl Figure 3: An illustration of the functiot(u) for a syn-
polygons. The latter property is proved by 'nduc'thetic4 dimensional example anda= 17,
tion. It clearly holds fom = 0. Assume that it holds

for n — 1. Line ¢, intersects the previousn — 2
lines at no more tha@n — 2 points, thus splitting

at most2n — 1 polygons into two separate polygo-suppose we are given, g, m and a specific relax-

nal parts. Linel_, is parallel to/,, again adding ation values. How can we findp? The obvious

at most2n — 1 polygons. Recapping, we obtain atapproach is to solve the one dimensional monotoni-

most2(n — 1)* + 1 4+ 2(2n — 1) = 2n® + 1 poly- ¢4l nondecreasing equatiai(x) & G (7, 1) = 0

gons, as required per induction. Recall that) is  py pisection. In this section we present a more effi-

linear inside each polygon. The two extreme polygient and direct procedure that is guaranteed to find

gons where(v, ) = £ 37, m; clearly disallow e gntimal solutiorp in a finite number of steps.

G(v,p) = 0, henceu(v) can have at mosin® — 1 Clearly G(y) is a piecewise linear function with

segments for-oo < v < oco. Lastly, we use the at most2n easily computable change points of the

symmetryG(—v, —p) = —G(v,p) which implies  sjope. See also Fig. (5) for an illustration 6f.-).

that forv € R there are at most* segments. B | order to find the slope change points we need to

This result stands in contrast to the Lasso homotogalculate the pointv, 11;) for all the linest..; where

tracking procedure (Osborne et al., 2000), where the< Jj < n. Concretely, these values are

worst case number of segments seems to be expo- v + sign(j)

nential inn. Moreover, when the prio is uniform, pj=——"—°-. (14)

uj = 1/37% ymj forall j € [n], the number of il

segments is at most+ 1. We defer the analysis of We next sort the above values pf and denote the

the uniform case to a later section as the proof stemssulting sorted list ag,, < pir, < -+ < i, . FOr

from the algorithm we describe in the sequel. any0 < j < 2nlet M;,U;, Q; be the sums, defined
944
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in (9), for the line segment,, , < pu < pr, (de- More formally, the local homotopy tracking fol-

noting pir, = —00, fim,, ., = 00). We compute lows the piecewise linear functign(v), segment by
the sumsM;,U;, Q; incrementally, starting from segment. Each segment corresponds to a subset of
Mo = =37 mi, Uy = Qo = 0. Once the the linef, for agiventriplet (M, U, Q). Itis simple

values ofj —1'th sums are known, we can computeto show tha.(0) = 0, hence we start with
the next sums in the sequence as follows,

V=0, M=0,U=Q=1. (16

M = M + M| We now track the value gf asv increases, and the

Ui = Uj1 —sign(mj) Mz Ujr,| relaxation parameter/ decreases. The character-
Q; = Qj-1—sign(mj) My, Gr,| - ization of £, remains intact unti¥, hits one of the

lines¢; for 1 < |j] < n. To find the line intersect-

Fhro:cn thg atz;;ve sumsr:/v € czn CF’mp]t”;-‘ tT_e value ng £y we need to compute the potential intersection
the functionG(v, ) atthe end point of the line seg- points(v;, ;) = £o N ¢; which amounts to calculat-
ment (ir,_,, pr;), Which is the same as the start;

point of the line segmerfir, yir, ), NG Vs Vot Vot Vs Vs Vg WHETE
Muy;| + Usign(j)
Gi = MimitlUimapy = Qv YT T uy — Uy
= M;+Ujpj — Qv .

17)

The lines for which the denominator is zero cor-
The optimal value of: resides in the line segmentrespond to infeasible intersection and can be dis-
for which G(-) attains0. Such a segment must existcarded. The smallest valug which is larger than
sinceGy = My = —>." ;m; < 0andGs, = the current traced value ofcorresponds to the next
—Mgy > 0. Therefore, there exists an indéx< line intersecting.
J < 2n,whereG; <0 < Gj41. Once we bracketed  While the above description is mathematically
the feasible segment far, the optimal value of. is sound, we devised an equivalent intersection in-
found by solving the linear equation (10), spection scheme which is more numerically stable

and efficient. We keep track of partitioh_, Iy, I;
p=(Qjv — Mj)/Uj . (15) through the vector,

From the optimal value of; it is straightforward to ~1 jel_
constructp using (7). Due to the sorting step, the al- 55 = 0 jel
gorithm’s run time i0(n log(n)) and it takes linear +1 jel,
space. The number of operations can be reduced to

O(n) using a randomized search procedure. Initially s1 = so = --- = s, = 0. What kind of

intersection doeg, have with¢;? Recall that2 is

6 Homotopy Tracking the slope of¢, while % is the slope oft;. Thus
J

We now shift gears and focus on the main thrusg > % means that the¢j|'th constraint is moving

of this paper, namely, an efficient characterizationyp” from 1_ to I, or from I, to I, . When% < dsl
of the entire regularization path for the maximum il
entropy problem. Since we have shown that th
optimal solutionp can be straightforwardly ob-
tained from the variable, it suffices to efficiently
track the functionu(rv) as we traverse the plane
(v, ) from v = 0 through the last change point
which we denoted a$v.., 1i0). In this section
we give an algorithm that traversegv) by lo-
cating the intersections ofy with the fixed lines
bl pi1y. .. 0_1,01,..., 0, and updating, af-
ter each intersection. s =—1 7 <0 Quy; —Ugp >0 .
945

the |7|'th constraint is moving “down” fronT . to I,

&r from Iy to I_. See also Fig. 4 for an illustration
of the possible transitions between the sets. For in-
stance, the slope gf(v) on the bottom left part of
the figure is larger than the slope the line it inter-
sects. Since this line defines the boundary between
I_ and Iy, we transition from/_ to I. We need
only considerl < [j| < n of the following types.
Moving “up” from I_ to I, requires



Figure 4: lllustration of the possible intersections beFigure 5: The result of the homotopy tracking forla

tweenyu(r) and¢; and the corresponding transition be-dimensional problem. The linés for j < 0 are drawn in

tween the set$,, I. blue and forj > 0 in red. The function:(v) is drawn in
green and its change points in black. Note that although
the dimension ig the number of change points is rather

Similarly, moving “down” from1. to I, requires  smaji and does not exceéeither in this simple example.

sj =1 7>0  Quj—Ugy <0 . . N
edgeu is theuniformdistribution,
Finally, moving “up” or “down” from I entails

n -1
def
s =0 J(Quy —Ugy) >0 . A <2m> '

If there are no eligible/;'s, we have finished travers- | this case the objective function amounts to the
ing (). Otherwise let indexj belong to the the negative entropy and by flipping the sign of the ob-
smallest eligibler;. Infinite accuracy guaranteesjactive we obtain the classical maximum entropy
thaty; > v. In practice we perform the update  proplem. The fact that the prior probability is the

same for all possible observations infuses the prob-

v maX(V’_ i) lem with further structure which we show how to
M= M+ sign(Quy;) — Ug;) my exploit in this section. Needless to say though that
U — U+ (2]s;)| — 1) myjjuy all the results we obtained thus far are still valid.
Q « O+ (2 |3lj\‘ — 1) mj| | Let us consider a poiriv, 1) on the boundary be-
. tweenly andl, namely, there exist a liné,; such
sj <+ sj+sign(Quy; —Uqy) - t\fllvat o andl,, namely, there exist a liné,.; su
We are done with the tracking process whignis pu; —vg; = pu—vg =1 .
empty, i.e. forallj s; #0. By definition, for any; € I, we have
The local homotopy algorithm take&3(n) mem-
ory andO(nk) operations wheré is the number of puj —vg; = pu—vg; < 1= pu—wvg; .

change points in the function(r). This algorithm
is simple to implement, and wheh is relatively
small it is efficient. An illustration of the tracking miug; > mjug; . (18)
result,;.(v), along with the lineg ;, that provide a
geometrical description of the problem, is given i

Thus,q; < g; for all j € Iy which implies that

nSumming overj € Iy we get that

7 Uniform Prior i€l j€lo
o hence,

We chose to denote the prior distributionwago un- ¢ ¢ QO

derscore the fact that in the case of no prior knowl- w =5 < 7
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and we must be moving “up” frony to 7, when the
line £y hits ¢;. Similarly we must be moving “down”
from when/, hits on the boundary betwedp and
I_. We summarize these properties in the following
theorem.

Theorem 7.1 When the prior distributioru is uni-

form, I_(v) and I, (v) are monotonically nonde-
creasing andly(v) is monotonically nonincreasing
in v > 0. Further, the piecewise linear function ‘
u(v) consists of at most + 1 line segments. Sampe Size  Dimensions

The homotopy tracking procedure when the prior:igure 6: The number of line-segments in the homotopy

is.qniform is pqrticularly simpl.e' and efficient. IN- a5 a function of the number of samples used to build the
tuitively, there is a sole condition which controlsobserved distributiog.

the order in which indices would entég. from I,
which is simply how “far” eacly; is fromu, the sin-

gle prior value. Therefore, the algorithm starts b 5 .
sortingq. Letgs, > ¢r, > -+ > g, denote the quiresO(n) memory and)(n”log(n)) operations.

sorted vector. Instead of maintaining the vector of€arly if the number of line segments constituting
set indicatorss, we merely maintain two indices. ~ #(¥) 1S _greatt;r tham log(n) (recall that the upper
and j, which designate the size df and I, that Pound isO(n%)) then the global homotopy proce-

were constructed thus far. Due to the monotonicdUre is faster than the local one. However, as we

ity property of the setd. asv grows, the two sets show in Sec. 8, in practice the number of line seg-

can be written as]_ = {r;|1 < j < j_} and ments is merely linear and it thus suffices to use the
_={m|1 < _ _ :

I, = {mj|j+ < j < n}. The homotopy track- local homotopy tracking algorithm.

ing procedure starts as before with= 0, M = 0, . . .
U=0=1. Wealsosef_ —1andj. —nwhich 8 Number oflinesegmentsin practice

by definition |_mpl_y thaF[i are empty ando = [n]. The focus of the paper is the design and analysis
In each tracklr_lg iteration we need to compare Onl}ﬁf a novel homotopy method for maximum entropy
two values which we compactly denote as, problems. We thus left with relatively little space
Mu + U to discuss the empirical aspects of our approach. In
v = ou — Uq,. this section we focus on one particular experimental
= facet that underscores the usability of our apparatus.
Whenv_ < v, we just encountered a transitionWe briefly discuss current natural language applica-
from I, to I_ and as we encroach. we perform tions that we currently work on in the next section.
the updatesy < v, M« M — mg , U+ The practicality of our approach hinges on the
U—mzp; u, Q< Q—mq, qr, , j- < j—+ 1. number of line segments that occur in practice. Our
Similarly whenv_ > v, we perform the updates bounds indicate that this number can scale quadrat-
véi&vy, MM+ Mo, U+—Uu - Mo W, ically with the dimension, which would render the
O+ Q — My Gry o J+ < J+ — L. homotopy algorithm impractical when the size of the
The tracking process stops whgn > j, as we alphabet is larger than a few thousands. We there-
exhausted the transitions out of the ggtwhich be- fore extensively tested tteetualnumber of line seg-
comes empty. Homotopy tracking for a uniformments in the resulting homotopy whenandq are
prior takesO(n) memory andO(nlog(n)) opera- Zipf (1949) distributions. We used an alphabet of
tions and is very simple to implement. size50, 000 in our experiments. The distribution
We also devised a global homotopy tracking algowas set to be the Zipf distribution with an offset pa-
rithms that requires a priority queue which facilitatesameter of2, that is,u; ~ 1/(i + 2). We defined
insertions, deletions, and finding the largest elemeat “mother” distribution forg, denotedg, which is
947
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a plain Zipf distribution without an offset, namely References
@ ~ 1/i. We then sampled /2! letters according
to the distributiong wherel € —3,...,3. Thus the
smallest sample was/2? = 6,250 and the largest ) ) C
sample was:/3~% — 4/0 000. Based on the sample guage processingCcomputational Linguistics22
we defined the observed distributignsuch thay; (>0~ /1 1996 |

is proportional to the number of times ti¢h let- John Blitzer. Domain Adaptation of Natural Lan-
ter appeared in the sample. We repeated the procesguage Processing Systen®D thesis, University
100 times for each sample size and report average of Pennsylvania, 2008.

results. Note that when the sample is substantiallg. Boyd and L. VandenbergheConvex Optimiza-
smaller than the dimension the observed distribution tion. Cambridge University Press, 2004.

q tends to be "simple” as it consists of many Z81% censor and S.A. ZeniosParallel Optimization:

components. In Fig. 6 we depict the average num- Theory, Algorithms, and Applications Oxford
ber line segments for each sample size. When theUniveréity Press Néw York. NY. USA. 1997

sample size is one eighth of the dimension we aver- ) .

age st mos0.1n line segments. More importantly, S. DeI_Ia Pietra, V. Della Pletra,_and J. Lafferty. In-
even when the size of the sample is fairly large, the ducing features of random fieldslEEE Trans-
number of lines segments is linear in the dimension actions on Pattern Analysis and Machine Intelli-
with a constant close to one. We also performed 9€nce5:179-190, 1997.

experiments with large sample sizes for which thd. Dudik, S. J. Phillips, and R. E. Schapire. Maxi-
empirical distributionq is very close to the mother mum entropy density estimation with generalized
distributiong. We seldom found that the number of regularization and an application to species distri-
line segments exceeds: and the mode is around bution modeling. Journal of Machine Learning
2n. These findings render our approach usable evenResearch8:1217-1260, June 2007.

in the very large natural language applications.  gyadiley Efron, Trevor Hastie, lain Johnstone, and
‘ Robert Tibshirani. Least angle regressigmnals
9 Conclusions of Statistics 32(2):407—499, 2004.

A.L. Berger, S.A. Della Pietra, and V. J. Della Pietra.
A maximum entropy approach to natural lan-

We presented a novel efficient apparatus for trackinlad\_’\'In T. Jaynes. Prlor_probabllltleiEEE Transac-
the entire relaxation path of maximum entropy prob- tions on Systems Science and Cybeme8&C-4
lems. We currently study natural language process- (3):227-241, September 1968.

ing applications. In particular, we are in the procesblichael R. Osborne, Brett Presnell, and Berwin A.
of devising homotopy methods for domain adapta- Turlach. On the lasso and its dualJournal
tion Blitzer (2008) and language modeling based of Computational and Graphical Statistjc8(2):
on context tree weighting (Willems et al., 1995). 319-337, 2000.

We also examine generalization of our approach ip, Rabiner and B.H. Juangundamentals of Speech
which the relative entropy objective is replaced with Recognition Prentice Hall, 1993.

a separable Bregman (Censor and Zenios, 1997)y, ; \villems, Y. M. Shtarkov, and T. J. Tjalkens.

function. Such a generalization is likely to distill L ) .
. The context tree weighting method: basic proper-
further connections to the other homotopy methods, . . .
ties. IEEE Transactions on Information Theory

in particular the least angle regression algorithm of .
Efron et al. (2004) and homotopy methods for the 41(3):653-664, 1995.
Lasso in general (Osborne et al., 2000). We also pldaeorge K. Zipf.Human Behavior and the Principle
to study separable Bregman functions in order to de- Of Least Effort Addison-Wesley, 1949.
rive entire path solutions for less explored objectives
such as the Itakura-Saito spectral distance (Rabiner
and Juang, 1993) and distances especially suited for
natural language processing.
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