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Abstract

Metaphor is ubiquitous in text, even in highly
technical text. Correct inference about tex-
tual entailment requires computers to distin-
guish the literal and metaphorical senses of
a word. Past work has treated this problem
as a classical word sense disambiguation task.
In this paper, we take a new approach, based
on research in cognitive linguistics that views
metaphor as a method for transferring knowl-
edge from a familiar, well-understood, or con-
crete domain to an unfamiliar, less understood,
or more abstract domain. This view leads to
the hypothesis that metaphorical word usage
is correlated with the degree of abstractness of
the word’s context. We introduce an algorithm
that uses this hypothesis to classify a word
sense in a given context as either literal (de-
notative) or metaphorical (connotative). We
evaluate this algorithm with a set of adjective-
noun phrases (e.g., indark comedy, the adjec-
tive dark is used metaphorically; indark hair,
it is used literally) and with the TroFi (Trope
Finder) Example Base of literal and nonliteral
usage for fifty verbs. We achieve state-of-the-
art performance on both datasets.

1 Introduction

Metaphor is a natural consequence of our ability
to reason by analogy (Gentner et al., 2001). It is
so common in our daily language that we rarely
notice it (Lakoff and Johnson, 1980). Identifying
metaphorical word usage is important for reasoning
about the implications of text.

Past work on the problem of distinguishing lit-
eral and metaphorical senses has approached it as

a classical word sense disambiguation (WSD) task
(Birke and Sarkar, 2006). Here, we take a differ-
ent approach to the problem. Lakoff and Johnson
(1980) argue that metaphor is a method for trans-
ferring knowledge from a concrete domain to an ab-
stract domain. Therefore we hypothesize that the de-
gree of abstractness in a word’s context is correlated
with the likelihood that the word is used metaphori-
cally. This hypothesis is the basis for our algorithm
for distinguishing literal and metaphorical senses.

Consider the following sentences:

L: Heshot downmy plane.
→ C1: Hefired atmy plane.
9 A1: He refutedmy plane.

M : Heshot downmy argument.
9 C2: Hefired atmy argument.
→ A2: He refutedmy argument.

The literal sense ofshot downin L invokes knowl-
edge from the domain of war. The metaphorical us-
age ofshot downin M transfers knowledge from
the concrete domain of war to the abstract domain
of debate (Lakoff and Johnson, 1980).

The entailments ofL andM depend on the in-
tended senses ofshot down. L entails the concrete
fired at in C1 (because, in order to literally shoot
something down, you must first fire at it) but not the
abstractrefutedin A1 (except perhaps as a joke). On
the other hand,M entailsrefutedin A2 but notfired
at in C2 (except perhaps as a novel metaphor).

In semiotics, Danesi (2003) argues that metaphor
transfersassociationsfrom the source domain to the
target domain. The metaphorical usage ofshot down
in M carries associations of violence and destruc-
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tion that are not conveyed byA2.
To make correct inferences about textual entail-

ment, computers must be able to distinguish the lit-
eral and metaphorical senses of a word. Since rec-
ognizing textual entailment (RTE) is a core problem
for NLP, with applications in Question Answering,
Information Retrieval, Information Extraction, and
Text Summarization, it follows that distinguishing
literal and metaphorical senses is a problem for a
wide variety of NLP tasks. The ability to recognize
metaphorical word usage is a core requirement in
the Intelligence Advanced Research Projects Activ-
ity (IARPA) Metaphor Program (Madrigal, 2011).1

Our approach to the problem of distinguishing lit-
eral and metaphorical senses is based on an algo-
rithm for calculating the degree of abstractness of
words. For instance,planein L is rated 0.36396 (rel-
atively concrete), whereasargumentin M is rated
0.64617 (relatively abstract), which suggests that the
verb shot downis used literally inL, whereas it is
used metaphorically inM . Our abstractness rating
algorithm is similar to Turney and Littman’s (2003)
algorithm for rating words according to their seman-
tic orientation.

To classify a word usage as literal or metaphori-
cal, based on the context, we use supervised learning
with logistic regression. The abstractness rating al-
gorithm is used to generate feature vectors from a
word’s context and training data is used to learn a
logistic regression model that relates degrees of ab-
stractness to the classesliteral andmetaphorical.

We evaluate our algorithm with three experi-
ments. The first experiment involves one hundred
adjective-noun phrases labeleddenotative(literal) or
connotative(metaphorical or nonliteral) by five an-
notators, according to the sense of the adjective.2

For instance,deep snowis labeleddenotativeand
deep appreciationis labeledconnotative. The algo-
rithm is able to predict the labels of the annotators
with an average accuracy of 79%.

The next two experiments use the TroFi (Trope
Finder) Example Base of literal and nonliteral usage
for fifty verbs.3 The fifty verbs occur in 3,737 sen-
tences from The 1987-89 Wall Street Journal (WSJ)
Corpus Release 1. In each sentence, the target verb

1See http://www.iarpa.gov/solicitationsmetaphor.html.
2The labeled phrases are available from Yair Neuman.
3Available at http://www.cs.sfu.ca/ anoop/students/jbirke/.

is labeledL (literal) or N (nonliteral), according to
the sense of the verb that is invoked by the sentence.
A subset of twenty-five of the fifty verbs was used
by Birke and Sarkar (2006).

In our second experiment, we duplicate the setup
of Birke and Sarkar (2006) so that we can com-
pare our results with theirs. In particular, a sepa-
rate model is learned for each individual verb. We
achieve an average f-score of 63.9%, compared to
Birke and Sarkar’s (2006) 64.9%.

In the third experiment, we train the algorithm
on the twenty-five new verbs that were not used by
Birke and Sarkar (2006) and then we test it on the
old verbs. That is, the algorithm is tested with verbs
that it has never seen before. The training verbs are
merged to build a single model, instead of building
a separate model for each individual verb. In this
experiment, the average f-score is 68.1%.

The next section presents our algorithm for calcu-
lating the degree of abstractness of words. In Sec-
tion 3, we review related work. The experiments are
described in Section 4. We discuss the results of the
experiments in Section 5 and conclude in Section 6.

2 Abstractness and Concreteness

Concrete words refer to things, events, and proper-
ties that we can perceive directly with our senses,
such astrees, walking, andred.4 Abstract words re-
fer to ideas and concepts that are distant from im-
mediate perception, such aseconomics, calculating,
anddisputable. In this section, we describe an algo-
rithm that can automatically calculate a numerical
rating of the degree of abstractness of a word on a
scale from 0 (highly concrete) to 1 (highly abstract).
For example, the algorithm ratespurveyas 1,donut
as 0, andimmodestlyas 0.5.

The algorithm is a variation of Turney and
Littman’s (2003) algorithm that rates words accord-
ing to their semantic orientation. Positive seman-
tic orientation indicates praise (honest, intrepid)
and negative semantic orientation indicates criticism
(disturbing, superfluous). The algorithm calculates
the semantic orientation of a given word by com-
paring it to seven positive words and seven nega-

4The wordred has an abstract political sense, but our ab-
stractness rating algorithm does not distinguish word senses.
The more frequent concrete sense ofred dominates, resulting
in an abstractness rating of 0.24984 (highly concrete).
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tive words that are used as paradigms of positive and
negative semantic orientation:

Positive paradigm words: good, nice, excellent,
positive, fortunate, correct,andsuperior.
Negative paradigm words:bad, nasty, poor, nega-
tive, unfortunate, wrong,andinferior.

Likewise, here we calculate the abstractness of
a given word by comparing it to twenty abstract
words and twenty concrete words that are used as
paradigms of abstractness and concreteness.

Turney and Littman (2003) experimented with
two measures of semantic similarity, pointwise mu-
tual information (PMI) (Church and Hanks, 1989)
and latent semantic analysis (LSA) (Landauer and
Dumais, 1997). These measures take a pair of words
as input and generate a numerical similarity rating as
output. The semantic orientation of a given word is
calculated as the sum of its similarity with the posi-
tive paradigm words minus the sum of its similarity
with the negative paradigm words. Likewise, here
we calculate the abstractness of a given word by the
sum of its similarity with twenty abstract paradigm
words minus the sum of its similarity with twenty
concrete paradigm words. We then use a linear nor-
malization to map the calculated abstractness value
to range from 0 to 1.

Our algorithm for calculating abstractness uses a
form of LSA to measure semantic similarity. This is
described in detail in Section 2.1. Although Turney
and Littman (2003) manually selected their fourteen
paradigm words, here we use a supervised learning
algorithm to choose our forty paradigm words, as
explained in Section 2.2.

The MRC Psycholinguistic Database Machine
Usable Dictionary (Coltheart, 1981) includes 4,295
words rated with degrees of abstractness by human
subjects in psycholinguistic experiments.5 The rat-
ings range from 158 (highly abstract) to 670 (highly
concrete). Table 1 gives some examples.

We used half of the 4,295 MRC words to train our
supervised learning algorithm and the other half to
validate the algorithm. On the testing set, the algo-
rithm attains a correlation of 0.81 with the dictionary
ratings. This indicates that the algorithm agrees well
with human judgements of the degrees of abstract-
ness of words.

5Available at http://ota.oucs.ox.ac.uk/headers/1054.xml.

Abstract Words Rating Concrete Words Rating
as 158 ape 654
of 180 grasshopper 660
apt 183 tomato 662
however 186 milk 670

Table 1: Examples of abstract and concrete words from
the MRC Dictionary (Coltheart, 1981).

2.1 Measuring Semantic Similarity

The variation of LSA that we use here is similar
to Rapp’s (2003) work. We modeled our similarity
measure on Rapp’s due to the high score of 92.5%
that he achieved on a set of 80 multiple-choice syn-
onym questions from the Test of English as a For-
eign Language (TOEFL). The core idea is to repre-
sent words with vectors and calculate the similarity
of two words by the cosine of the angle between the
two corresponding vectors. The values of the ele-
ments in the vectors are derived from the frequencies
of the words in a large corpus of text. This general
approach is known as a Vector Space Model (VSM)
of semantics (Salton et al., 1975).

We began with a corpus of5×1010 words (280 gi-
gabytes of plain text) gathered from university web-
sites by a webcrawler.6 We then indexed this cor-
pus with the Wumpus search engine (Büttcher and
Clarke, 2005).7 We selected our vocabulary from the
terms (words and phrases) in the WordNet lexicon.8

By querying Wumpus, we obtained the frequency of
each WordNet term in our corpus. We selected all
WordNet terms with a frequency of 100 or more in
our corpus. This resulted in a set of 114,501 terms.
Next we used Wumpus to search for up to 10,000
phrases per term, where a phrase consists of the
given term plus four words to the left of the term and
four words to the right of the term. These phrases
were used to build a word–context frequency matrix
F with 114,501 rows and 139,246 columns. A row
vector inF corresponds to a term in WordNet and
the columns inF correspond to contexts (the words
to the left and right of a given term in a given phrase)
in which the term appeared.

The columns inF are unigrams (single words)
in WordNet with a frequency of 100 or more in
the corpus. A given unigram is represented by two

6Collected by Charles Clarke at the University of Waterloo.
7Wumpus is available at http://www.wumpus-search.org/.
8WordNet is available at http://wordnet.princeton.edu/.
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columns, one markedleft and one markedright.
Supposer is the term corresponding to thei-th row
in F andc is the term corresponding to thej-th col-
umn inF. Let c be markedleft. Let fij be the cell
in thei-th row andj-th column ofF. The numerical
value in the cellfij is the number of phrases found
by Wumpus in which the center term wasr and c
was the unigram closest tor on the left side ofr.
That is,fij is the frequency with whichr was found
in the contextc in our corpus.

A new matrixX, with the same number of rows
and columns as inF, was formed by calculating
the Positive Pointwise Mutual Information (PPMI)
of each cell inF (Turney and Pantel, 2010). The
function of PPMI is to emphasize cells in which
the frequencyfij is statistically surprising, and
hence particularly informative. This matrix was then
smoothed with a truncated Singular Value Decom-
position (SVD), which decomposesX into the prod-
uct of three matricesUkΣkV

T
k . Finally, the terms

were represented by the matrixUkΣ
p
k, which has

114,501 rows (one for each term) andk columns
(one for each latent contextual factor). The semantic
similarity of two terms is given by the cosine of the
two corresponding rows inUkΣ

p
k. For more detail,

see Turney and Pantel (2010).
There are two parameters inUkΣ

p
k that need to

be set. The parameterk controls the number of la-
tent factors and the parameterp adjusts the weights
of the factors, by raising the corresponding singu-
lar values inΣp

k to the powerp. The parameterk is
well-known in the literature on LSA, butp is less fa-
miliar. The use ofp was suggested by Caron (2001).
Based on our past experience, we setk to 1000 and
p to 0.5. We did not explore any alternative settings
of these parameters for measuring abstractness.

2.2 Measuring Abstractness

Now that we haveUkΣ
p
k, all we need in order

to measure abstractness is some paradigm words.
We used the MRC Psycholinguistic Database Ma-
chine Usable Dictionary (Coltheart, 1981) to guide
our search for paradigm words. We split the 4,295
MRC words into 2,148 for training (searching for
paradigm words) and 2,147 for testing (evaluation
of the final set of paradigm words). We began
with an empty set of paradigm words and added
words from the 114,501 rows ofUkΣ

p
k, one word

at a time, alternating between adding a word to the
concrete paradigm words and then adding a word
to the abstract paradigm words. At each step, we
added the paradigm word that resulted in the high-
est Pearson correlation with the ratings of the train-
ing words. This is a form of greedy forward search
without backtracking. We stopped the search after
forty paradigm words were found, in order to pre-
vent overfitting of the training data.

Table 2 shows the forty paradigm words and the
order in which they were selected. At each step, the
correlation increases on the training set, but even-
tually it must decrease on the testing set. After
forty steps, the training set Pearson correlation was
0.8600. At this point, we stopped the search for
paradigm words and calculated the testing set Pear-
son correlation, which was 0.8064. This shows a
small amount of overfitting of the training data. The
testing set Spearman correlation was 0.8216.

For another perspective on the performance of the
algorithm, we measured its accuracy on the testing
set, by creating a binary classification task from the
testing data. We calculated the median of the rat-
ings of the 2,147 words in the test set. Every word
with an abstractness above the median was assigned
to the class 1 and every word with an abstractness
below the median was assigned to the class 0. We
then used the algorithm to guess the rating of each
word in the test set, calculated the median guess, and
likewise assigned the guesses to classes 1 and 0. The
guesses were 84.65% accurate.

After generating the paradigm words with the
training set and evaluating them with the testing
set, we then used them to assign abstractness rat-
ings to every term in the matrix. The result of this
is that we now have a set of 114,501 terms (words
and phrases) with abstractness ratings ranging from
0 to 1.9 Based on the testing set performance, we
estimate these 114,501 ratings would have a Pearson
correlation of 0.81 with human ratings and an accu-
racy of 85% on binary (abstractor concrete) classi-
fication.

We chose to limit the search to forty paradigm
words based on our past experience with semantic
orientation (Turney and Littman, 2003). To validate
this choice, we allowed the algorithm to continue

9The 114,501 rated terms are available from Peter Turney.
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Concrete Paradigm Words Abstract Paradigm Words
Order Word Correlation Order Word Correlation

1 donut 0.4447 2 sense 0.6165
3 antlers 0.6582 4 indulgent 0.6973
5 aquarium 0.7150 6 bedevil 0.7383
7 nursemaid 0.7476 8 improbable 0.7590
9 pyrethrum 0.7658 10 purvey 0.7762
11 swallowwort 0.7815 12 pigheadedness 0.7884
13 strongbox 0.7920 14 ranging 0.7973
15 sixth-former 0.8009 16 quietus 0.8067
17 restharrow 0.8089 18 regularisation 0.8123
19 recorder 0.8148 20 creditably 0.8188
21 sawmill 0.8212 22 arcella 0.8248
23 vulval 0.8270 24 nonproductive 0.8299
25 tenrecidae 0.8316 26 couth 0.8340
27 hairpiece 0.8363 28 repulsion 0.8400
29 sturnus 0.8414 30 palsgrave 0.8438
31 gadiformes 0.8451 32 goof-proof 0.8469
33 cobbler 0.8481 34 meshuga 0.8503
35 bullet 0.8521 36 dillydally 0.8538
37 dioxin 0.8550 38 reliance 0.8570
39 usa 0.8585 40 lumbus 0.8600

Table 2: The forty paradigm words and the Pearson correlation on the training set.

searching until one hundred paradigm words were
found. This resulted in a training set Pearson corre-
lation of 0.8963, but the testing set correlation was
only 0.8097, which shows a significant amount of
overfitting of the training data. Although the test-
ing set correlation is slightly higher with one hun-
dred paradigm words, we chose to base the follow-
ing experiments on the forty paradigm words, be-
cause the difference between 0.8064 and 0.8097 is
not significant, and the gap between the training and
testing correlation (0.8963 versus 0.8097) indicates
a problematic amount of overfitting. Furthermore,
the execution time of the algorithm increases as the
paradigm set increases.

We generated abstractness ratings for a large vo-
cabulary of 114,501 words in order to maximize the
variety of text genres and the range of applications
for which our list of abstractness ratings would be
useful. As a consequence of this large vocabulary,
many of the words in Table 2 are rare and obscure;
however, the measure of quality of the algorithm is
the correlation with the testing set (0.81), not the
familiarity of the words in the table. We include
the table here so that other researchers can exper-

iment with these paragidm words. The table may
give some insight into the internal functioning of the
algorithm, but the main output of the algorithm is
the list of 114,501 words with abstractness ratings,
not the list of paradigm words in Table 2.

3 Related Work

Here we discuss related work on metaphor and then
work on measuring abstractness. As far as we know,
our approach is the first in computational linguis-
tics to bring these two themes together, although
the connection is well-known in cognitive linguistics
(Lakoff and Johnson, 1980) and cognitive psychol-
ogy (Gentner et al., 2001).

3.1 Metaphor

The most closely related work is Birke and Sarkar’s
(2006) research on distinguishing literal and nonlit-
eral usage of verbs. A later paper (Birke and Sarkar,
2007) provides more detail on their active learn-
ing system, briefly mentioned in the earlier paper.
Birke and Sarkar (2006; 2007) treat the problem as
a classical word sense disambiguation task (Navigli,
2009). A model is learned for each verb indepen-
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dently from the other verbs. This approach cannot
handle a new verb without additional training.

Hashimoto and Kawahara (2009) discuss work
on a similar problem, distinguishing idiomatic us-
age from literal usage. They also approach this as
a classical word sense disambiguation task. Idioms
are somewhat different from metaphors, in that the
meaning of an idiom (e.g.,kick the bucket) is often
difficult to derive from the meanings of the compo-
nent words, unlike most metaphors.

Nissim and Markert (2003) use supervised learn-
ing to distinguish metonymic usage from literal us-
age. They take a classical WSD approach, learn-
ing a separate model for each target word. As with
Birke and Sarkar (2006; 2007) and Hashimoto and
Kawahara (2009), the core idea is to learn to clas-
sify word usage from similarity of context. Unlike
these approaches, our algorithm generalizes beyond
the specific semantic content of the context, paying
attention only to the degrees of abstractness of the
context.

Martin (1992) presents a knowledge-based ap-
proach to interpreting metaphors. This approach re-
quires complex hand-coded rules, which are specific
to a given domain (e.g., interpreting metaphorical
questions from computer users, such as, “How can
I kill a process?”, in an online help system). The
knowledge base cannot handle words that are not
hand-coded in its rules and a new set of rules must
be constructed for each new application domain.

Dolan (1995) describes an algorithm for extract-
ing metaphors from a dictionary. Some suggestive
examples are given, but the algorithm is not evalu-
ated in any systematic way.

Mason (2004) takes a corpus-based approach to
metaphor. His algorithm is based on a statistical
approach to discovering the selectional restrictions
of verbs. It then uses these restrictions to discover
metaphorical mappings, such as, “Money flows like
a liquid.” Although the system can discover some
metaphorical mappings, it was not designed to dis-
tinguish literal and metaphorical usages of words.

3.2 Abstractness

Changizi (2008) uses the hypernym hierarchy in
WordNet to calculate the abstractness of a word.
A word near the top of the hierarchy is consid-
ered abstract and a word near the bottom is con-

sidered concrete. It seems to us that the WordNet
hypernym hierarchy captures the general–specific
continuum, which might not be the same as the
abstract–concrete continuum. It would be interest-
ing to see how much correspondence there is be-
tween Changizi’s measure of abstractness and the
ratings in the MRC Psycholinguistic Database Ma-
chine Usable Dictionary (Coltheart, 1981). Also,
note that adjectives and adverbs are outside of Word-
Net’s hypernym hierarchy, and thus cannot be rated
by Changizi’s algorithm.

Xing et al. (2010) also use WordNet, but in a dif-
ferent way. They define theconcretenessof a word
sense (a WordNet synset) to be 1 if the given word
sense is a hyponym ofphysical entityin the Word-
Net hypernym hierarchy; otherwise theconcreteness
is 0. We believe that, although physical entities are
concrete, so arerednessandwalking, which are not
hyponyms ofphysical entity. The categoryphysical
entityonly partially captures concreteness.

4 Experiments

In the following experiments, we use the abstract-
ness ratings of Section 2.2 to generate features for
supervised machine learning. The learning algo-
rithm we apply is logistic regression (Le Cessie and
Van Houwelingen, 1992), as implemented in Weka
(Witten and Frank, 2005).10 In all experiments, we
used the Weka parameter settingsR = 0.2 (for ro-
bust ridge regression) andM = −1 (for unlimited
iterations).

4.1 Adjectives

For this experiment, we selected five adjectives,
dark, deep, hard, sweet,and warm. For each of
the five adjectives, we identified twenty word pairs
in which the first word is the adjective and the
second word is a noun. These pairs were identi-
fied through the Corpus of Contemporary American
English (COCA)11 (Davies, 2009) by seeking the
nouns that follow each adjective in the corpus and
sorting the candidate adjective-noun pairs by fre-
quency. We required a minimum pointwise mutual
information (PMI) of 3 between the adjective and
the noun. In some of the pairs, the adjective was

10Weka is available at http://www.cs.waikato.ac.nz/ml/weka/.
11Available at http://www.americancorpus.org/.
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used in a denotative (literal) sense (dark hair) and in
others it was used in a connotative (nonliteral) sense
(dark humor). Table 3 gives some examples.

Adjective-Noun Pairs Noun Abstractness
dark glasses 0.26826
dark chocolate 0.28211
dark energy 0.66207
dark mood 0.61858

Table 3: Some examples of adjective-noun pairs and the
abstractness rating of the noun.

In this experiment, we used the abstractness rat-
ing of the noun (the context) to predict whether the
adjective (the target) was used in a metaphorical or
literal sense. Table 3 supports this idea, but it is easy
to find counterexamples. Althoughdark moodis
metaphorical,bad moodis literal. The difference is
thatdark has an abstractness rating of 0.43356 (rel-
atively concrete), whereasbad has an abstractness
rating of 0.63326 (relatively abstract). Metaphor re-
sults when a concrete word is imported into an ab-
stract context (Lakoff and Johnson, 1980). Ideally,
we should be comparing the abstractness of the tar-
get to the abstractness of the context. However, in
our data, the target words are mostly concrete; thus
we can focus on the context and ignore the target.
We discuss this point further in Section 5.

Five judges, undergraduate students in psychol-
ogy, were asked to judge whether the use of the ad-
jective is a denotation or a connotation. The instruc-
tions were as follows:

Denotation is the most direct or specific
meaning of a word or expression while
connotationis the meaning suggested by
the word that goes beyond its literal mean-
ing. For instance, the meaning ofbitter is
denotative inbitter lemonand connotative
in bitter relations. In each of the following
pairs, you will be asked to judge whether
(1) the meaning of the first word isdenota-
tive or connotativeand (2) to what extent
it is denotative or connotative on a scale
ranging from 1 to 4.

The judges were blind to the research hypothe-
sis. Each judge received a booklet with the items
organized by the groups of adjectives and presented

in a random order. Overall, each subject was asked
to evaluate one hundred pairs. Interjudge reliability
was high, with Cronbach’s Alpha equal to 0.95.

Our feature vectors for each pair contained only
one element, the abstractness rating of the noun in
the pair. We used logistic regression with ten-fold
cross-validation to predict each judge’sdenotative
andconnotativelabels. The results are summarized
in Table 4. On average, we were able to predict a
judge’s labels with 79% accuracy.

Judge Accuracy Majority
1 0.730 0.590
2 0.810 0.570
3 0.840 0.560
4 0.790 0.510
5 0.780 0.520

Average 0.790 0.550

Table 4: The accuracy of logistic regression at predicting
the labels of each judge.

Table 4 also shows the size of the majority class
(the most common label) for each judge. For all
of the judges, the accuracy was significantly greater
than the size of the majority class (Fisher Exact test,
95% confidence level). The results support our hy-
pothesis that the abstractness of the context is pre-
dictive of whether an adjective is used in a literal or
metaphorical sense.

4.2 Known Verbs

For this experiment, we used the TroFi (Trope
Finder) Example Base of literal and nonliteral usage
for fifty verbs.12 To compare our results with Birke
and Sarkar’s (2006) results, we use the same subset
of twenty-five of the fifty verbs. These twenty-five
verbs appear in 1,965 sentences, manually labeled
L (literal) or N (nonliteral), according to the sense
of the target verb. The verbs also appeared in some
sentences labeledU (unannotated), but we ignored
these sentences (although they could be useful for
semi-supervised learning).

The labelnonliteral is intended to be a broad cat-
egory that includesmetaphoricalas a special case.
Other types of nonliteral usage includeidiomatic
andmetonymical, but it seems that most of thenon-
literal cases in TroFi are in factmetaphorical, and

12Available at http://www.cs.sfu.ca/ anoop/students/jbirke/.
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hence our hypothesis about the correlation of ab-
stract context with metaphorical sense is appropriate
for classifying the TroFi sentences.

Two examples of sentences from TroFi follow.
Both contain the target verbabsorb. The first sen-
tence isliteral and the second isnonliteral.

L: An Energy Department spokesman says the sul-
fur dioxide might be simultaneously recover-
able through the use of powdered limestone,
which tends toabsorbthe sulfur.

N: He said that MMWEC will have toabsorbonly
$4 million in additional annual costs now paid
by the Vermont utilities.

To generate feature vectors for the sentences, we
first applied the OpenNLP part-of-speech tagger to
the sentences.13 We then looked for each word in
our list of 114,501 abstractness ratings (Section 2.2).
If the word was not found in the list, we applied the
Morpha morphological analyzer to identify the stem
of the word (e.g., the stem ofmanagingis manage)
(Minnen et al., 2001).14 We then looked for the stem
in our list. If it was still not found, we skipped it.

For each sentence, we created a vector with five
features:

1. the average abstractness ratings of all nouns,
excluding proper nouns

2. the average abstractness ratings of all proper
nouns

3. the average abstractness ratings of all verbs, ex-
cluding the target verb

4. the average abstractness ratings of all adjectives
5. the average abstractness ratings of all adverbs

When there were no words for a given part of
speech, we set the average to a default value of 0.5.
Two examples of feature vectors follow, correspond-
ing to the two TroFi sentences above.

L: 〈0.3873, 0.5397, 0.6375, 0.2641, 0.5835〉
N: 〈0.6120, 0.3726, 0.6699, 0.5612, 0.5000〉

The intuition here is that the weight of each con-
text word, in predicting the class of the target verb,
may depend on the part of speech of the context

13Available at http://incubator.apache.org/opennlp/.
14Available at http://www.informatics.susx.ac.uk/research/

groups/nlp/carroll/morph.html.

word. We leave it to the logistic regression algo-
rithm to determine the appropriate weighting, based
on the training data. (See Table 7 in the next sec-
tion.)

Following Birke and Sarkar’s (2006) approach,
we treated each group of sentences for a given target
verb as a separate learning problem. For each verb,
we used ten-fold cross-validation to learn and test
logistic regression models. To measure the perfor-
mance of the models, we used three different scores,
macro-averaged accuracy and two forms of macro-
averaged f-score.

Birke and Sarkar (2006) explain their scoring as
follows:

Literal recall is defined as(correct literals
in literal cluster / total correct literals).
Literal precisionis defined as(correct lit-
erals in literal cluster / size of literal clus-
ter). If there are no literals,literal recall
is 100%;literal precision is 100% if there
are no nonliterals in the literal cluster and
0% otherwise. Thef-score is defined as
(2 · precision · recall) / (precision + re-
call). Nonliteral precision and recall are
defined similarly. Average precision is the
average of literal and nonliteral precision;
similarly for average recall. For overall
performance, we take the f-score of aver-
age precision and average recall.

The overall score is a macro-average, in which each
verb has equal weight, regardless of how many sen-
tences it appears in.

Every verb in TroFi has at least oneliteral usage
and onenonliteral usage, so there is no issue with
the definition of recall as 100% when there are no lit-
erals or no nonliterals. However, we believe that the
definition of precision as 100% when no sentence is
assigned to the literal or nonliteral cluster gives too
high a score to the trivial algorithm of always guess-
ing the majority class. The minority class will then
always have a precision of 100%. Therefore we use
a modified f-score in which the precision of a class
is 0% if the algorithm never guesses that class. We
refer to Birke and Sarkar’s (2006) score asf-score
(0/0 = 1) and to our own score asf-score (0/0 = 0).

Table 5 summarizes our results. Concrete-
Abstractrefers to our own algorithm.Birke-Sarkar
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refers to the best result reported by Birke and Sarkar
(2006), using a form of active learning.Majority
Classis the simple strategy of always guessing the
majority class.Probability Matchingis the strategy
of randomly guessing each class with a probability
equal to the size of the class.

Algorithm Accuracy F-score F-score
(0/0=0) (0/0=1)

Concrete-Abstract 0.734 0.631 0.639
Birke-Sarkar NA NA 0.649
Majority Class 0.697 0.408 0.629
Probability Matching 0.605 0.500 0.500

Table 5: The performance with known verbs.

We used a paired t-test to evaluate the statistical
significance of the results in Table 5. The num-
bers are in bold font when the performance of an
algorithm is significantly below the performance of
Concrete-Abstract. In no case is any score signifi-
cantly above the performance of Concrete-Abstract,
at the 95% confidence level.NA indicates scores that
were not calculated by Birke and Sarkar (2006).

4.3 Unknown Verbs

For the final experiment, we again used the TroFi
Example Base, but with a different experimental
setup. Instead of ten-fold cross-validation, we used
the twenty-five verbs in Birke and Sarkar (2006) for
testing (we call these theold verbs) and the other
twenty-five verbs (thenewverbs) for training. The
twenty-five old (testing) verbs appear in 1,965 sen-
tences and the twenty-five new (training) verbs ap-
pear in 1,772 sentences. For this experiment, we
no longer learn a separate logistic regression model
for each verb. All of the 1,772 training sentences
are used together to learn a single logistic regression
model, which is then evaluated on the testing sen-
tences.

Table 6 summarizes our results. Since the testing
set is exactly the same as in Section 4.2, we can com-
pare the performance directly with the performance
in the preceding section and with Birke and Sarkar’s
(2006) results.

Again, we used a paired t-test to evaluate the sta-
tistical significance of the results in Table 6. The
numbers are in bold font when the performance of
an algorithm is significantly below the performance

Algorithm Accuracy F-score F-score
(0/0=0) (0/0=1)

Concrete-Abstract 0.686 0.673 0.681
Birke-Sarkar NA NA 0.649
Majority Class 0.697 0.408 0.629
Probability Matching 0.605 0.500 0.500

Table 6: The performance with unknown verbs.

of Concrete-Abstract. In no case is any score signifi-
cantly above the performance of Concrete-Abstract,
at the 95% confidence level.

Table 7 shows the coefficients in the logistic re-
gression model that was learned on the training data.
The items numbered from 1 to 5 are the five features
described in Section 4.2. The sixth item is the con-
stant term in the regression equation. We see that the
abstractness of the nouns (excluding proper nouns)
has the largest weight in predicting whether the tar-
get verb is in classN.

Feature Coefficient
1 AvgNounAbs 11.4117
2 AvgPropAbs 0.7250
3 AvgVerbAbs -0.5528
4 AvgAdjAbs 1.1478
5 AvgAdvAbs -0.2013
6 Intercept -5.9436

Table 7: The logistic regression coefficients for classN.

5 Discussion

It is a strength of our approach that it can classify
verbs that it has never seen before, as we see in Sec-
tion 4.3. The feature vectors in all three experiments
are based only on the context; the target adjective or
verb is not used in the vectors. This avoids the need
for gathering training data on every verb or adjective
for which we want to determine whether it is being
used metaphorically or literally, since the algorithm
is not sensitive to the specific target word.

On the other hand, the performance might im-
prove if the target word were included in the fea-
ture vectors. If metaphor is a method for transfer-
ring knowledge from concrete domains to abstract
domains, then it follows that highly abstract target
words will tend to be used literally in most con-
texts. For instance, the highly abstract verbepito-
mize(with an abstractness rating of 0.85861) is per-
haps almost always used in a literal sense. There-
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fore it would seem that the abstractness rating of the
target word could be a useful clue for determining
whether the sense is literal or metaphorical.

We experimented with including the abstractness
rating of the target word as a feature, but the im-
pact on performance was not significant for either
the adjectives or the verbs. We hypothesize that this
may be due to the relatively narrow range in the ab-
stractness of the adjectives and verbs in our data.
The abstractness ratings of the adjectives vary from
0.43356 fordark to 0.56637 forhard. The abstract-
ness ratings of the fifty verbs range from 0.28756 for
plant to 0.71628 forlend, but 80% of the verbs lie
in the range from 0.41879 forfly to 0.59912 forrest.
It seems possible that the abstractness rating of the
target word would be useful with a dataset in which
the target’s abstractness varied substantially.

In future work, we would like to gather data for
target words with a wider range of abstractness. We
expect that such data would show some benefit to in-
cluding information on the abstractness of the target
word in the feature vector.

We also expect that a hybrid of classical word
sense disambiguation, such as Birke and Sarkar’s
(2006) algorithm, with abstractness ratings would
perform better than either approach alone. Abstract-
ness may provide a good rough estimate of whether
a word usage is literal or metaphorical, but it seems
likely that knowledge of the specific target word in
question will be required for a highly precise answer.
This is another worthwhile topic for future research.

Currently there is no algorithm that identifies
what kind of concepts and relations are grafted from
the source domain to the target domain by metaphor-
ical inference. The algorithm presented in this pa-
per may be used within a constraints-based model
of metaphor (Neuman and Nave, 2009) to address
this challenge.

Recently there has been some interest invisual-
ness, picturability, and imagability, the degree to
which a word is associated with visual imagery (De-
schacht and Moens, 2007). Although Xing et al.
(2010) use the termconcretenessin their work, their
research is concerned with predicting the difficulty
of queries for image retrieval. It could be argued that
Xing et al. should be trying to captureimagability,
not concreteness.

The MRC Psycholinguistic Database (Coltheart,

1981) includes words rated forimagability. Our al-
gorithm for rating the abstractness of words (Sec-
tion 2) could easily be trained with the MRC imaga-
bility ratings instead of the abstractness ratings. In
future work, it would be interesting to evaluate
imagability ratings on the TroFi Example Base. It
would also be worthwhile to see whether our algo-
rithm can be adapted for image retrieval (Xing et al.,
2010) and image annotation (Deschacht and Moens,
2007).

6 Conclusion

Metaphor is ubiquitous, yet recognizing textual
entailment is a challenge when words are used
metaphorically. An algorithm for distinguishing
metaphorical and literal senses of a word will facil-
itate correct textual inference, which will improve
the many NLP applications that depend on textual
inference.

We have introduced a new algorithm for measur-
ing the degree of abstractness of a word. Inspired by
research in cognitive linguistics (Lakoff and John-
son, 1980), we hypothesize that the degree of ab-
stractness of the context in which a given word ap-
pears is predictive of whether the word is used in
a metaphorical or literal sense. This hypothesis is
supported by three experiments.

A strength of this approach to the problem of dis-
tinguishing metaphorical and literal senses is that
it readily generalizes to new words, outside of the
training data. We do not claim that abstractness is
a complete solution to the problem, but it may be a
valuable component in any practical system for pro-
cessing metaphorical text.
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