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Abstract

In this paper, we describe a novel approach to

cascaded learning and inference on sequences.

We propose a weakly joint learning model
on cascaded inference on sequences, called
multilayer sequence labeling. In this model,
inference on sequences is modeled as cas-
caded decision. However, the decision on a
sequence labeling sequel to other decisions
utilizes the features on the preceding results
as marginalized by the probabilistic models
on them. It is not novel itself, but our idea
central to this paper is that the probabilis-
tic models on succeeding labeling are viewed
as indirectly depending on the probabilistic
models on preceding analyses. We also pro-
pose two types of efficient dynamic program-
ming which are required in the gradient-based
optimization of an objective function. One
of the dynamic programming algorithms re-
sembles back propagation algorithm for mul-
tilayer feed-forward neural networks. The
other is a generalized version of the forward-
backward algorithm. We also report experi-
ments of cascaded part-of-speech tagging and
chunking of English sentences and show ef-
fectiveness of the proposed method.

Introduction

@is.naist.jp

among all the possible label sequences is predicted
for a given input. Although sequence labeling is
the simplest subclass, a lot of real-world tasks are
modeled as problems of this simplest subclass. In
addition, it might offer valuable insight and a toe-
hold for more general and complex structured pre-
diction problems. Many models have been proposed
for sequence labeling tasks, such as Hidden Markov
Models (HMM), Conditional Random Fields (CRF)
(Lafferty et al., 2001), Max-Margin Markov Net-
works (Taskar et al., 2003) and others. These models
have been applied to lots of practical tasks in natural
language processing (NLP), bioinformatics, speech
recognition, and so on. And they have shown great
success in recent years.

In real-world tasks, it is often needed to cascade
multiple predictions. A cascade of predictions here
means the situation in which some of predictions are
made based upon the results of other predictions.
Sequence labeling is not an exception. For exam-
ple, in NLP, we perform named entity recognition or
base-phrase chunking for given sentences based on
part-of-speech (POS) labels predicted by another se-
quence labeler. Natural languages are especially in-
terpreted to have a hierarchy of sequential structures
on different levels of abstraction. Therefore, many
tasks in NLP are modeled as a cascade of sequence

Machine learning approach is widely used to clag?redictions.

sify instances into discrete categories.

In many If a prediction is based upon the result of another

tasks, however, some set of inter-related labepRrediction, we call the former upper stage and the
should be decided simultaneously. Such tasks al@iter lower stage.

called structured prediction. Sequence labeling is Methods pursued for a cascade of predictions —
the simplest subclass of structured prediction prohincluding sequence predictions, of course—, are de-

lems.
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In sequence labeling, the most likely onsired to perform certain types of capability. One de-
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sired capability is rich forward information propa-propagation, Some studies propose the joint learning
gation, that is, the learning and estimation on eaobf multiple sequence labelers. Sutton et al. (2007)
stage of predictions should utilize rich informa-proposes the joint learning method in case where
tion of the results of lower stages whenever posnultiple labels are assigned to each time slice of
sible. “Rich information” here includes next bestghe input sequences. It enables simultaneous learn-
and confidence information of the results of loweing and estimation of multiple sequence labelings
stages. Another is backward information propagasn the same input sequences, where time slices of
tion, that s, the rich annotated data on an upper stagfgee outputs of all the out sequences are regularly
should affect the models on lower stages retroa@ligned. However, it puts the distribution of states
tively. into Bayesian networks with cyclic dependencies,
Many current systems for a cascade of sequenamd exact inference is not tractable in such a model
predictions adopt a simple-best feed-forward ap- in general. Therefore, it requires some approxi-
proach. They simply take the most likely output atnate inference algorithms in learning or predictions.
each prediction stage and transfer it to the next upp&toreover, it only considers the cases where labels of
stage. Such a framework can maximize reusabilitsin input sequence and all output sequences are reg-
of existing sequence labeling systems. On the othetarly aligned. It is not clear how to build a joint
hand, it exhibits a strong tendency to propagate elabeling model which handles irregular output label
rors to upper labelers. sequences like semi-Markov models (Sarawagi and
Typical improvement on thé-best approach is Cohen, 2005).
to keepk-best results in the cascade of predictions. In this paper, we propose a middle ground for
However, the largek becomes, the more difficult it a cascade of sequence predictions. The proposed
is to enumerate and maintain theéest results. Itis method adopts the basic idea of Bunescu (2008). We
particularly prominent in sequence labeling. first assume that the model on all the sequence la-
The essence of this orientation is that the labeldreling stages is probabilistic one. In modeling of an
on an upper stage utilizes the information of all theipper stage, a feature is weighted by the marginal
possible output candidates on lower stages. Hovprobability of the fragment of the outputs from a
ever, the size of the output space can become quitaver stage. However, this is not novel itself be-
large in sequence labeling. It effectively forbids excause it is just a paraphrase of Bunescu’s core idea.
plicit enumeration of all possible outputs, so it isOur intuition behind the proposed method is as fol-
required to represent all the labeling possibilitietows. Features integrated in the model on each stage
compactly or employ some approximation schemesre weighted by the marginal probabilities of the
Several studies are in this direction. In the methottagments of the outputs on lower stages. So, if
proposed in Finkel et al. (2006), a cascades of s#he output distributions on lower stages change, the
guence predictions is viewed as a Bayesian networkjarginal probabilities of any fragments also change,
and sample sequences are drawn at each stage aad this in turn can change the value of the features
cording to the output distribution. The samples aren the upper stage. In other words, the features on
then used to estimate the entire distribution of than upper stage indirectly depend on the models on
cascade. In the method proposed in Bunescu (2008)¢e lower stages. Based on this intuition, the learn-
an upper labeler uses the probabilities marginalizedg procedure of the model on an upper stage can
on the parts of the output sequences on lower stagaffect not only direct model parameters, but also the
as weights for the features. The weighted featureseights of the features by changing the model on
are integrated in the model of the labeler on théhe lower stages. Supervised learning based on an-
upper stage. A:-best approach (e.g., (Collins andnotated data on an upper stage may affect the model
Duffy, 2002)) and the methods mentioned above aer model parameters on the lower stages. It could
effective to improve the forward information propa-be said that the information of annotation data on
gation. However, they can never contribute on backan upper stage is propagated back to the model on
ward information propagation. lower stages.
To improve the both directions of information In the next section, we describe the formal nota-

629



tion of our model. In Section 3, we propose an optithen missing subscript indicates a set that range over
mization procedure according to the intuition noteghe omitted subscript. For exampléy ., def
above. In Section 4, we report an experimental result def o

of our method. The proposed method shows som{9f<1,k1761,><>}kleic1’ framx = {f<17k1:317x>}eleE1’

improvements on a real-world task in comparisoqr<1 9 def {Firkren x>}k o eps and so on

. . ) yP1,€1, eki,e1€E,’ )
with ordinary methods. The probabilistic model o, forms the log-linear

o model, that is,
2 Formalization dof 1
_ _ _ _ Pi(y1]x;61) = 7 x0) exp(01-Fiy, %)

In this section, we introduce the formal notation of 1(x;601)
our model. Hereafter, for the sake of simplicity, we (y1€Yy) ,
only describe the simplest case in which there are (1)

just two stages, one lower stage of sequence labeliM§iered i r,y € R (k1 € K1) is the weight for the
namedL; and one upper stage of sequence labelinfgature of the same indéx, and thek;-th element
namedLs. In Ly, the most likely one among a setof F; o, xy, Fi1,k,,y1 %) o Eeleyl f(1,k1,e1,%)- DOt

of possible sequences is predicted for a given inpuaiperator () denotes the inner product with respect to
x. Ly is also a sequence labeling stage for the santlee subscripts commonly missing in both operands.
inputx and the output of.,;. No assumption is made Z; is the partition function fo”;, defined as

on the structure ok. The information ofx is totally de

f
encoded in feature functions. It is only assumed that Z1(x;01) = Z eXP(al ) F<1,y1,x>) . (@
the output spaces of boily andL, are conditioned y1€Yy
on the initial inputx. It is worth noting that this formalization subsumes

First of all, we describe the formalization of theboth directed and undirected linear-chain graphical
probabilistic model forL;. The model forL; per models, which are the most typical models for se-
se is the same as ordinary ones for sequence labglience labeling, including HMM and CRF. That is,
ing. For a given inpuk, consider a directed acyclic if the elements ofi; are aligned into regular time
graph (DAG)G; = (V1, E1). A source of a DAGG  slices, and the nodes in each time slice are associated
is a node whose in-degree is equal to zero. A sinkith possible assignments of labels for that time, we
of a DAG G is nodes whose out-degree is equal tobtain the representation equivalent to the ordinary
zero. Letsrc(G), snk(G) denote the set of source linear-chain graphical models, in which all possible
and sink nodes i/, respectively. A successful pathlabel assignments for each state are expanded. In
of a DAGG is defined as a directed path 6rwhose  such configuration, all the possible successful paths
starting node is a source and end node is a sink. Ifdefined in our notation have strict one-to-one corre-
denotes a path on a DAG, fgtalso denote the set of spondence to all the possible joint assignments of
all the arcs appearing gnfor the sake of shorthand. labels in linear-chain graphical models. We pur-
We denote the set of all the possible successful pathssely employ this DAG-based notation because; it
on(G1 by Y. The space of the output candidates fois convenient to describe the models and algorithms
L, is exactly equal t&’;. For the modeling of.1, it  for our purpose, it allows for labels to stay in arbi-
is assumed that features of the fofim;,, ., xy € R trary time as in semi-Markov models, and it is easily
(k1 € K1,e1 € Eq) are allowed to be used. Here,extended to models for a set of trees instead of se-
K1 is the index set of the feature types foy. Such quences by replacing the graph-based notation with
a feature can capture an aspect of the correlation beypergraph-based notation.
tween adjacent nodes. We call this kind of features Next, we formalize the probabilistic model on the
input features foi.;. This naming is used to distin- upper stagd.,. Like L, consider a DAGG, =
guish them from another kind of features defined o(V%, E>) conditioned on the input, and the set of
L+, which comes later. Although features Bncan all the possible successful paths@p, denotedY s.
be also defined, they are totally omitted in this papeFhe space of the output candidates fgrbecomes
for brevity. Hereafter, if a symbol has subscriptsys.
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The form of the features available in designing thék’l, e1, ko, eo. For example, additions and mul-
probabilistic model for.,, denoted by, is the key tiplications between some elementslof(0;) can
of this paper. A feature on an aeg € F, can ac- appear in the definition of.5's input features. For
cess local characteristics of the confidence-rated sgiven input featureg, (Bl(el)) and parameters
perposition of theL,’s outputs, in addition to the 0y, ;,) € R (k2 € Ksg), the probabilistic model for
information of the inpui. To formulate local char- L- is defined as follows;
acterlstlcs qf the superposition of tig’s outputs, Pa(ya|x; 01,05)
we first define output features df;, denoted by

h(l,ki,eﬁ € R (/{/1 S ICll, €1 € El). Here,IC’l is déf .;exp(Bg . F<2’y27x> (Bl(el)))

the index set of the output feature typesiof Be- Z3(x; 01, 62)

fore the output features are integrated into the model (y2€Ys) ,
for Lo, they all are confidence-rated with respect to 263
Py, that is, each output featufg; 4 .,y is numer- where Fio.k y.x) (01(01)) =

ically rated by the estimated probabilities summed_.,c,, f(2,ks.e0.x) (h1 (61)) and Z, is the par-
over the sequences emitting that feature. More fotition function of I, defined by
mally, all the L;'s output features are integrated in Zo(x; 01, 05)
features forP; in the form of the marginalized out- Y
put features, which are defined as follows; = ) exp(8yFray,x (hi(61)))

- def y2€Y2

hiv i e (01) = hiy gy e Prlealx; 01) 3) - (7)

, , The definition of P, (6) reveals one of the most im-
(K €Ky, e1 € Bn) portant points in this paperP, is viewed not only

[N
-

where as the function of the ordinary direct paramet@ss
but also as the function @, which represents the
Py(e1]x;601) o Z Pi(y1]x;601) parameters for thé;’s model, through the interme-
yi~el diate variable;. So optimization procedure ab,

_ Z Se ey PL(y1]x; 01) (4) may affect the determination of the values not only
of the direct paramete®, but also of the indirect
onesf;.
If the result of L, is reduced to the single golden

Here, the notationy_, . represents the sum- OUIPULY1, i.€. Pi(y1|x) = dy,~y,, the definitions
mation over sequences consistent with an aRbove boil down to the formulation of the simple
e1 € Ei, that is, the summation over the setoestfeed forward architecture.
{yi€Yi|ei €y1}. 6p denotes the indicator
function for a predicat®. The input features foP»
on an arce; € E5 are permitted to arbitrarily com- In this section, we describe optimization procedure
bine the information ok and theL;’s marginalized for the model formulated in the previous section.
output featuresh;, in addition to the local charac- Let D = {(%X,(G1,¥1),(G2,Y2))m }im_1 ... o dE-
teristics of the arc at hangy. In summary, an input note annotated data for the superviséd Ivearning of
feature forL, on an aresy € E5 is of the form the model. Here{G;,y;) is a pair of a DAG and
_ correctly annotated successful sequencdforThe

fiakseany (01(61)) ER - (k2 €K2) , (5)  same holds fotG, §2). For givenD, we can define
whereK, is the index set of the input feature types:; 22;3;?\;2&”?:};%2Ike“hOOd function ob; andL,
for L,. To make the optimization procedure feasible, ’ ’
smoothness condition on ar’s input feature is L1(01;D)

Y1€Y1
(61 S El) .

3 Optimization Algorithm

assumed with respect to all tiig’s output features, def 161 (8)
.0 . . = I P (v1]x; - —
that |s,m is always guaranteed to exist for Z 0g (P (1]%; 1)) 20,2
11l eq) (%,31)€D

631



objective function on given parameter values can be
calculated in order of the arrows shown in the di-
agram. On the other hand, the parameter gradients
are calculated step-by-step in reverse order of the ar-
rows. The functional relations illustrated in the Fig-
Figure 1: Computation Graph of the Proposed Model yre 1 ensure some forms of the chain rule of dif-
ferentiation among the variables. The chain rule is

and iteratively used to decompose the calculation of the
gradients into a divide-and-conquer fashion. These
L (61,05;D) two directions of stepwise computation are analo-
def Z log (P (§/: 01, 8)) — 2\92!2 . Igous to the forward and back propagation for muiti-
<L 09 ayer feedforward neural networks, respectively.
®y2)eD © Algorithm 1 shows the whole picture of the

Here,o,2, 0,2 are the variances of the priordistribu-grad'ent'based optimization procedure for our

tions of the parameters. For the sake of simplicitynedel- We first describe the flow to calculate the
we set the prior distribution as the zero-mean un@Pi€ctive value for a given parametefis and 65,

variance Gaussian. To optimize the both probabilig/hich is shown from line 2 through 4 in Algo-
tic modelsP, and P, jointly, we also define the joint rithm 1. The values of marginalized output features
conditional log-likelihood function h; ) can be calculated by (3). Because they are the

simple marginals of features, the ordinary forward-
L (61,09 D) def L1+ Ly . (10) backward algorithm (h_e_reafter, abbreviated as F
B”) on G, offers an efficient way to calculate their
The parameter values to be learned are the ones tivatues. Although nothing definite about the forms
(possibly locally) maximize this objective function. of the input features fol., is presented in this pa-
Note that this objective function is not guaranteed tper,f, ,, can be calculated once the value:ﬁ@lfm
be globally convex. have been obtained. Finallg;, £» and thenl are
We employ gradient-based parameter optimizaeasy to calculate because they are no different from
tion here.  Optimization procedure repeatedlyhe ordinary log-likelihood computation.
searches a direction in the parameter space whichNow we describe the algorithm to calculate the
is ascendent with respect to the objective functiorparameter gradients,
an updates the parameter \_/al_ues |nt_o t_hat_dlrectlon AL L IL, oL AL, a1
y small advances. Many existing optimization rou- 90, 00, '« 90, 90, 905

tines like steepest descent or conjugation gradient do ) ] ] )
that job only by giving the objective value and gra.-in€ 5 through line 7 in Algorlthmll desgg?e_ the
dients on parameter values to be updated. So, t§gadient computation. The ternf§5 and 552 in

optimization problem here boils down to the calcu{11) become the same forms that appear in the ordi-

lation of the objective value and gradients on giveR@y CRF optimization, i.e., the difference between
parameter values. the empirical frequencies of the features and the

Before entering the detailed description of the alM0del expectations of them,

gorithm for calculating the objective function and 9£; BIF B [F 101]

gradients, we note the functional relations among 9@, ] = Er[Fuymx)] - o2

the objective function and previously defined vari- g2, - 65|
E[Fpy, 0] = Er[Foyx] - 5 -

ables. The diagram shown in Figure 1 illustrates 205 = .
the functional relations among the parameters, input (12)
and output feature functions, models, and objectivEhese calculations are performed by the ordinary F-
function. The variables at the head of a directed aB on G; andG», respectively. Using the chain rule
row in the figure is directly defined in terms of theof differentiation derived from the functional rela-
ones at the tail of the same arrow. The value of thitons illustrated in Figure 1, the remaining te%bf
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Algorithm 1 Gradient-based optimization of the model parameters

Input: 01, 0,
Output: arg max L
(61, 02)

1: while 8, or 6, changes significantlgio

2. calculateZ; by (2),h; by (3) with the F-B onz¢, and thenZ; by (8)

3:  calculatef, ,y according to their definitions

4.  calculateZs by (7) with the F-B on(7,, and thenZ, by (9) andZ by (10)
5. calculategl and g2 by (12) with the F-B on; andGy, respectively
6

7

8

9:

oL i Of(1,x Lo oL  Ifax
calculate;<— by (16) with the F-B oG, A2, and themfez — o )
calculategg2 by (18) with Algorithm 2
©(01,07) update—parameters(Ol,Gg,L‘, A%, a%)
end while
in (11) can be decomposed as follows; Py(es|x; 61, 605), the marginal probability on,, can

~ be obtained as a by-product of the F-B for (12).
Ly _ 0Ly Ofpyy 0Ly Ofpx Ohy

001  Ofinxy 001  Ofiay Ol 00, As described in the previous se(;tion, itis assumed
(13)  that the values of the second fac@% is guaran-

Note that Leibniz’s notation here denotes a Jacobiaged to exists for any give, and the procedure for

with the index sets omitted in the numerator and thgalculating them is fixed in advance. The procedure

denominator, for example, for some of concrete features is exemplified in the
previous section.

8f(27x> def 8f<27k27€21x) h
o Dt e From the definition oh; (3), each element of the

} ’ ’ . -
Reefpeelmeliatll  third factor of (13)95: becomes

(14)
And also recall that dot operators here stand for the
inner product with respect to the index sets com-
monly omitted in both operands, for example,

MLk 1)
1
0Ly Ofokscan) = M1 o) COV P31 1) [ereys Fit oy 0]

17
There exists efficient dynamic programming to cal-

_ _ ' (15) _culate the covariance value (17) (without goint into
We describe the manipulation of each factor iRhat detail because it is very similar to the one shown

B Z O f(2,k2,e0,%) ~ ohy

ko€Ka,e2€F2

. . : 9 - o
the right side of (13) in turn. Notin fg’:??’ ; = later in this paper), and of course we can run such
yko,e9,x . .
8y, i, 0es—e,» €Ch element of the first factor of (13)dynamic programming fofky € K, er € En.
9L> can be transformed as follows: However, the size of the Jacobidi! is equal to
Oezix) IKC} | x | E1] x |KC1|. Since itis too large in many tasks
oLy likely to arise in practice, we should avoid to calcu-
8]"7 late all the elements of this Jacobian in a straight-
(2 kz,e2,%) forward way. Instead of such naive computation, if
=00y D, (Ocseyn — Pa(€2%:01.62)) - thevalues of 02 and 222 are obtained, then we
(%,y2)€D <£2’x> 8£8h1 8f<2 )
(16) can computegﬁ = Hon  oh and from (13)
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and (17), numbers, the arithmetic operations and the exponen-
_ tial function are generalized to the dual numbers,
9Ly _ 6?2 _ ohy and the ordinary F-B is also generalized to the dual
00,  0oh; 06: numbers. The imaginary part of the resulting values
= Epy1x) [HZI,yQF(LYLX)} is equal to the needed differentiation. Anyway,
these two derivations lead to the same algorithm, and
— Epyy,|x) {H217y1>} Epyix) [Fay:x] »  the resulting algorithm is shown as Algorithm 2.
(18) The final line in the loop of Algorithm 1 can be

def

whereH’ =y 9Ly .y In other implemented by various optimization routines and
<1ayl> - e1€y1 8h<1 e1) <1761>' . .
o7 e line search algorithms.

words 2— pecomes the covariance between the

1 00(1,ry) _ The time and space complexity to compute the ob-
k1-th input feature forZ, and the hypothetical fea- jective and gradient values for given parameter vec-

tureh’<1 e1) ©f oL, h tors 6+, 05 is the same as that for that for Bunescu

= bh " Ler)-

The final prgbig%> is to derive an efficient way to(2008), up to a constant factor. Because the calcula-
compute the first term of (18). The second term oiion of the objective function is essentially the same
(18) can be calculated by the ordinary F-B becaus®® that for Bunescu (2008), and in gradient com-
it consists of the marginals of arc features. There aRtation, the time complexity of Algorithm 1 is the
two derivations of the algorithm for calculating theS@Me as that for the ordinary F-B (up to a constant
first term. We describe briefly the both derivations. factor), and the proposed optimization procedure is

One is a variant of the F-B on the expectatiof?Nly required to store additional scalar valégs, ,
semi-ring proposed in Li and Eisner (2009). FirstOn €achGi’s arc.
the F-B is generalized to the expectation semi-rin
with respect to the hypothetical featuhz@1 er)’ and

by summing up the marginals of the feature vectorgye examined effectiveness of the method proposed

f(1,c1,x) on all the arcs under the distribution of thej, this paper on a real task. The task is to annotate

semi-ring, then we obtain the expectation of the feaye pos tags and to perform base-phrase chunking
ture vectorf, ., ) on the semi-ring potential. This 5, English sentences.
expectation is equal to the first term of (18). ~ Bage-phrase chunking is a task to classify con-
Another derivation is to apply the automatic dif-tin,ous subsequences of words into syntactic cat-
ferentiation (AD)(Wengert,_ 1964; Corliss et a'-’egories. This task is performed by annotating a
2002) on the F-B calculating?p, [F(1y, |- It chunking label on each word (Ramshaw and Mar-
exploits the fact that%Ep{ [F<1,y17x>] is cus, 1995). The types of chunking label consist of
equal to the first term of (18), whera ¢ “Begin-Category, which represents the beginning
R is a dummy parameter, and (y:|x) def  of a chunk, “InsideCategory, which represents the
) ) ' 1 _ — inside of a chunk, and “Other.” Usually, POS la-
7 ¢XP (91 Frayix+ )\H(l,y1>)' It Is easy peling runs first before base-phrase chunking is per-
to derive the F-B for calculating the valueformed. Therefore, this task is a typical interesting
Ep, [F<1,y17x>] ‘ . AD transforms this F-B into case where a sequence labeling depends on the out-
another algorithm for calculating the differentiationPut from other sequence labelers.
w.r.t. A evaluated at the point = 0. This trans- The data used for our experiment consist of En-
formation is achieved in an automatic manner, bglish sentences from the Penn Treebank project
replacing all appearances dfn the F-B with adual (Marcus et al., 1993) consisting of 10948 sentences
number) + e. The dual number is a variant of theand 259104 words. We divided them into two

complex number, with a kind of the imaginary unitdroups, training data consisting of 8936 sentences
c with the property;Q = 0. Like the usual Comp|ex and 211727 words and test data ConSiSting of 2012

% Experiment

!For the detailed description, see Li and Eisner (2009) and 2For example, Berz (1992) gives a detailed description of
its references. the reason why the dual number is used for this purpose.

634



Algorithm 2 Forward-backward Algorithm for Calculating Feature Covariances
def def

Input: £33, Ger = exp(01- f1ei30)s by = gyt

Output: Qi, = COVP(y1|x) |:H21’y1>, F(l,kl,yl,x):| (Vk‘l S ]Cl)

- for Yoy € sre(Gy), ay, < 1, o, 1

: for all v; € V; in a topological ordedo

prev < {x € V1 | (z,v1) € E1}

y = P o @y P G (M0 + )

reEprev xeprev

end for
Z1 <— Z Ay
z€snk(Gy)
7: for Yuy € snk(Gy), Bu, ¢ 1, B, + 1
8: for all v; € V4 in a reverse topological ordeio
90 mnext+ {zeVi|(v,x)€ E}
100 By X SumBe B X O (W mBe+ 8)

renext renext

“he))

[EnY

Er

11: end for

12: for "ky € K1, g, < 0

13: for all (uq,v1) € Fy do

14: p < ¢(u1,v1) (amﬁzlzl + aiﬂ 6711) /Zl
150 forVki € K1, aky < Gy + Sk er %)

16: end for

sentences and 47377 words. The number of the POS CRF | CRF CRF
label types is equal to 45. The number of the label + CRF | + CRF-MF | +CRF-BP
types used in base-phrase chunking is equal to 23| POS labeling|| 95.6 | (95.6) 95.8

Base-phrase| 92.1 | 92.7 93.1
We compare the proposed method to two exist-chunking

ing sequence labeling methods as baselines. The
POS labeler is the same in all the three methods  Table 2: Experimental result (F-measure)
used in this experiment. This labeler is a simple

CRF and learned by ordinary optimization proce- ) ) ) ]
dure. One baseline method is thebest pipeline procedure described in Section 3. We call this pro-

method. A simple CRF model is learned for theP0sed mgth:)d "CRF + CRF-BP" ("BP” for "back
chunking labeling, on the input sentences and tHyopagation )-

most likely POS label sequences predicted by the In “CRF + CRF-BP;” the objective function for
already learned POS labeler. We call this methol®int learning (10) is not guaranteed to be convex, so
“CRF + CRFE” The other baseline method has &Pptimization procedure is sensible to the initial con-
CRF model for the chunking labeling, which usediguration of the model parameters. In this experi-
the marginalized features offered by the POS lahent, we set the parameter values learned by “CRF
beler. However, the parameters of the POS labeldr CRF-MF” as the initial values for the training of
are fixed in the training of the chunking model.the “CRF + CRF-BP” method. Feature templates
This method corresponds to the method proposétsed in this experiment are listed in Table 1. Al-
in Bunescu (2008). We call this baseline “CRF +hough we only described the formalization and op-
CRF-MF” (“MF” for “marginalized features”). The timization procedure of the models with arc features,
proposed method is the same as “CRF + CRF-MFVe use node features in the experiment.

except that the both labelers are jointly trained by the Table 2 shows the result of the methods we men-
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=== Node feature templates ===

Node is source

Node is sink

Input word on the same time slice

Suffix of input word on the same time slice characters (n € [1,2, 3])

Initial word character is capitalizéd

All word characters are capitalizéd

Input word included in the vocabulary of P@QS (T < {(All possible POS label)
Input word contains numbers

POS labél

=== Arc feature templates === \

Tail node is source
Head node is sink
Corresponding ordered pair of POS labels

Table 1: List of feature templates. All node features are combined with the corresponding node label (POS or chunking
label) feature. All arc features are combined with the feature of the corresponding arc label festures are
instantiated on each time slice in five character windbfeatures are not used in POS labeler, and marginalized as
output features for “CRF + CRF-MF” and “CRF + CRF-BP.”

tioned. In Table 2, bold numbers indicate significantearning approaches in terms of both accuracy and
improvement over the baseline models with= computational efficiency, and perform extensive ex-
0.05. From Table 2, the proposed method signifiperiments on various tasks.

cantly outperforms two baseline methods on chunk-
ing performance. Although the improvement o
POS labeling performance by the proposed metho
“CRF + CRF-BP” is not significant, it might show M. Berz. 1992. Automatic differentiation as nonar-
that optimization procedure provides some form of chimedean analysis. i@omputer Arithmetic and En-

backward information propagation in comparison to Cl0Sure pages 439-450. _ o
“CRF + CRE-MF.” R.C. Bunescu. 2008. Learning with probabilistic fea-

tures for improved pipeline models. Rroceedings of
the 2008 Conference on Empirical Methods in Natural
Language Processingages 670-679.

In this paper, we adopt the method to weight featur¥. Collins and N. Duffy. 2002. New ranking algorithms
on an upper sequence labeling stage by the marginal—for parsing and tagging: Kernels over discrete struc-

. L . tures, and the voted perceptron. Mmoceedings of
ized probabilities estimated by the model on lower the 40th Annual Meeting on Association for Compu-

stages. We also point out that the model on an UPPET tational Linguistics pages 263-270. Association for
stage is considered to depend on the model on lower computational Linguistics.

stages indirectly. In addition, we propose optimizae.F. Corliss, C. Faure, and A. Griewank. 2008uto-
tion procedure that enables the joint optimization of matic differentiation of algorithms: from simulation to
the multiple models on the different level of stages. optimization Springer Verlag.

We perform an experiment on a real-world task, anéR- Finkel, C.D. Manning, and A.Y. Ng. 2006. Solv-
our method significantly outperforms existing meth- N9 the problem of cascading errors: Approximate
ods. bayesian inference for linguistic annotation pipelines.

. . In Proceedings of the 2006 Conference on Empirical
We examined the effectiveness of the proposed \jathods in Natural Language Processjmpgges 618—

method only on one task in comparison to just a few gog.

existing methods. In the future, we hope to comparg Lafferty, A. McCallum, and F. Pereira. 2001. Con-
our method to other competing methods like joint ditional random fields: Probabilistic models for seg-
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