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Abstract
In this paper, we propose a novel topic
model based on incorporating dictionary
definitions. Traditional topic models treat
words as surface strings without assuming
predefined knowledge about word mean-
ing. They infer topics only by observing
surface word co-occurrence. However, the
co-occurred words may not be semanti-
cally related in a manner that is relevant
for topic coherence. Exploiting dictionary
definitions explicitly in our model yields
a better understanding of word semantics
leading to better text modeling. We exploit
WordNet as a lexical resource for sense
definitions. We show that explicitly mod-
eling word definitions helps improve per-
formance significantly over the baseline
for a text categorization task.

1 Introduction

Latent Dirichlet Allocation (LDA) (Blei et al.,
2003) serves as a data-driven framework in model-
ing text corpora. The statistical model allows vari-
able extensions to integrate linguistic features such
as syntax (Griffiths et al., 2005), and has been ap-
plied in many areas.

In LDA, there are two factors which determine
the topic of a word: the topic distribution of the
document, and the probability of a topic to emit
this word. This information is learned in an unsu-
pervised manner to maximize the likelihood of the
corpus. However, this data-driven approach has
some limitations. If a word is not observed fre-
quently enough in the corpus, then it is likely to
be assigned the dominant topic in this document.
For example, the word grease (a thick fatty oil) in
a political domain document should be assigned
the topic chemicals. However, since it is an in-
frequent word, LDA cannot learn its correct se-
mantics from the observed distribution, the LDA

model will assign it the dominant document topic
politics. If we look up the semantics of the word
grease in a dictionary, we will not find any of its
meanings indicating the politics topic, yet there is
ample evidence for the chemical topic. Accord-
ingly, we hypothesize that if we know the seman-
tics of words in advance, we can get a better in-
dication of their topics. Therefore, in this paper,
we test our hypothesis by exploring the integration
of word semantics explicitly in the topic modeling
framework.

In order to incorporate word semantics from
dictionaries, we recognize the need to model
sense-topic distribution rather than word-topic dis-
tribution, since dictionaries are constructed at the
sense level. We use WordNet (Fellbaum, 1998)
as our lexical resource of choice. The notion of
a sense in WordNet goes beyond a typical word
sense in a traditional dictionary since a WordNet
sense links senses of different words that have
similar meanings. Accordingly, the sense for the
first verbal entry for buy and for purchase will
have the same sense id (and same definition) in
WordNet, while they could have different mean-
ing definitions in a traditional dictionary such as
the Merriam Webster Dictionary or LDOCE. In
our model, a topic will first emit a WordNet sense,
then the sense will generate a word. This is in-
spired by the intuition that words are instantiations
of concepts.

The paper is organized as follows: In Sections 2
and 3, we describe our models based on WordNet.
In Section 4, experiment results on text catego-
rization are presented. Moreover, we analyze both
qualitatively and quantitatively the contribution of
modeling definitions (by teasing out the contribu-
tion of explicit sense modeling in a word sense dis-
ambiguation task). Related work is introduced in
Section 5. We conclude in Section 6 by discussing
some possible future directions.552
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Figure 1: (a) LDA: Latent Dirichlet Allocation
(Blei et al., 2003). (b) STM: Semantic topic
model. The dashed arrows indicate the distribu-
tions (φ and η) and nodes (z) are not influenced by
the values of pointed nodes.

2 Semantic Topic Model

2.1 Latent Dirichlet Allocation

We briefly introduce LDA where Collapsed Gibbs
Sampling (Griffiths and Steyvers, 2004) is used
for inference. In figure 1a, given a corpus with
D documents, LDA will summarize each docu-
ment as a normalized T -dimension topic mixture
θ. Topic mixture θ is drawn from a Dirichlet distri-
bution Dir(α) with a symmetric prior α. φ con-
tains T multinomial distribution, each represent-
ing the probability of a topic z generating word w
p(w|z). φ is drawn from a Dirichlet distribution
Dir(β) with prior β.

In Collapsed Gibbs Sampling, the distribution
of a topic for the word wi = w based on values of
other data is computed as:

P (zi = z|z−i,w) ∝
n
(d)
−i,z + α

n
(d)
−i + Tα

× nw
−i,z + β

n−i,z +Wβ
(1)

In this equation, n(d)−i,z is a count of how many
words are assigned topic z in document d, exclud-
ing the topic of the ith word; nw−i,z is a count of
how many words = w are assigned topic z, also

excluding the topic of the ith word. Hence, the
first fraction is the proportion of the topic in this
document p(z|θ). The second fraction is the prob-
ability of topic z emitting wordw. After the topics
become stable, all the topics in a document con-
struct the topic mixture θ.

2.2 Applying Word Sense Disambiguation
Techniques

We add a sense node between the topic node and
the word node based on two linguistic observa-
tions: a) Polysemy: many words have more than
one meaning. A topic is more directly relevant to
a word meaning (sense) than to a word due to pol-
ysemy; b) Synonymy: different words may share
the same sense. WordNet explicitly models syn-
onymy by linking synonyms to the same sense. In
WordNet, each sense has an associated definition.

It is worth noting that we model the sense-word
relation differently from (Boyd-Graber and Blei,
2007), where in their model words are generated
from topics, then senses are generated from words.
In our model, we assume that during the genera-
tive process, the author picks a concept relevant to
the topic, then thinks of a best word that represents
that concept. Hence the word choice is dependent
on the relatedness of the sense and its fit to the
document context.

In standard topic models, the topic of a word
is sampled from the document level topic mixture
θ. The underlying assumption is that all words in a
document constitute the context of the target word.
However, it is not the case in real world corpora.
Titov and McDonald (2008) find that using global
topic mixtures can only extract global topics in on-
line reviews (e.g., Creative Labs MP3 players and
iPods) and ignores local topics (product features
such as portability and battery). They design the
Multi-grain LDA where the local topic of a word
is only determined by topics of surrounding sen-
tences. In word sense disambiguation (WSD), an
even narrower context is taken into consideration,
for instance in graph based WSD models (Mihal-
cea, 2005), the choice of a sense for a word only
depends on a local window whose size equals the
length of the sentence. Later in (Sinha and Mihal-
cea, 2007; Guo and Diab, 2010; Li et al., 2010),
people use a fixed window size containing around
12 neighbor words for WSD.

Accordingly, we adopt the WSD inspired local
window strategy in our model. However, we do553



not employ the complicated schema in (Titov and
McDonald, 2008). We simply hypothesize that the
surrounding εwords are semantically related to the
considered word, and they construct a local slid-
ing window for that target word. For a document
d with Nd words, we represent it as Nd local win-
dows – a window is created for each word. The
model is illustrated in the left rectangle in figure
1b. The window size is fixed for each word: it
contains ε/2 preceding words, and ε/2 following
words. Therefore, a word in the original document
will have ε copies, existing in ε+1 local windows.
Similarly, there are ε + 1 pairs of topics/senses
assigned for each word in the original document.
Each window has a distribution θi over topics. θi
will emit the topics of words in the window.

This approach enables us to exploit different
context sizes without restricting it to the sentence
length, and hence spread topic information across
sentence boundaries.

2.3 Integrating Definitions

Intuitively, a sense definition reveals some prior
knowledge on the topic domain: the definition of
sense [crime, offense, offence] indicates a legal
topic; the definition of sense [basketball] indicates
a sports topic, etc. Therefore, during inference, we
want to choose a topic/sense pair for each word,
such that the topic is supported by the context θ
and the sense definition also matches that topic.

Given that words used in the sense definitions
are strongly relevant to the sense/concept, we set
out to find the topics of those definition words, and
accordingly assign the sense sen itself these top-
ics. We treat a sense definition as a document and
perform Gibbs sampling on it. We normalize def-
inition length by a variable γ. Therefore, before
the topic model sees the actual documents, each
sense s has been sampled γ times. The γ topics
are then used as a “training set”, so that given a
sense, φ has some prior knowledge of which topic
it should be sampled from.

Consider the sense [party, political party] with
a definition “an organization to gain political
power” of length 6 when γ = 12. If topic
model assigns politics topic to the words “orga-
nization political power”, then sense [party, polit-
ical party] will be sampled from politics topic for
3 ∗ γ/definitionLength = 6 times.

We refer to the proposed model as Semantic
Topic Model (figure 1b). For each window vi in

the document set, the model will generate a distri-
bution of topics θi. It will emit the topics of ε+ 1
words in the window. For a word wij in window
vi, a sense sij is drawn from the topic, and then sij
generates the word wi. Sense-topic distribution φ
contains T multinomial distributions over all pos-
sible senses in the corpus drawn from a symmetric
Dirichlet distribution Dir(β). From WordNet we
know the set of words W (s) that have a sense s
as an entry. A sense s can only emit words from
W (s). Hence, for each sense s, there is a multi-
nomial distribution ηs over W (s). All η are drawn
from symmetric Dir(λ).

On the definition side, we use a different prior
αs to generate a topic mixture θ. Aside from gen-
erating si, zi will deterministically generate the
current sense sen for γ/Nsen times (Nsen is the
number of words in the definition of sense sen),
so that sen is sampled γ times in total.

The formal procedure of generative process is
the following:

For the definition of sense sen:
• choose topic mixture θ ∼ Dir(αs).
• for each word wi:
− choose topic zi ∼Mult(θ).
− choose sense si ∼Mult(φzi).
− deterministically choose sense sen ∼
Mult(φzi) for γ/Nsen times.
− choose word wi ∼Mult(ηsi).

For each window vi in a document:
• choose local topic mixture θi ∼ Dir(αd).
• for each word wij in vi:
− choose topic zij ∼Mult(θi).
− choose sense sij ∼Mult(φzij ).
− choose word wij ∼Mult(ηsij ).

2.4 Using WordNet
Since definitions and documents are in different
genre/domains, they have different distributions
on senses and words. Besides, the definition sets
contain topics from all kinds of domains, many of
which are irrelevant to the document set. Hence
we prefer φ and η that are specific for the doc-
ument set, and we do not want them to be “cor-
rupted” by the text in the definition set. There-
fore, as in figure 1b, the dashed lines indicate that
when we estimate φ and η, the topic/sense pair and
sense/word pairs in the definition set are not con-
sidered.

WordNet senses are connected by relations such
as synonymy, hypernymy, similar attributes, etc.554



We observe that neighboring sense definitions are
usually similar and are in the same topic domain.
Hence, we represent the definition of a sense as
the union of itself with its neighboring sense def-
initions pertaining to WordNet relations. In this
way, the definition gets richer as it considers more
data for discovering reliable topics.

3 Inference

We still use Collapsed Gibbs Sampling to find la-
tent variables. Gibbs Sampling will initialize all
hidden variables randomly. In each iteration, hid-
den variables are sequentially sampled from the
distribution conditioned on all the other variables.
In order to compute the conditional probability
P (zi = z, si = s|z−i, s−i,w) for a topic/sense
pair, we start by computing the joint probability
P (z, s,w) = P (z)P (s|z)P (w|s). Since the gen-
erative processes are not exactly the same for def-
initions and documents, we need to compute the
joint probability differently. We use a type spe-
cific subscript to distinguish them: Ps(·) for sense
definitions and Pd(·) for documents.

Let sen be a sense. Integrating out θ we have:

Ps(z) =

(
Γ(Tαs)

Γ(αs)T

)S S∏

sen=1

∏
z Γ(n

(sen)
z + αs)

Γ(n(sen) + Tα)
(2)

where n(sen)z means the number of times a word
in the definition of sen is assigned to topic z, and
n(sen) is the length of the definition. S is all the
potential senses in the documents.

We have the same formula of P (s|z) and
P (w|s) for definitions and documents. Similarly,
let nz be the number of words in the documents
assigned to topic z, and nsz be the number of times
sense s assigned to topic z. Note that when s
appears in the superscript surrounded by brackets
such as n(s)z , it denotes the number of words as-
signed to topics z in the definition of sense s. By
integrating out φ we obtain the second term:

P (s|z) =

(
Γ(Sβ)

Γ(β)S

)T T∏

z=1

∏
s Γ(ns

z + n
(s)
z γ/n(s) + β)

Γ(nz +
∑

s′ n
(s′)
z γ/n(s′) + Sβ)

(3)

At last, assume ns denotes the number of sense
s in the documents, and nws denotes the number of
sense s to generate the word w, then integrating
out η we have:

P (w|s) =

S∏

s=1

Γ(|W (s)|λ)

Γ(λ)|W (s)|

∏W (s)
w Γ(nw

s + λ)

Γ(ns + |W (s)|λ)
(4)

With equation 2-4, we can compute the condi-
tional probability Ps(zi = z, si = s|z−i, s−i,w)
for a sense-topic pair in the sense definition. Let
seni be the sense definition containing word wi,
then we have:

Ps(zi = z, si = s|z−i, s−i,w) ∝
n
(seni)
−i,z + αs

n
(seni)
−i + Tαs

ns
z + n

(s′)
−i,zγ/n

(s′) + β

nz +
∑

s′ n
(s′)
−i,zγ/n

(s′) + Sβ

nw
s + λ

ns + |W (s)|λ

(5)

The subscript −i in expression n−i denotes
the number of certain events excluding word wi.
Hence the three fractions in equation 5 correspond
to the probability of choosing z from θsen, choos-
ing s from z and choosingw from s. Also note that
our model defines s that can only generate words
in W (s), therefore for any word w /∈ W (s), the
third fraction will yield a 0.

The probability for documents is similar to that
for definitions except that there is a topic mixture
for each word, which is estimated by the topics in
the window. Hence Pd(z) is estimated as:

Pd(z) =
∏

i

Γ(Tαd)

Γ(αd)T

∏
z Γ(n

(vi)
z + αd)

Γ(n(vi) + Tαd)
(6)

Thus, the conditional probability for documents
can be estimated by cancellation terms in equation
6, 3, and 4:

Pd(zij = z, sij = s|z−ij, s−ij,w) ∝
n
(vi)
−ij,z + αd

n
(vi)
−ij + Tαd

ns
−ij,z + n

(s′)
z γ/n(s′) + β

n−ij,z +
∑

s′ n
(s′)
z γ/n(s′) + Sβ

nw
−ij,s + λ

n−ij,s + |W (s)|λ

(7)

3.1 Approximation
In current model, each word appears in ε+ 1 win-
dows, and will be generated ε + 1 times, so there
will be ε + 1 pairs of topics/senses sampled for
each word, which requires a lot of additional com-
putation (proportional to context size ε). On the
other hand, it can be imagined that the set of val-
ues {zij , sij |j − ε/2 ≤ i ≤ j + ε/2} in dif-
ferent windows vi should roughly be the same,
since they are hidden values for the same wordwj .
Therefore, to reduce computation complexity dur-
ing Gibbs sampling, we approximate the values of
{zij , sij | i 6= j} by the topic/sense (zjj , sjj) that
are generated from window vj . That is, in Gibbs
sampling, the algorithm does not actually sample
the values of {zij , sij , | i 6= j}; instead, it directly
assumes the sampled values are zjj , sjj .555



4 Experiments and Analysis

Data: We experiment with several datasets,
namely, the Brown Corpus (Brown), New York
Times (NYT) from the American National Cor-
pus, Reuters (R20) and WordNet definitions. In a
preprocessing step, we remove all the non-content
words whose part of speech tags are not one of
the following set {noun, adjective, adverb, verb}.
Moreover, words that do not have a valid lemma in
WordNet are removed. For WordNet definitions,
we remove stop words hence focusing on relevant
content words.

Corpora statistics after each step of preprocess-
ing is presented in Table 1. The column WN token
lists the number of word#pos tokens after prepro-
cessing. Note that now we treat word#pos as a
word token. The column word types shows cor-
responding word#pos types, and the total number
of possible sense types is listed in column sense
types. The DOCs size for WordNet is the total
number of senses defined in WordNet.

Experiments: We design two tasks to test our
models: (1) text categorization task for evaluat-
ing the quality of values of topic nodes, and (2) a
WSD task for evaluating the quality of the values
of the sense nodes, mainly as a diagnostic tool tar-
geting the specific aspect of sense definitions in-
corporation and distinguish that component’s con-
tribution to text categorization performance. We
compare the performance of four topic models.
(a) LDA: the traditional topic model proposed in
(Blei et al., 2003) except that it uses Gibbs Sam-
pling for inference. (b) LDA+def: is LDA with
sense definitions. However they are not explic-
itly modeled; rather they are treated as documents
and used as augmented data. (c) STM0: the topic
model with an additional explicit sense node in the
model, but we do not model the sense definitions.
And finally (d) STMn is the full model with defi-
nitions explicitly modeled. In this setting n is the
γ value. We experiment with different γ values
in the STM models, and investigate the semantic
scope of words/senses by choosing different win-
dow size ε. We report mean and standard deviation
based on 10 runs.

It is worth noting that a larger window size
ε suggests documents have larger impact on the
model (φ, η) than definitions, since each document
word has ε copies. This is not a desirable property
when we want to investigate the weight of defi-

nitions by choosing different γ values. Accord-
ingly, we only use zjj , sjj , wjj to estimate φ, η, so
that the impact of documents is fixed. This makes
more sense, in that after the approximation in sec-
tion 3.1, there is no need to use {zij , sij , | i 6= j}
(they have the same values as zjj , sjj).

4.1 Text Categorization

We believe our model can generate more “correct”
topics by looking into dictionaries. In topic mod-
els, each word is generalized as a topic and each
document is summarized as the topic mixture θ,
hence it is natural to evaluate the quality of in-
ferred topics in a text categorization task. We fol-
low the classification framework in (Griffiths et
al., 2005): first run topic models on each dataset
individually without knowing label information
to achieve document level topic mixtures, then we
employ Naive Bayes and SVM (both implemented
in the WEKA Toolkit (Hall et al., 2009)) to per-
form classification on the topic mixtures. For all
document, the features are the percentage of top-
ics. Similar to (Griffiths et al., 2005), we assess in-
ferred topics by the classification accuracy of 10-
fold cross validation on each dataset.

We evaluate our models on three datasets in the
cross validation manner: The Brown corpus which
comprises 500 documents grouped into 15 cate-
gories (same set used in (Griffiths et al., 2005));
NYT comprising 800 documents grouped into the
16 most frequent label categories; Reuters (R20)
comprising 8600 documents labeled with the most
frequent 20 categories. In R20, combination of
categories is treated as separate category labels,
so money, interest and interest are considered
different labels.

For the three datasets, we use the Brown cor-
pus only as a tuning set to decide on the topic
model parameters for all of our experimentation,
and use the optimized parameters directly on NYT
and R20 without further optimization.

4.1.1 Classification Results
Searching γ and ε on Brown: The classification
accuracy on the Brown corpus with different ε and
γ values using Naive Bayes and SVM are pre-
sented in figure 2a and 2b. In this section, the
number of topics T is set to 50. The possible
ε values in the horizontal axis are 2, 10, 20, 40,
all. The possible γ values are 0, 1, 2. Note that
ε = all means that no local window is used, and
γ = 0 means definitions are not used. The hyper-556



Corpus DOCs size orig tokens content tokens WN tokens word types sense types
Brown 500 1022393 580882 547887 27438 46645
NYT 800 743665 436988 393120 19025 37631
R20 8595 901691 450935 417331 9930 24834

SemCor 352 676546 404460 352563 28925 45973
WordNet 117659 1447779 886923 786679 42080 60567

Table 1: Corpus statistics
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(a) Naive Bayes on Brown

0 10 20 30 40 50 all
40

45

50

55

60

65

70

75

window size

ac
cu

ra
cy

%
 

 
LDA
LDA+def
STM0
STM1
STM2

(b) SVM on Brown
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Figure 2: Classification accuracy at different parameter settings

parameters are tuned as αd = 0.1, αs = 0.01, β =
0.01, λ = 0.1.

From figure 2, we observe that results using
SVM have the same trend as Naive Bayes except
that the accuracies are roughly 5% higher for SVM
classifier. The results of LDA and LDA+def sug-
gest that simply treating definitions as documents
in an augmented data manner does not help. Com-
paring SMT0 with LDA in the same ε values, we
find that explicitly modeling the sense node in the
model greatly improves the classification results.
The reason may be that words in LDA are inde-
pendent isolated strings, while in STM0 they are
connected by senses.

STM2 prefers smaller window sizes (ε less than
40). That means two words with a distance larger
than 40 are not necessarily semantically related or
share the same topic. This ε number also corre-
lates with the optimal context window size of 12
reported in WSD tasks (Sinha and Mihalcea, 2007;
Guo and Diab, 2010).

Classification results: Table 2 shows the results
of our models using best tuned parameters of ε =
10, γ = 2 on 3 datasets. We present three base-
lines in Table 2: (1) WEKA uses WEKA’s classi-
fiers directly on bag-of-words without topic mod-
eling. The values of features are simply term fre-
quency. (2) WEKA+FS performs feature selection
using information gain before applying classifica-
tion. (3) LDA, is the traditional topic model. Note
that Griffiths et al.’s (2005) implementation of

LDA achieve 51% on Brown corpus using Naive
Bayes . Finally the Table illustrates the results
obtained using our proposed models STM0 (γ=0)
and STM2 (γ = 2).

It is worth noting that R20 (compared to NYT)
is a harder condition for topic models. This is
because fewer words (10000 distinct words ver-
sus 19000 in NYT) are frequently used in a large
training set (8600 documents versus 800 in NYT),
making the surface word feature space no longer
as sparse as in the NYT or Brown corpus, which
implies simply using surface words without con-
sidering the words distributional statistics – topic
modeling – is good enough for classification. In
(Blei et al., 2003) figure 10b they also show worse
text categorization results over the SVM baseline
when more than 15% of the training labels of
Reuters are available for the SVM classifiers, indi-
cating that LDA is less necessary with large train-
ing data. In our investigation, we report results
on SVM classifiers trained on the whole Reuters
training set. In our experiments, LDA fails to cor-
rectly classify nearly 10% of the Reuters docu-
ments compared to the WEKA baseline, however
STM2 can still achieve significantly better accu-
racy (+4%) in the SVM classification condition.

Table 2 illustrates that despite the difference be-
tween NYT, Reuters and Brown (data size, genre,
domains, category labels), exploiting WSD tech-
niques (namely using a local window size cou-
pled with explicitly modeling a sense node) yields557



Brown NYT R20
NB SVM NB SVM NB SVM

WEKA 48 47.8 57 54.1 72.4 82.9
WEKA+FS 50 47.2 56.9 55.1 72.9 83.4

LDA 47.8±4.3 53.9±3.8 48.5±5.5 53.8±3.5 61.0±3.3 72.5±2.5
STM0 68.6±3.5 70.7±3.9 66.7±3.8 74.2±4.0 72.7±3.5 85.2±0.9
STM2 69.3±3.3 75.4±3.7 74.6±3.3 79.3±2.5 73±3.7 86.9±1.2

Table 2: Classification results on 3 datasets using hyperparameters tuned on Brown.
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Figure 3: SVM accuracy on each category of NYT

significantly better results than all three baselines
including LDA. Furthermore, explicit definition
modeling as used in STM2 yields the best perfor-
mance consistently overall.

Finally, in Figure 2c we show the SVM clas-
sification results on NYT in different parame-
ter settings. We find that the NYT classifica-
tion accuracy trend is consistent with that on the
Brown corpus for each parameter setting of ε ∈
{2, 10, 20, 40, all} and γ ∈ {0, 1, 2}. This further
proves the robustness of STMn.

4.2 Analysis on the Impact of Modeling
Definitions

4.2.1 Qualitative Analysis
To understand why definitions are helpful in text
categorization, we analyze the SVM performance
of STM0 and STM2 (ε = 10) on each cate-
gory of NYT dataset (figure 3). We find STM2
outperforms STM0 in all categories. However,
the largest gain is observed in Society, Miscel-
laneous, Culture, Technology. For Technology,
we should credit WordNet definitions, since Tech-
nology may contain many infrequent technical
terms, and STM0 cannot generalize the meaning
of words only by distributional information due to
their low frequency usage. However in some other
domains, fewer specialized words are repeatedly

used, hence STM0 can do as well as STM2.
For the other 3 categories, we hypothesize that

these documents are likely to be a mixture of mul-
tiple topics. For example, a Culture news could
contain topics pertaining to religion, history, art;
while a Society news about crime could relate to
law, family, economics. In this case, it is very
important to sample a true topic for each word,
so that ML algorithms can distinguish the Cul-
ture documents from the Religion ones by the pro-
portion of topics. Accordingly, adding definitions
should be very helpful, since it specifically defines
the topic of a sense, and shields it from the influ-
ence of other “incorrect/irrelevant” topics.

4.2.2 Quantitative Analysis with Word Sense
Disambiguation

A side effect of our model is that it sense disam-
biguates all words. As a means of analyzing and
gaining some insight into the exact contribution of
explicitly incorporating sense definitions (STMn)
versus simply a sense node (STM0) in the model,
we investigate the quality of the sense assignments
in our models. We believe that the choice of the
correct sense is directly correlated with the choice
of a correct topic in our framework. Accord-
ingly, a relative improvement of STMn over STM0
(where the only difference is the explicit sense def-
inition modeling) in WSD task is an indicator of
the impact of using sense definitions in the text
categorization task.
WSD Data: We choose the all-words WSD task in
which an unsupervised WSD system is required to
disambiguate all the content words in documents.
Our models are evaluated against the SemCor
dataset. We prefer SemCor to all-words datasets
available in Senseval-3 (Snyder and Palmer, 2004)
or SemEval-2007 (Pradhan et al., 2007), since
it includes many more documents than either set
(350 versus 3) and therefore allowing more reli-
able results. Moreover, SemCor is also the dataset
used in (Boyd-Graber et al., 2007), where a Word-
Net based topic model for WSD is introduced. The558



Total Noun Adjective Adverb Verb
sense annotated words 225992 86996 31729 18947 88320

polysemous words 187871 70529 21989 11498 83855
TF-IDF - 0.422 0.300 0.153 0.182

Table 3: Statistics of SemCor per POS

statistics of SemCor is listed in table 3.
We use hyperparameters tuned from the text cat-

egorization task: αd=0.1, αs=0.01, β=0.01, δ=1,
T=50, and try different values of ε ∈ {10, 20, 40}
and γ ∈ {0, 2, 10}. The Brown corpus and Word-
Net definitions corpus are used as augmented data,
which means the dashed line in figure 1c will be-
come bold. Finally, we choose the most frequent
answer for each word in the last 10 iterations of a
Gibbs Sampling run as the final sense choice.
WSD Results: Disambiguation per POS results
are presented in table 4. We only report results
on polysemous words. We can see that modeling
definitions (STM2 and STM10) improves perfor-
mance significantly over STM0’s across the board
per POS and overall. The fact that STMn picks
more correct senses helps explain why STMn clas-
sifies more documents correctly than STM0. Also
it is interesting to see that unlike in the text cate-
gorization task, larger values of γ generate better
WSD results. However, the window size ε, does
not make a significant difference, yet we note that
ε=10 is still the optimal value, similar to our ob-
servation in the text categorization task.

STM10 achieves similar results as in LDAWN
(Boyd-Graber et al., 2007) which was specifically
designed for WSD. LDAWN needs a fine grained
hypernym hierarchy to perform WSD, hence they
can only disambiguate nouns. They report differ-
ent performances under various parameter setting.
We cite their best performance of 38% accuracy
on nouns as a comparison point to our best perfor-
mance for nouns of 38.5%.

An interesting feature of STM10 is that it
performs much better in nouns than adverbs and
verbs, compared to a random baseline in Table
4. This is understandable since topic information
content is mostly borne by nouns and adjectives,
while adverbs and verbs tend to be less informa-
tive about topics (e.g., even, indicate, take), and
used more across different domain documents.
Hence topic models are weaker in their ability
to identify clear cues for senses for verbs and
adverbs. In support of our hypothesis about the
POS distribution, we compute the average TF-IDF

scores for each POS (shown in Table 3 according
to the equation illustrated below). The average
TF-IDF clearly indicate the positive skewness of
the nouns and adjectives (high TF-IDF) correlates
with the better WSD performance.

TF-IDF(pos) =
∑

i

∑
d TF-IDF(wi,d)

# of wi,d

where wi,d ∈ pos.
At last, we notice that the most frequent sense

baseline performs much better than our models.
This is understandable since: (1) most frequent
sense baseline can be treated as a supervised
method in the sense that the sense frequency is
calculated based on the sense choice as present
in sense annotated data; (2) our model is not de-
signed for WSD, therefore it discards a lot of in-
formation when choosing the sense: in our model,
the choice of a sense si is only dependent on two
facts: the corresponding topic zi and word wi,
while in (Li et al., 2010; Banerjee and Pedersen,
2003), they consider all the senses and words in
the context words.

5 Related work

Various topic models have been developed for
many applications. Recently there is a trend
of modeling document dependency (Dietz et al.,
2007; Mei et al., 2008; Daume, 2009). How-
ever, topics are only inferred based on word co-
occurrence, while word semantics are ignored.

Boyd-Graber et al. (2007) are the first to inte-
grate semantics into the topic model framework.
They propose a topic model based on WordNet
noun hierarchy for WSD. A word is assumed to be
generated by first sampling a topic, then choosing
a path from the root node of hierarchy to a sense
node corresponding to that word. However, they
only focus on WSD. They do not exploit word def-
initions, neither do they report results on text cat-
egorization.

Chemudugunta et al. (2008) also incorporate a
sense hierarchy into a topic model. In their frame-
work, a word may be directly generated from a
topic (as in standard topic models), or it can be559



Total Noun Adjective Adverb Verb
random 22.1 26.2 27.9 32.2 15.8

most frequent sense 64.7 74.7 77.5 74.0 59.6
STM0 ε = 10 24.1±1.4 29.3±4.3 28.7±1.1 34.1±3.1 17.1±1.6

ε = 20 24±1.3 30.2±3.3 29.1±1.4 34.9±3.1 15.9±0.7
ε = 40 24±2.4 28.4±4.3 28.7±1.1 36.4±4.7 17.3±2.4

STM2 ε = 10 27.5±1.1 36.1±3.8 34.0±1.2 33.4±1.8 17.8±1.4
ε = 20 25.7±1.3 32.0±4.2 33.5±0.7 34.2±3.4 17.3±0.7
ε = 40 26.1±1.3 32.5±3.9 33.6±0.9 34.2±3.4 17.5±1.4

STM10 ε = 10 28.8±1.1 38.5±2.3 34.7±0.8 34.0±3.3 18.4±1.2
ε = 20 27.7±1.0 36.8±2.2 34.5±0.7 33.0±3.1 17.6±0.7
ε = 40 28.1±1.5 38.4±3.1 34.0±1.0 35.1±5.4 17.0±0.9

Table 4: Disambiguation results per POS on polysemous words.

generated by choosing a sense path in the hierar-
chy. Note that no topic information is on the sense
path. If a word is generated from the hierarchy,
then it is not assigned a topic. Their models based
on different dictionaries improve perplexity.

Recently, several systems have been proposed
to apply topic models to WSD. Cai et al. (2007)
incorporate topic features into a supervised WSD
framework. Brody and Lapata (2009) place the
sense induction in a Baysian framework by assum-
ing each context word is generated from the target
word’s senses, and a context is modeled as a multi-
nomial distribution over the target word’s senses
rather than topics. Li et al. (2010) design sev-
eral systems that use latent topics to find a most
likely sense based on the sense paraphrases (ex-
tracted from WordNet) and context. Their WSD
models are unsupervised and outperform state-of-
art systems.

Our model borrows the local window idea from
word sense disambiguation community. In graph-
based WSD systems (Mihalcea, 2005; Sinha and
Mihalcea, 2007; Guo and Diab, 2010), a node is
created for each sense. Two nodes will be con-
nected if their distance is less than a predefined
value; the weight on the edge is a value returned
by sense similarity measures, then the PageR-
ank/Indegree algorithm is applied on this graph to
determine the appropriate senses.

6 Conclusion and Future Work

We presented a novel model STM that combines
explicit semantic information and word distribu-
tion information in a unified topic model. STM
is able to capture topics of words more accurately
than traditional LDA topic models. In future work,
we plan to model the WordNet sense network. We
believe that WordNet senses are too fine-grained,
hence we plan to use clustered senses, instead of

current WN senses, in order to avail the model of
more generalization power.
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