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Abstract

This paper presents a generative model for
the automatic discovery of relations between
entities in electronic medical records. The
model discovers relation instances and their
types by determining which context tokens ex-
press the relation. Additionally, the valid se-
mantic classes for each type of relation are de-
termined. We show that the model produces
clusters of relation trigger words which bet-
ter correspond with manually annotated re-
lations than several existing clustering tech-
niques. The discovered relations reveal some
of the implicit semantic structure present in
patient records.

1 Introduction

Semantic relations in electronic medical records
(EMRs) capture important meaning about the as-
sociations between medical concepts. Knowledge
about how concepts such as medical problems, treat-
ments, and tests are related can be used to improve
medical care by speeding up the retrieval of relevant
patient information or alerting doctors to critical in-
formation that may have been overlooked. When
doctors write progress notes and discharge sum-
maries they include information about how treat-
ments (e.g., aspirin, stent) were administered for
problems (e.g. pain, lesion) along with the out-
come, such as an improvement or deterioration. Ad-
ditionally, a doctor will describe the tests (e.g., x-
ray, blood sugar level) performed on a patient and
whether the tests were conducted to investigate a
known problem or revealed a new one. These textual

descriptions written in a patient’s record encode im-
portant information about the relationships between
the problems a patients has, the treatments taken for
the problems, and the tests which reveal and investi-
gate the problems.

The ability to accurately detect semantic rela-
tions in EMRs, such asTreatment-Administered-for-
Problem, can aid in querying medical records. Af-
ter a preprocessing phase in which the relations are
detected in all records they can be indexed and re-
trieved later as needed. A doctor could search for
all the times that a certain treatment has been used
on a particular problem, or determine all the treat-
ments used for a specific problem. An additional
application is the use of the relational information
to flag situations that merit further review. If a pa-
tient’s medical record indicates a test that was found
to reveal a critical problem but no subsequent treat-
ment was performed for the problem, the patient’s
record could be flagged for review. Similarly, if
a Treatment-Worsens-Problemrelation is detected
previously in a patient’s record, that information can
be brought to the attention of a doctor who advises
such a treatment in the future. By considering all
of the relations present in a corpus, better medical
ontologies could be built automatically or existing
ones can be improved by adding additional connec-
tions between concepts that have a relation in text.

Given the large size of EMR repositories, we ar-
gue that it is quite important to have the ability to
perform relation discovery between medical con-
cepts. Relations between medical concepts benefit
translational medicine whenever possible relations
are known. Uzuner et al. (2011) show that super-
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vised methods recognize such relations with high ac-
curacy. However, large sets of annotated relations
need to be provided for this purpose. To address
both the problem of discovering unknown relations
between medical concepts and the related problem
of generating examples for known relations, we have
developed an unsupervised method. This approach
has the advantages of not requiring an expensive an-
notation effort to provide training data for seman-
tic relations, which is particularly difficult for medi-
cal records, characterized by many privacy concerns.
Our analysis shows a high level of overlap between
the manually annotated relations and those that were
discovered automatically. Our experimental results
show that this approach improves upon simpler clus-
tering techniques.

The remainder of this paper is organized as fol-
lows. Section 2 discusses the related work. Section
3 reports our novel generative model for discovering
relations in EMRs, Section 4 details the inference
and parameter estimation of our method. Section
5 details our experiments, Section 6 discusses our
findings. Section 7 summarizes the conclusions.

2 Related Work

Previous methods for unsupervised relation dis-
covery have also relied on clustering techniques.
One technique uses the context of entity arguments
to cluster, while another is to perform a post-
processing step to cluster relations found using an
existing relation extraction system. The approaches
most similar to ours have taken features from the
context of pairs of entities and used those features to
form a clustering space. In Hasegawa et al. (2004),
those features are tokens found within a context win-
dow of the entity pair. Distance between entity pairs
is then computed using cosine similarity. In another
approach, Rosenfeld and Feldman (2007) use hierar-
chical agglomerative clustering along with features
based on token patterns seen in the context, again
compared by cosine similarity.

Other approaches to unsupervised relation dis-
covery have relied on a two-step process where a
number of relations are extracted, usually from a
predicate-argument structure. Then similar relations
are clustered together since synonymous predicates
should be considered the same relation (e.g. “ac-

quire” and “purchase”). Yates (2009) considers the
output from an open information extraction system
(Yates et al., 2007) and clusters predicates and argu-
ments using string similarity and a combination of
constraints. Syed and Viegas (2010) also perform a
clustering on the output of an existing relation ex-
traction system by considering the number of times
two relations share the same exact arguments. Sim-
ilar relations are expected to have the same pairs
of arguments (e.g. “Ford produces cars” and “Ford
manufactures cars”). These approaches and others
(Agichtein and Gravano, 2000; Pantel and Pennac-
chiotti, 2006) rely on an assumption that relations
are context-independent, such as when a person is
born, or the capital of a nation. Our method will
discover relations that can depend on the context as
well. For instance, “penicillin” may be causally re-
lated to “allergic reaction” in one patient’s medical
record but not in another. The relation between the
two entities is not globally constant and should be
considered only within the scope of one patient’s
records.

Additionally, these two-step approaches tend
to rely on predicate-argument structures such as
subject-verb-object triples to detect arbitrary rela-
tions (Syed and Viegas, 2010; Yates et al., 2007).
Such approaches can take advantage of the large
body of research that has been done on extracting
syntactic parse structure and semantic role infor-
mation from text. However, these approaches can
overlook relations in text which do not map easily
onto those structures. Unlike these approaches, our
model can detect relations that are not expressed as
a verb, such as “[cough] + [green sputum]” to ex-
press a conjunction or “[Cl] 119 mEq / L [High]” to
express that a test reading is indicating a problem.

The 2010 i2b2/VA Challenge (Uzuner et al.,
2011) developed a set of annotations for medical
concepts and relations on medical progress notes
and discharge summaries. One task at the challenge
involved developing systems for the extraction of
eight types of relations between concepts. We use
this data set to compare our unsupervised method
with others.

The advantage of our work over existing unsu-
pervised approaches is the simultaneous clustering
of both argument words and relation trigger words.
These broad clusters handle: (i) synonyms, (ii) argu-
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ment semantic classes, and (iii) words belonging to
the same relation.

3 A Generative Model for Discovering
Relations

3.1 Unsupervised Relation Discovery

A simple approach to discovering relations between
medical entities in clinical texts uses a clustering ap-
proach, e.g. Latent Dirichlet Allocation (LDA) (Blei
et al., 2003). We start with an assumption that rela-
tions exist between two entities, which we call argu-
ments, and may be triggered by certain words be-
tween those entities which we calltrigger words.
For example, given the text “[x-ray] revealed [lung
cancer]”, the first argument isx-ray, the second ar-
gument islung cancer, and the trigger word isre-
vealed. We further assume that the arguments must
belong to a small set of semantic classes specific to
the relation. For instance,x-ray belongs to a class
of medical tests, whereaslung cancerbelongs to a
class of medical problems. While relations may ex-
ist between distant entities in text, we focus on those
pairs of entities in text which have no other entities
between them. This increases the likelihood of a re-
lation existing between the entities and minimizes
the number of context words (words between the en-
tities) that are not relevant to the relation.

With these assumptions we build a baseline rela-
tion discovery using LDA. LDA is used as a baseline
because of its similarities with our own generative
model presented in the next section. Each consec-
utive pair of entities in text is extracted, along with
the tokens found between them. Each of the entities
in a pair is split into tokens which are taken along
with the context tokens to form a singlepseudo-
document. When the LDA is processed on all such
pseudo-documents, clusters containing words which
co-occur are formed. Our assumption that relation
arguments come from a small set of semantic classes
should lead to clusters which align with relations
since the two arguments of a relation will co-occur
in the pseudo-documents. Furthermore, those argu-
ment tokens should co-occur with relation trigger
words as well.

This LDA-based approach was examined on elec-
tronic medical records from the 2010 i2b2/VA Chal-
lenge data set (Uzuner et al., 2011). The data set

Cluster 1
Words: secondary, due, likely, patient, disease,
liver, abdominal, cancer, pulmonary, respiratory,
elevated, volume, chronic, edema, related
“Correct” instances: [Metastatic colon cancer]
with [abdominal carcinomatosis]; [symptoms]
were due to [trauma]
“Incorrect” instances : [mildly improving symp-
toms] , plan will be to continue with [his cur-
rent medicines]; [prophylaxis] against [peptic ul-
cer disease]
Cluster 2:
Words: examination, no, positive, culture, exam,
blood, patient, revealed, cultures, physical, out,
urine, notable, showed, cells
“Correct” instances: [a blood culture] grew out
[Staphylococcusaureus]; [tamponade] by [exam-
ination]
“Incorrect” instances : [the intact drain] drain-
ing [bilious material]; [a Pseudomonas cellulitis]
and [subsequent sepsis]

Figure 1: Two clusters found by examining the most
likely words under two LDA topics. The instances are
pseudo-documents whose probability of being assigned
to that cluster was over 70%

contains manually annotated medical entities which
were used to form the pairs of entities needed. For
example, Figure 1 illustrates examples of two clus-
ters out of 15 discovered automatically using LDA
on the corpus. The first cluster appears to contain
words which indicate a relation whose two argu-
ments are both medical problems (e.g. “disease”,
“cancer”, “edema”). The trigger words seem to in-
dicate a possible causal relation (e.g., “due”, “re-
lated”, “secondary”). The second cluster contains
words relevant to medical tests (e.g. “examination”,
“culture”) and their findings (“revealed”, “showed”,
“positive”). As illustrated in Figure 1, some of the
context words are not necessarily related to the re-
lation. The word “patient” for instance is present
in both clusters but is not a trigger word because
it is likely to be seen in the context of any rela-
tion in medical text. The LDA-based model treats
all words equally and cannot identify which words
are likely trigger words and which ones aregeneral
words, which merely occur frequently in the context
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of a relation.
In addition, while the LDA approach can de-

tect argument words which co-occur with trigger
words (e.g., “examination” and “showed”), the clus-
ters produced with LDA do not differentiate between
contextual words and words which belong to the ar-
guments of the relation. An approach which mod-
els arguments separately from context words could
learn the semantic classes of those arguments and
thus better model relations. Considering the exam-
ples from Figure 1, a model which could cluster
“examination”, “exam”, “cultures”, and “culture”
into onemedical testcluster and “disease”, “cancer”
and “edema” into amedical problemcluster separate
from the relation trigger words and general words
should model relations more accurately by better re-
flecting the implicit structure of the text. Because of
these limitations many relations discovered in this
way are not accurate, as can be seen in Figure 1.

3.2 Relation Discovery Model (RDM)

The limitations identified in the LDA-based ap-
proach are solved by a novel relation discovery
model (RDM) which jointly models relation argu-
ment semantic classes and considers them separately
from the context words. Relations triggered by pairs
of medical entities enable us to consider three ob-
servable features: (A1) the first argument; (A2)
the second argument; and (CW) the context words
found between A1 and A2.

For instance, in sentence S1 the arguments are
A1=“some air hunger” and A2=“his tidal volume”
while the context words are “last”, “night”, “when”,
“I”, and “dropped”.

S1:He developed [some air hunger]PROB last night
when I dropped [his tidal volume]TREAT from 450
to 350.

In the RDM, the contextual words are assumed to
come from a mixture model with 2 mixture compo-
nents: a relation trigger word (x = 0), or a general
word (x = 1), wherex is a variable representing
which mixture component a word belongs to. In
sentence S1 for example, the word “dropped” can
be seen as a trigger word for aTreatment-Causes-
Problemrelation. The remaining words are not trig-
ger words and hence are seen as general words.

Under the RDM’s mixture model, the probability

of a context word is:
P (wC |tr, z) =

P (wC |tr, x = 0)× P (x = 0|tr) +

P (wC |z, x = 1)× P (x = 1|tr)

WherewC is a context word, the variabletr is
the relation type, andz is the general word class.
The variablex chooses whether a context word
comes from a relation-specific distribution of trig-
ger words, or from a general word class. In the
RDM, the two argument classes are modeled jointly
asP (c1, c2|tr), wherec1 and c2 are two semantic
classes associated with a relation of typetr. How-
ever the assignment of classes to arguments depends
on a directionality variabled. If d = 0, then the first
argument is assigned semantic classc1 and the sec-
ond is assigned classc2. Whend = 1 however, the
class assignments are swapped. This models the fact
that a relation’s arguments do not come in a fixed
order, “[MRI] revealed [tumor]” is the same type of
relation as “[tumor] was revealed by [x-ray]”. Fig-
ure 2 shows the graphical model for the RDM. Each
candidate relation is modeled independently, with a
total of I relation candidates. Variablew1 is a word
observed from the first argument, andw2 is a word
observed from the second argument. The model
takes parameters for the number of relations types
(R), the number of argument semantic classes (A),
and the number of general word classes (K). The
generative process for the RDM is:

1. For relation typer = 1..R:

(a) Draw a binomial distributionσr from
Beta(αx) representing the mixture distri-
bution for relationr

(b) Draw a joint semantic class distribution
ψ1,2
r ∈ RC×C fromDirichlet(α1,2).

2. Draw a categorical word distributionφzz′ from
Dirichlet(βz) for each general word class
z′ = 1..K

3. Draw a categorical word distributionφrr′ from
Dirichlet(βr) for eachr′ = 1..R

4. for semantic classa′ = 1..A:

(a) Draw categorical word distributions
ω1
a′ and ω2

a′ from Dirichlet(β1) and
Dirichlet(β2) for the first and second
arguments, respectively.
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Figure 2: Graphical model for the RDM.c1,2 represents the joint generation ofc1 andc2
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∏WC
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WC+Kαz × f(tr ,xi)+α
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j )+βr
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Figure 3: Gibbs sampling update equation for variablestr andd for theith relation candidate. The variablesa1 = c1

anda2 = c2 if d = 0, or a1 = c2 anda2 = c1 if d = 1. W is the size of the vocabulary.f(•) is the count of
the number of times that event occurred, excluding assignments for the relation instance being sampled. For instance,
f(tr, d) =

∑I
k 6=i I[t

r
k = tri ∧ dk = di]

5. Draw a categorical relation type distributionρ
fromDirichlet(αr)

6. For each pair of consecutive entities in the cor-
pus,i = 1..I:

(a) Sample a relation typetr from ρ
(b) Jointly sample semantic classesc1 andc2

for the first and second arguments from
ψ1,2
tr

(c) Draw a general word class categorical dis-
tribution θ fromDirichlet(αz)

(d) For each tokenj = 1..W1 in the first ar-
gument: Sample a wordw1

j from ω1
c1 if

d = 0 or ω2
c2 if d = 1

(e) For each tokenj = 1..W2 in the second
argument: Sample a wordw2

j from ω2
c2 if

d = 0 or ω1
c1 if d = 1

(f) For each tokenj = 1..WC in the context
of the entities:

i. Sample a general word classz from θ
ii. Sample a mixture componentx from
σtr

iii. Sample a word fromφrtr if x = 0 or

φzz if x = 1.

In the RDM, words from the arguments are in-
formed by the relation through an argument seman-
tic class which is sampled fromP (c1, c2|tr) = ψ1,2

tr .
Furthermore, words from the context are informed
by the relation type. These dependencies enable
more coherent relation clusters to form during pa-
rameter estimation because argument classes and re-
lation trigger words are co-clustered.

We chose to model two distinct sets of entity
words (ω1 andω2) depending on whether the entity
occurred in the first argument or the second argu-
ment of the relation. The intuition for using disjoint
sets of entities is based on the observation that an
entity may be expressed differently if it comes first
or second in the text.

4 Inference and Parameter Estimation

Assignments to the hidden variables in RDM can
be made by performing collapsed Gibbs sampling
(Griffiths and Steyvers, 2004). The joint probability
of the data is:
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P (wC,w1,w2;α,β) ∝
P (σ|αx)P (ρ|αr)P (δ|αd)P (ψ1,2|α1,2)
×P (φz|βz)P (φr|βr)P (ω1|β1)P (ω2|β2)
×∏I

i [P (θi|αz)P (tri |ρ)P (di|tr, δtr )P (c1i , c2i |tr, ψ1,2)

×∏WC,i

j P (zi,j |θi)P (xi,j |tri , σtri )P (wCi,j |xi,j , tri , zi,j)
×∏W1,i

j P (w1
j |di, c1,2i , ω1)

×∏W2,i

j P (w2
j |di, c1,2i , ω2)]

We need to sample variablestr, d, c1,2, x, and
z. We sampletr and d jointly while each of the
other variables is sampled individually. After
integrating out the multinomial distributions, we
can sampletr andd from the equation in Figure 3

The update equations for the remaining variables
can be derived from the same equation by dropping
terms which are constant across changes in that vari-
able.

In our experiments the hyperparameters were set
to αx = 1.0, αz = 1.0, α1,2 = 1.0, αd0 = 2, αd1 =
1, βr = 0.01, βz = 0.01, β1 = 1.0, β2 = 1.0.
Changing the hyperparameters did not significantly
affect the results.

5 Experimental Results

5.1 Experimental Setup

We evaluated the RDM using a corpus of electronic
medical records provided by the 2010 i2b2/VA
Challenge (Uzuner et al., 2011). We used the
training set, which consists of 349 medical records
from 4 hospitals, annotated with medical concepts
(specifically problems, treatments, and tests),
along with any relations present between those
concepts. We used these manually annotated
relations to evaluate how well the RDM performs
at relation discovery. The corpus is annotated
with a set of eight relations:Treatment-Addresses-
Problem, Treatment-Causes-Problem, Treatment-
Improves-Problem, Treatment-Worsens-Problem,
Treatment-Not-Administered-due-to-Problem, Test-
Reveals-Problem, Test-Conducted-for-Problem, and
Problem-Indicates-Problem. The data contains
13,460 pairs of consecutive concepts, of which
3,613 (26.8%) have a relation belonging to the list
above. We assess the model using two versions of
this data set consisting of: those pairs of consecutive

Relation 1 Relation 2 Relation 3 Relation 4
mg ( due showed
p.r.n. ) consistent no
p.o. Working not revealed
hours ICD9 likely evidence
prn Problem secondary done
q Diagnosis patient 2007
needed 30 ( performed
day cont started demonstrated
q. ): most without
4 closed s/p normal
2 SNMCT seen shows
every **ID-NUM related found
one PRN requiring showing
two mL including negative
8 ML felt well

Figure 4: Relation trigger words found by the RDM

entities which have a manually annotated relation
(DS1), and secondly, all consecutive pairs of entities
(DS2). DS1 allows us to assess the RDM’s cluster-
ing without the noise introduced from those pairs
lacking a true relation. Evaluations on DS2 will
indicate the level of degradation caused by large
numbers of entity pairs that have no true relation.
We also use a separate test set to assess how well
the model generalizes to new data. The test set
contains 477 documents comprising 9,069 manually
annotated relations.

5.2 Analysis

Figure 4 illustrates four of the fifteen trigger word
clusters (most likely words according toφr) learned
from dataset DS1 using the best set of parameters
according to normalized mutual information (NMI)
as described in section 5.3. These parameters were:
R = 9 relations,K = 15 general word classes, and
A = 15 argument classes. Examination of the most
likely words reveals a variety of trigger words, be-
yond obvious explicit ones. Example sentences for
the relation types from Figure 4 are presented in Fig-
ure 5 and discussed below.
Relation Type 1
Instances of this discovered relation are often found
embedded in long lists of drugs prescribed to the
patient. Tokens such as “p.o.” and “p.r.n.”, mean-
ing respectively “by mouth” and “when necessary”,
are indicative of a prescription relation. The learned
relation specifically considers arguments of a drug
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Instances of Relation Type 1

1. Haldol0.5-1 milligrams p.o. q.6-8h. p.r.n. agitation
2. plavixevery day to prevent failure of these stents
3. KBL mouthwash, 15 ccp .o. q.d. prn mouth discomfort
4. Miconazole nitrate powdertid prn for groin rash
5. AmBisome300 mg IV q.d. for treatment of her hepatic candidiasis

Instances of Relation Type 2

1. MAGNESIUM HYDROXIDE SUSP30 ML ) , 30 mL , Susp , By Mouth , At Bedtime , PRN , For Constipation
2. Depression , major( ICD9 296.00 , Working , Problem ) cont NOS home meds
3. Diabetes mellitus type II( ICD9 250.00 , Working , Problem ) cont home meds
4. ASCITES( ICD9 789.5 , Working , Diagnosis ) on spironalactone
5. *Dilutional hyponatremia( SNMCT **ID-NUM , Working , Diagnosis ) improved with fluid restriction

Instances of Relation Type 3

1. ESRDsecondary to her DM
2. slightly lightheadedand with increased HR
3. a 40% RCA, which was hazy
4. echogenic kidneysconsistent with renal parenchymal disease
5. *Librium for alcohol withdrawal

Instances of Relation Type 4

1. V-P lung scanwas performed on May 24 2007 , showed low probability of PE
2. a bedside transthoracic echocardiogramdone in the Cardiac Catheterization laboratory without evidence of

an effusion
3. exploration of the abdomenrevealed significant nodularity of the liver
4. Echocardiogramshowed moderate dilated left atrium
5. An MRI of the right legwas done which was equivocal for osteomyelitis

Figure 5: Examples for four of the discovered relations. Those marked with an asterisk have a different manually
chosen relation than the others

and a symptom treated by that drug. The closest
manually chosen relation isTreatment-Addresses-
Problemwhich included drugs as treatments.

Relation Type 2
Relation 2 captures a similar kind of relation to Re-
lation 1. All five examples for Relation 1 in Fig-
ure 5 came from a different set of hospitals than the
examples for Relation 2. This indicates the model
is detecting stylistic differences in addition to se-
mantic differences. This is one of shortcomings of
simple generative models. Because they cannot re-
flect the true underlying distribution of the data they
will model the observations in ways that are irrel-
evant to the task at hand. Relation 2 also contains
certain punctuation, such as parentheses which the
examples show are used to delineate a treatment
code. Instances of Relation 2 were often marked
asTreatment-Addresses-Problemrelations by anno-
tators.

Relation Type 3
The third relation captures problems which are re-

lated to each other. The manual annotations contain
a very similar relation calledProblem-Indicates-
Problem. This relation is also similar to Cluster 1
from Section 3.1, however under the RDM the words
are much more specific to the relation. This relation
is difficult to discover accurately because of the in-
frequent use of strong trigger words to indicate the
relation. Instead, the model must rely more on the
semantic classes of the arguments, which in this case
will both be types of medical problems.

Relation Type 4
The fourth relation is detecting instances where a
medical test has revealed some problem. This cor-
responds to theTest-Reveals-Problemrelation from
the data. Many good trigger words for that relation
have high probability under Relation 4. A compar-
ison of the RDM’s Relation 4 with LDA’s cluster 2
from Figure 1 shows that many words not relevant
to the relation itself are now absent.

Argument classes
Figure 6 shows the 3 most frequent semantic classes

525



Concept 1 Concept 2 Concept 3
CT pain Percocet
scan disease Hgb
chest right Hct
x-ray left Anion
examination renal Vicodin
Chest patient RDW
EKG artery Bili
MRI - RBC
culture symptoms Ca
head mild Gap

Figure 6: Concept words found by the RDM

for the first argument of a relation (ω1). Most of the
other classes were assigned rarely, accounting for
only 19% of the instances collectively. Human an-
notators of the data set chose three argument classes:
Problems, Treatments, andTests. Concept 1 aligns
closely with a test semantic class. Concept 2 seems
to be capturing medical problems and their descrip-
tions. Finally, Concept 3 appears to be a combina-
tion of treatments (drugs) and tests. Tokens such as
“Hgb”, “Hct”, “Anion”, and “RDW” occur almost
exclusively in entities marked as tests by annotators.
It is not clear why this cluster contains both types
of words, but many of the high ranking words be-
yond the top ten do correspond to treatments, such as
“Morphine”, “Albumin”, “Ativan”, and “Tylenol”.
Thus the discovered argument classes show some
similarity to the ones chosen by annotators.

5.3 Evaluation

For a more objective analysis of the relations de-
tected, we evaluated the discovered relation types
by comparing them with the manually annotated
ones from the data using normalized mutual infor-
mation (NMI) (Manning et al., 2008). NMI is an
information-theoretic measure of the quality of a
clustering which indicates how much information
about the gold classes is obtained by knowing the
clustering. It is normalized to have a range from 0.0
to 1.0. It is defined as:

NMI(Ω;C) =
I(Ω;C)

[H(Ω) +H(C)]/2

whereΩ is the system-produced clustering,C is the
gold clustering,I is the mutual information, andH

is the entropy. The mutual information of two clus-
terings can be defined as:

I(Ω,C) =
∑

k

∑

j

|ωk ∩ cj |
N

log2
N |ωk ∩ cj |
|ωk||cj |

whereN is the number of items in the clustering.
The entropy is defined as

H(Ω) = −
∑

k

|ωk|
N

log2
|ωk|
N

The reference clusters consist of all relations an-
notated with the same relation type. The predicted
clusters consist of all relations which were assigned
the same relation type.

In addition to NMI, we also compute the F mea-
sure (Amigó et al., 2009). The F measure is com-
puted as:

F =
∑

i

|Li|
n

maxj{F (Li, Cj)}

where

F (Li, Cj) =
2×Recall(Li, Cj)× Precision(Li, Cj)

Recall(Li, Cj) + Precision(Li, Cj)

andPrecision is defined as:

Precision(Ci, Lj) =
|Ci ∩ Lj|

|Ci|

whileRecall is simply precision with the arguments
swapped:

Recall(L,C) = Precision(C,L)

Table 1 shows the NMI and F measure scores for
several baselines along with the RDM. Evaluation
was performed on both DS1 (concept pairs having
a manually annotated relation) and DS2 (all con-
secutive concept pairs). For DS2 we learned the
models using all of the data, and evaluated on those
entity pairs which had a manual relation annotated.
The LDA-based model from Section 3.1 is used as
one baseline. Two other baselines are K-means and
Complete-Link hierarchical agglomerative cluster-
ing using TF-IDF vectors of the context and argu-
ment words (similar to Hasegawa et al. (2004)).
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Method DS1 DS2
NMI F NMI F

Train set
Complete-link 4.2 37.8 N/A N/A
K-means 8.25 38.0 5.4 38.1
LDA baseline 12.8 23.0 15.6 26.2
RDM 18.2 39.1 18.1 37.4
Test set
LDA baseline 10.0 26.1 11.5 26.3
RDM 11.8 37.7 14.0 36.4

Table 1: NMI and F measure scores for the RDM and
baselines. The first two columns of numbers show the
scores when evaluation is restricted to only those pairs
of concepts which had a relation identified by annotators.
The last two columns are the NMI and F measure scores
when each method clusters all consecutive entity pairs,
but is only evaluated on those with a relation identified
by annotators.

Complete-link clustering did not finish on DS2
because of the large size of the data set. This high-
lights another advantage of the RDM. Hierarchical
agglomerative clustering is quadratic in the size of
the number of instances to be clustered, while the
RDM’s time and memory requirements both grow
linearly in the number of entity pairs. The scores
shown in Table 1 use the best parameterization of
each model as measured by NMI. For DS1 the
best LDA-based model used 15 clusters. K-means
achieved the best result with 40 clusters, while the
best Complete-Link clustering was obtained by us-
ing 40 clusters. The best RDM model used parame-
tersR = 9 relation,K = 15 general word classes,
andA = 15 argument classes. For DS2 the best
number of clusters for LDA was 10, while K-means
performed best with 58 clusters. The best RDM
model usedR = 100 relations,K = 50 general
word classes, andA = 15 argument classes. The
LDA-based approach saw an improvement when us-
ing the larger data set, however the RDM still per-
formed the best.

To assess how well the RDM performs on unseen
data we also evaluated the relations extracted by the
model on the test set. Only the RDM and LDA mod-
els were evaluated as clusters produced by K-means
and hierarchical clustering are valid only for the data
used to generate the clusters. Generative models on

the other hand can provide an estimate of the proba-
bility for each relation type on unseen text. For each
model we generate 10 samples after a burn in pe-
riod of 30 iterations and form clusters by assigning
each pair of concepts to the relation assigned most
often in the samples. The results of this evaluation
are presented in Table 1. While these cluster scores
are lower than those on the data used to train the
models, they still show the RDM outperforming the
LDA baseline model.

6 Discussion

The relation and argument clusters determined by
the RDM provide a better unsupervised relation dis-
covery method than the baselines. The RDM does
this using no knowledge about syntax or semantics
outside of that used to determine concepts. The
analysis shows that words highly indicative of rela-
tions are detected and clustered automatically, with-
out the need for prior annotation of relations or even
the choice of a predetermined set of relation types.
The discovered relations can be interpreted by a hu-
man or labeled automatically using a technique such
as the one presented in Pantel and Ravichandran
(2004). The fact that the discovered relations and ar-
gument classes align well with those chosen by an-
notators on the same data justify our assumptions
about relations being present and discoverable by
the way they are expressed in text. Table 1 shows
that the model does not perform as well when many
of the pairs of entities do not have a relation, but it
still performs better than the baselines.

While the RDM relies in large part on trigger
words for making clustering decisions it is also ca-
pable of including examples which do not contain
any contextual words between the arguments. In ad-
dition to modeling trigger words, a joint distribution
on argument semantic classes is also incorporated.
This allows the model to determine a relation type
even in the absence of triggers. For example, con-
sider the entity pair “[lung cancer] [XRT]”, where
XRT stands for external radiation therapy. By deter-
mining the semantic classes for the arguments (lung
cancer is a Problem, and XRT is a test), the set of
possible relations between the arguments can be nar-
rowed down. For instance, XRT is unlikely to be
in a causal relationship with a problem, or to make
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a problem worse. A further aid is the fact that the
learned relationships may be specialized. For in-
stance, there may be a learned relation type such
as “Cancer treatment addresses cancer problem”. In
this case, seeing a type of cancer (lung cancer) and a
type of cancer treatment (XRT) would be strong ev-
idence for that type of relation, even without trigger
words.

7 Conclusions

We presented a novel unsupervised approach to dis-
covering relations in the narrative of electronic med-
ical records. We developed a generative model
which can simultaneously cluster relation trigger
words as well as relation arguments. The model
makes use of only the tokens found in the con-
text of pairs of entities. Unlike many previous ap-
proaches, we assign relations to entities at the lo-
cation those entities appear in text, allowing us to
discover context-sensitive relations. The RDM out-
performs baselines built using Latent Dirichlet Allo-
cation and traditional clustering methods. The dis-
covered relations can be used for a number of ap-
plications such as detecting when certain treatments
were administered or determining if a necessary test
has been performed. Future work will include trans-
forming the RDM into a non-parametric model by
using the Chinese Restaurant Process (CRP) (Blei et
al., 2010). The CRP can be used to determine the
number of relations, argument classes, and general
word classes automatically.
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