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Abstract

We explore efficient domain adaptation for the
task of statistical machine translation based
on extracting sentences from a large general-
domain parallel corpus that are most relevant
to the target domain. These sentences may
be selected with simple cross-entropy based
methods, of which we present three. As
these sentences are not themselves identical
to the in-domain data, we call them pseudo
in-domain subcorpora. These subcorpora –
1% the size of the original – can then used
to train small domain-adapted Statistical Ma-
chine Translation (SMT) systems which out-
perform systems trained on the entire corpus.
Performance is further improved when we use
these domain-adapted models in combination
with a true in-domain model. The results
show that more training data is not always
better, and that best results are attained via
proper domain-relevant data selection, as well
as combining in- and general-domain systems
during decoding.

1 Introduction

Statistical Machine Translation (SMT) system per-
formance is dependent on the quantity and quality
of available training data. The conventional wisdom
is that more data is better; the larger the training cor-
pus, the more accurate the model can be.

The trouble is that – except for the few all-purpose
SMT systems – there is never enough training data
that is directly relevant to the translation task at
hand. Even if there is no formal genre for the text
to be translated, any coherent translation task will

have its own argot, vocabulary or stylistic prefer-
ences, such that the corpus characteristics will nec-
essarily deviate from any all-encompassing model of
language. For this reason, one would prefer to use
more in-domain data for training. This would em-
pirically provide more accurate lexical probabilities,
and thus better target the task at hand. However, par-
allel in-domain data is usually hard to find1, and so
performance is assumed to be limited by the quan-
tity of domain-specific training data used to build the
model. Additional parallel data can be readily ac-
quired, but at the cost of specificity: either the data
is entirely unrelated to the task at hand, or the data is
from a broad enough pool of topics and styles, such
as the web, that any use this corpus may provide is
due to its size, and not its relevance.

The task of domain adaptation is to translate a text
in a particular (target) domain for which only a small
amount of training data is available, using an MT
system trained on a larger set of data that is not re-
stricted to the target domain. We call this larger set
of data a general-domain corpus, in lieu of the stan-
dard yet slightly misleading out-of-domain corpus,
to allow a large uncurated corpus to include some
text that may be relevant to the target domain.

Many existing domain adaptation methods fall
into two broad categories. Adaptation can be done at
the corpus level, by selecting, joining, or weighting
the datasets upon which the models (and by exten-
sion, systems) are trained. It can be also achieved at
the model level by combining multiple translation or
language models together, often in a weighted man-
ner. We explore both categories in this work.

1Unless one dreams of translating parliamentary speeches.
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First, we present three methods for ranking the
sentences in a general-domain corpus with respect to
an in-domain corpus. A cutoff can then be applied to
produce a very small–yet useful– subcorpus, which
in turn can be used to train a domain-adapted MT
system. The first two data selection methods are ap-
plications of language-modeling techniques to MT
(one for the first time). The third method is novel
and explicitly takes into account the bilingual na-
ture of the MT training corpus. We show that it is
possible to use our data selection methods to subse-
lect less than 1% (or discard 99%) of a large general
training corpus and still increase translation perfor-
mance by nearly 2 BLEU points.

We then explore how best to use these selected
subcorpora. We test their combination with the in-
domain set, followed by examining the subcorpora
to see whether they are actually in-domain, out-of-
domain, or something in between. Based on this, we
compare translation model combination methods.

Finally, we show that these tiny translation mod-
els for model combination can improve system per-
formance even further over the current standard way
of producing a domain-adapted MT system. The re-
sulting process is lightweight, simple, and effective.

2 Related Work

2.1 Training Data Selection

An underlying assumption in domain adaptation is
that a general-domain corpus, if sufficiently broad,
likely includes some sentences that could fall within
the target domain and thus should be used for train-
ing. Equally, the general-domain corpus likely in-
cludes sentences that are so unlike the domain of the
task that using them to train the model is probably
more harmful than beneficial. One mechanism for
domain adaptation is thus to select only a portion of
the general-domain corpus, and use only that subset
to train a complete system.

The simplest instance of this problem can be
found in the realm of language modeling, using
perplexity-based selection methods. The sentences
in the general-domain corpus are scored by their per-
plexity score according to an in-domain language
model, and then sorted, with only the lowest ones
being retained. This has been done for language
modeling, including by Gao et al (2002), and more

recently by Moore and Lewis (2010). The ranking
of the sentences in a general-domain corpus accord-
ing to in-domain perplexity has also been applied to
machine translation by both Yasuda et al (2008), and
Foster et al (2010). We test this approach, with the
difference that we simply use the source side per-
plexity rather than computing the geometric mean
of the perplexities over both sides of the corpus. We
also reduce the size of the training corpus far more
aggressively than Yasuda et al’s 50%. Foster et al
(2010) do not mention what percentage of the cor-
pus they select for their IR-baseline, but they con-
catenate the data to their in-domain corpus and re-
port a decrease in performance. We both keep the
models separate and reduce their size.

A more general method is that of (Matsoukas et
al., 2009), who assign a (possibly-zero) weight to
each sentence in the large corpus and modify the em-
pirical phrase counts accordingly. Foster et al (2010)
further perform this on extracted phrase pairs, not
just sentences. While this soft decision is more flex-
ible than the binary decision that comes from includ-
ing or discarding a sentence from the subcorpus, it
does not reduce the size of the model and comes
at the cost of computational complexity as well as
the possibility of overfitting. Additionally, the most
effective features of (Matsoukas et al., 2009) were
found to be meta-information about the source doc-
uments, which may not be available.

Another perplexity-based approach is that taken
by Moore and Lewis (2010), where they use the
cross-entropy difference as a ranking function rather
than just cross-entropy. We apply this criterion for
the first time to the task of selecting training data
for machine translation systems. We furthermore ex-
tend this idea for MT-specific purposes.

2.2 Translation Model Combination

In addition to improving the performance of a sin-
gle general model with respect to a target domain,
there is significant interest in using two translation
models, one trained on a larger general-domain cor-
pus and the other on a smaller in-domain corpus, to
translate in-domain text. After all, if one has ac-
cess to an in-domain corpus with which to select
data from a general-domain corpus, then one might
as well use the in-domain data, too. The expectation
is that the larger general-domain model should dom-
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inate in regions where the smaller in-domain model
lacks coverage due to sparse (or non-existent) ngram
counts. In practice, most practical systems also per-
form target-side language model adaptation (Eck et
al., 2004); we eschew this in order to isolate the ef-
fects of translation model adaptation alone.

Directly concatenating the phrase tables into one
larger one isn’t strongly motivated; identical phrase
pairs within the resulting table can lead to unpre-
dictable behavior during decoding. Nakov (2008)
handled identical phrase pairs by prioritizing the
source tables, however in our experience identical
entries in phrase tables are not very common when
comparing across domains. Foster and Kuhn (2007)
interpolated the in- and general-domain phrase ta-
bles together, assigning either linear or log-linear
weights to the entries in the tables before combining
overlapping entries; this is now standard practice.

Lastly, Koehn and Schroeder (2007) reported
improvements from using multiple decoding paths
(Birch et al., 2007) to pass both tables to the Moses
SMT decoder (Koehn et al., 2003), instead of di-
rectly combining the phrase tables to perform do-
main adaptation. In this work, we directly com-
pare the approaches of (Foster and Kuhn, 2007) and
(Koehn and Schroeder, 2007) on the systems gener-
ated from the methods mentioned in Section 2.1.

3 Experimental Framework

3.1 Corpora

We conducted our experiments on the Interna-
tional Workshop on Spoken Language Translation
(IWSLT) Chinese-to-English DIALOG task 2, con-
sisting of transcriptions of conversational speech in
a travel setting. Two corpora are needed for the
adaptation task. Our in-domain data consisted of the
IWSLT corpus of approximately 30,000 sentences
in Chinese and English. Our general-domain cor-
pus was 12 million parallel sentences comprising a
variety of publicly available datasets, web data, and
private translation texts. Both the in- and general-
domain corpora were identically segmented (in Chi-
nese) and tokenized (in English), but otherwise un-
processed. We evaluated our work on the 2008
IWSLT spontaneous speech Challenge Task3 test

2http://iwslt2010.fbk.eu/node/33
3Correct-Recognition Result (CRR) condition

set, consisting of 504 Chinese sentences with 7 En-
glish reference translations each. This is the most
recent IWSLT test set for which the reference trans-
lations are available.

3.2 System Description
In order to highlight the data selection work, we
used an out-of-the-box Moses framework using
GIZA++ (Och and Ney, 2003) and MERT (Och,
2003) to train and tune the machine translation sys-
tems. The only exception was the phrase table
for the large out-of-domain system trained on 12m
sentence pairs, which we trained on a cluster us-
ing a word-dependent HMM-based alignment (He,
2007). We used the Moses decoder to produce all
the system outputs, and scored them with the NIST
mt-eval31a 4 tool used in the IWSLT evalutation.

3.3 Language Models
Our work depends on the use of language models to
rank sentences in the training corpus, in addition to
their normal use during machine translation tuning
and decoding. We used the SRI Language Model-
ing Toolkit (Stolcke, 2002) was used for LM train-
ing in all cases: corpus selection, MT tuning, and
decoding. We constructed 4gram language mod-
els with interpolated modified Kneser-Ney discount-
ing (Chen and Goodman, 1998), and set the Good-
Turing threshold to 1 for trigrams.

3.4 Baseline System
The in-domain baseline consisted of a translation
system trained using Moses, as described above, on
the IWSLT corpus. The resulting model had a phrase
table with 515k entries. The general-domain base-
line was substantially larger, having been trained on
12 million sentence pairs, and had a phrase table
containing 1.5 billion entries. The BLEU scores of
the baseline single-corpus systems are in Table 1.

Corpus Phrases Dev Test
IWSLT 515k 45.43 37.17
General 1,478m 42.62 40.51

Table 1: Baseline translation results for in-domain and
general-domain systems.

4http://www.itl.nist.gov/iad/mig/tools/
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4 Training Data Selection Methods

We present three techniques for ranking and select-
ing subsets of a general-domain corpus, with an eye
towards improving overall translation performance.

4.1 Data Selection using Cross-Entropy

As mentioned in Section 2.1, one established
method is to rank the sentences in the general-
domain corpus by their perplexity score accord-
ing to a language model trained on the small in-
domain corpus. This reduces the perplexity of the
general-domain corpus, with the expectation that
only sentences similar to the in-domain corpus will
remain. We apply the method to machine trans-
lation, even though perplexity reduction has been
shown to not correlate with translation performance
(Axelrod, 2006). For this work we follow the proce-
dure of Moore and Lewis (2010), which applies the
cosmetic change of using the cross-entropy rather
than perplexity.

The perplexity of some string s with empirical n-
gram distribution p given a language model q is:

2−
∑

x p(x) log q(x) = 2H(p,q) (1)

where H(p, q) is the cross-entropy between p and
q. We simplify this notation to just HI(s), mean-
ing the cross-entropy of string s according to a lan-
guage model LMI which has distribution q. Se-
lecting the sentences with the lowest perplexity is
therefore equivalent to choosing the sentences with
the lowest cross-entropy according to the in-domain
language model. For this experiment, we used a lan-
guage model trained (using the parameters in Sec-
tion 3.3) on the Chinese side of the IWSLT corpus.

4.2 Data Selection using Cross-Entropy
Difference

Moore and Lewis (2010) also start with a language
model LMI over the in-domain corpus, but then fur-
ther construct a language modelLMO of similar size
over the general-domain corpus. They then rank the
general-domain corpus sentences using:

HI(s)−HO(s) (2)

and again taking the lowest-scoring sentences. This
criterion biases towards sentences that are both like

the in-domain corpus and unlike the average of the
general-domain corpus. For this experiment we re-
used the in-domain LM from the previous method,
and trained a second LM on a random subset of
35k sentences from the Chinese side of the general
corpus, except using the same vocabulary as the in-
domain LM.

4.3 Data Selection using Bilingual
Cross-Entropy Difference

In addition to using these two monolingual criteria
for MT data selection, we propose a new method
that takes in to account the bilingual nature of the
problem. To this end, we sum cross-entropy differ-
ence over each side of the corpus, both source and
target:

[HI−src(s)−HO−src(s)]+[HI−tgt(s)−HO−tgt(s)]
(3)

Again, lower scores are presumed to be better. This
approach reuses the source-side language models
from Section 4.2, but requires similarly-trained ones
over the English side. Again, the vocabulary of the
language model trained on a subset of the general-
domain corpus was restricted to only cover those
tokens found in the in-domain corpus, following
Moore and Lewis (2010).

5 Results of Training Data Selection

The baseline results show that a translation system
trained on the general-domain corpus outperforms a
system trained on the in-domain corpus by over 3
BLEU points. However, this can be improved fur-
ther. We used the three methods from Section 4 to
identify the best-scoring sentences in the general-
domain corpus.

We consider three methods for extracting domain-
targeted parallel data from a general corpus: source-
side cross-entropy (Cross-Ent), source-side cross-
entropy difference (Moore-Lewis) from (Moore and
Lewis, 2010), and bilingual cross-entropy difference
(bML), which is novel.

Regardless of method, the overall procedure is
the same. Using the scoring method, We rank the
individual sentences of the general-domain corpus,
select only the top N . We used the top N =
{35k, 70k, 150k} sentence pairs out of the 12 mil-
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lion in the general corpus 5. The net effect is that of
domain adaptation via threshhold filtering. New MT
systems were then trained solely on these small sub-
corpora, and compared against the baseline model
trained on the entire 12m-sentence general-domain
corpus. Table 2 contains BLEU scores of the sys-
tems trained on subsets of the general corpus.

Method Sentences Dev Test
General 12m 42.62 40.51
Cross-Entropy 35k 39.77 40.66
Cross-Entropy 70k 40.61 42.19
Cross-Entropy 150k 42.73 41.65
Moore-Lewis 35k 36.86 40.08
Moore-Lewis 70k 40.33 39.07
Moore-Lewis 150k 41.40 40.17
bilingual M-L 35k 39.59 42.31
bilingual M-L 70k 40.84 42.29
bilingual M-L 150k 42.64 42.22

Table 2: Translation results using only a subset of the
general-domain corpus.

All three methods presented for selecting a sub-
set of the general-domain corpus (Cross-Entropy,
Moore-Lewis, bilingual Moore-Lewis) could be
used to train a state-of-the-art machine transla-
tion system. The simplest method, using only the
source-side cross-entropy, was able to outperform
the general-domain model when selecting 150k out
of 12 million sentences. The other monolingual
method, source-side cross-entropy difference, was
able to perform nearly as well as the general-
domain model with only 35k sentences. The bilin-
gual Moore-Lewis method proposed in this paper
works best, consistently boosting performance by
1.8 BLEU while using less than 1% of the available
training data.

5.1 Pseudo In-Domain Data

The results in Table 2 show that all three meth-
ods (Cross-Entropy, Moore-Lewis, bilingual Moore-
Lewis) can extract subsets of the general-domain
corpus that are useful for the purposes of statistical
machine translation. It is tempting to describe these
as methods for finding in-domain data hidden in a

5Roughly 1x, 2x, and 4x the size of the in-domain corpus.

general-domain corpus. Alas, this does not seem to
be the case.

We trained a baseline language model on the in-
domain data and used it to compute the perplexity
of the same (in-domain) held-out dev set used to
tune the translation models. We extracted the top
N sentences using each ranking method, varying N
from 10k to 200k, and then trained language models
on these subcorpora. These were then used to also
compute the perplexity of the same held-out dev set,
shown below in Figure 1.
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Figure 1: Corpus Selection Results

The perplexity of the dev set according to LMs
trained on the top-ranked sentences varied from 77
to 120, depending on the size of the subset and the
method used. The Cross-Entropy method was con-
sistently worse than the others, with a best perplex-
ity of 99.4 on 20k sentences, and bilingual Moore-
Lewis was consistently the best, with a lowest per-
plexity of 76.8. And yet, none of these scores are
anywhere near the perplexity of 36.96 according to
the LM trained only on in-domain data.

From this it can be deduced that the selection
methods are not finding data that is strictly in-
domain. Rather they are extracting pseudo in-
domain data which is relevant, but with a differing
distribution than the original in-domain corpus.

As further evidence, consider the results of con-
catenating the in-domain corpus with the best ex-
tracted subcorpora (using the bilingual Moore-
Lewis method), shown in Table 3. The change in
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both the dev and test scores appears to reflect dissim-
ilarity in the underlying data. Were the two datasets
more alike, one would expect the models to rein-
force each other rather than cancel out.

Method Sentences Dev Test
IWSLT 30k 45.43 37.17
bilingual M-L 35k 39.59 42.31
bilingual M-L 70k 40.84 42.29
bilingual M-L 150k 42.64 42.22
IWSLT + bi M-L 35k 47.71 41.78
IWSLT + bi M-L 70k 47.80 42.30
IWSLT + bi M-L 150k 48.44 42.01

Table 3: Translation results concatenating the in-domain
and pseudo in-domain data to train a single model.

6 Translation Model Combination

Because the pseudo in-domain data should be kept
separate from the in-domain data, one must train
multiple translation models in order to advanta-
geously use the general-domain corpus. We now ex-
amine how best to combine these models.

6.1 Linear Interpolation
A common approach to managing multiple transla-
tion models is to interpolate them, as in (Foster and
Kuhn, 2007) and (Lü et al., 2007). We tested the
linear interpolation of the in- and general-domain
translation models as follows: Given one model
which assigns the probability P1(t|s) to the trans-
lation of source string s into target string t, and a
second model which assigns the probability P2(t|s)
to the same event, then the interpolated translation
probability is:

P (t|s) = λP1(t|s) + (1− λ)P2(t|s) (4)

Here λ is a tunable weight between 0 and 1, which
we tested in increments of 0.1. Linear interpolation
of phrase tables was shown to improve performance
over the individual models, but this still may not be
the most effective use of the translation models.

6.2 Multiple Models
We next tested the approach in (Koehn and
Schroeder, 2007), passing the two phrase tables di-
rectly to the decoder and tuning a system using both

phrase tables in parallel. Each phrase table receives
a separate set of weights during tuning, thus this
combined translation model has more parameters
than a normal single-table system.

Unlike (Nakov, 2008), we explicitly did not at-
tempt to resolve any overlap between the phrase ta-
bles, as there is no need to do so with the multiple
decoding paths. Any phrase pairs appearing in both
models will be treated separately by the decoder.
However, the exact overlap between the phrase ta-
bles was tiny, minimizing this effect.

6.3 Translation Model Combination Results

Table 4 shows baseline results for the in-domain
translation system and the general-domain system,
evaluated on the in-domain data. The table also
shows that linearly interpolating the translation
models improved the overall BLEU score, as ex-
pected. However, using multiple decoding paths,
and no explicit model merging at all, produced even
better results, by 2 BLEU points over the best indi-
vidual model and 1.3 BLEU over the best interpo-
lated model, which used λ = 0.9.

System Dev Test
IWSLT 45.43 37.17
General 42.62 40.51
Interpolate IWSLT, General 48.46 41.28
Use both IWSLT, General 49.13 42.50

Table 4: Translation model combination results

We conclude that it can be more effective to not
attempt translation model adaptation directly, and
instead let the decoder do the work.

7 Combining Multi-Model and Data
Selection Approaches

We presented in Section 5 several methods to im-
prove the performance of a single general-domain
translation system by restricting its training corpus
on an information-theoretic basis to a very small
number of sentences. However, Section 6.3 shows
that using two translation models over all the avail-
able data (one in-domain, one general-domain) out-
performs any single individual translation model so
far, albeit only slightly.
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Method Dev Test
IWSLT 45.43 37.17
General 42.62 40.51
both IWSLT, General 49.13 42.50
IWSLT, Moore-Lewis 35k 48.51 40.38
IWSLT, Moore-Lewis 70k 49.65 40.45
IWSLT, Moore-Lewis 150k 49.50 41.40
IWSLT, bi M-L 35k 48.85 39.82
IWSLT, bi M-L 70k 49.10 43.00
IWSLT, bi M-L 150k 49.80 43.23

Table 5: Translation results from using in-domain and
pseudo in-domain translation models together.

It is well and good to use the in-domain data
to select pseudo in-domain data from the general-
domain corpus, but given that this requires access
to an in-domain corpus, one might as well use it.
As such, we used the in-domain translation model
alongside translation models trained on the subcor-
pora selected using the Moore-Lewis and bilingual
Moore-Lewis methods in Section 4. The results are
in Table 5.

A translation system trained on a pseudo in-
domain subset of the general corpus, selected with
the bilingual Moore-Lewis method, can be further
improved by combining with an in-domain model.
Furthermore, this system combination works better
than the conventional multi-model approach by up
to 0.7 BLEU on both the dev and test sets.

Thus a domain-adapted system comprising two
phrase tables trained on a total of 180k sen-
tences outperformed the standard multi-model sys-
tem which was trained on 12 million sentences. This
tiny combined system was also 3+ points better than
the general-domain system by itself, and 6+ points
better than the in-domain system alone.

8 Conclusions

Sentence pairs from a general-domain corpus that
seem similar to an in-domain corpus may not actu-
ally represent the same distribution of language, as
measured by language model perplexity. Nonethe-
less, we have shown that relatively tiny amounts of
this pseudo in-domain data can prove more useful
than the entire general-domain corpus for the pur-
poses of domain-targeted translation tasks.

This paper has also explored three simple yet
effective methods for extracting these pseudo in-
domain sentences from a general-domain corpus. A
translation model trained on any of these subcorpora
can be comparable – or substantially better – than a
translation system trained on the entire corpus.

In particular, the new bilingual Moore-Lewis
method, which is specifically tailored to the ma-
chine translation scenario, is shown to be more ef-
ficient and stable for MT domain adaptation. Trans-
lation models trained on data selected in this way
consistently outperformed the general-domain base-
line while using as few as 35k out of 12 million sen-
tences. This fast and simple technique for discarding
over 99% of the general-domain training corpus re-
sulted in an increase of 1.8 BLEU points.

We have also shown in passing that the linear in-
terpolation of translation models may work less well
for translation model adaptation than the multiple
paths decoding technique of (Birch et al., 2007).
These approaches of data selection and model com-
bination can be stacked, resulting in a compact, two
phrase-table, translation system trained on 1% of the
available data that again outperforms a state-of-the-
art translation system trained on all the data.

Besides improving translation performance, this
work also provides a way to mine very large corpora
in a computationally-limited environment, such as
on an ordinary computer or perhaps a mobile device.
The maximum size of a useful general-domain cor-
pus is now limited only by the availability of data,
rather than by how large a translation model can be
fit into memory at once.
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Yajuan Lü, Jin Huang and Qun Liu. 2007. Improving
Statistical Machine Translation Performance by Train-
ing Data Selection and Optimization. Empirical Meth-
ods in Natural Language Processing and Computa-
tional Natural Language Learning.

Spyros Matsoukas, Antti-Veikko Rosti, Bing Zhang.
2009. Discriminative Corpus Weight Estimation for
Machine Translation. Empirical Methods in Natural
Language Processing.

Robert Moore and William Lewis. 2010. Intelligent Se-
lection of Language Model Training Data. Association
for Computational Linguistics.

Preslav Nakov. 2008. Improving English-Spanish Sta-
tistical Machine Translation: Experiments in Domain
Adaptation, Sentence Paraphrasing, Tokenization, and
Recasing. Workshop on Statistical Machine Transla-
tion, Association for Computational Linguistics.

Franz Och and Hermann Ney. 2003. A Systematic
Comparison of Various Statistical Alignment Models.
Computational Linguistics

Franz Och. 2003. Minimum Error Rate Training in Sta-
tistical Machine Translation. Association for Compu-
tational Linguistics

Andreas Stolcke. 2002. SRILM – An Extensible Lan-
guage Modeling Toolkit. Spoken Language Process-
ing.

Keiji Yasuda, Ruiqiang Zhang, Hirofumi Yamamoto, Ei-
ichiro Sumita. 2008. Method of Selecting Train-
ing Data to Build a Compact and Efficient Transla-
tion Model. International Joint Conference on Natural
Language Processing.

362


