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Abstract

Log-linear parsing models are often trained

by optimizing likelihood, but we would prefer

to optimise for a task-specific metric like F-

measure. Softmax-margin is a convex objec-

tive for such models that minimises a bound

on expected risk for a given loss function, but

its naı̈ve application requires the loss to de-

compose over the predicted structure, which

is not true of F-measure. We use softmax-

margin to optimise a log-linear CCG parser for

a variety of loss functions, and demonstrate

a novel dynamic programming algorithm that

enables us to use it with F-measure, lead-

ing to substantial gains in accuracy on CCG-

Bank. When we embed our loss-trained parser

into a larger model that includes supertagging

features incorporated via belief propagation,

we obtain further improvements and achieve

a labelled/unlabelled dependency F-measure

of 89.3%/94.0% on gold part-of-speech tags,

and 87.2%/92.8% on automatic part-of-speech

tags, the best reported results for this task.

1 Introduction

Parsing models based on Conditional Random

Fields (CRFs; Lafferty et al., 2001) have been very

successful (Clark and Curran, 2007; Finkel et al.,

2008). In practice, they are usually trained by max-

imising the conditional log-likelihood (CLL) of the

training data. However, it is widely appreciated that

optimizing for task-specific metrics often leads to

better performance on those tasks (Goodman, 1996;

Och, 2003).

An especially attractive means of accomplishing

this for CRFs is the softmax-margin (SMM) ob-

jective (Sha and Saul, 2006; Povey and Woodland,

2008; Gimpel and Smith, 2010a) (§2). In addition to

retaining a probabilistic interpretation and optimiz-

ing towards a loss function, it is also convex, mak-

ing it straightforward to optimise. Gimpel and Smith

(2010a) show that it can be easily implemented with

a simple change to standard likelihood-based train-

ing, provided that the loss function decomposes over

the predicted structure.

Unfortunately, the widely-used F-measure met-

ric does not decompose over parses. To solve this,

we introduce a novel dynamic programming algo-

rithm that enables us to compute the exact quanti-

ties needed under the softmax-margin objective us-

ing F-measure as a loss (§3). We experiment with

this and several other metrics, including precision,

recall, and decomposable approximations thereof.

Our ability to optimise towards exact metrics en-

ables us to verify the effectiveness of more effi-

cient approximations. We test the training proce-

dures on the state-of-the-art Combinatory Categorial

Grammar (CCG; Steedman 2000) parser of Clark

and Curran (2007), obtaining substantial improve-

ments under a variety of conditions. We then embed

this model into a more accurate model that incor-

porates additional supertagging features via loopy

belief propagation. The improvements are additive,

obtaining the best reported results on this task (§4).

2 Softmax-Margin Training

The softmax-margin objective modifies the standard

likelihood objective for CRF training by reweighting
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each possible outcome of a training input according

to its risk, which is simply the loss incurred on a par-

ticular example. This is done by incorporating the

loss function directly into the linear scoring function

of an individual example.

Formally, we are given m training pairs

(x(1), y(1))...(x(m), y(m)), where each x(i) ∈ X is

drawn from the set of possible inputs, and each

y(i) ∈ Y(x(i)) is drawn from a set of possible

instance-specific outputs. We want to learn the K
parameters θ of a log-linear model, where each λk ∈
θ is the weight of an associated feature hk(x, y).

Function f(x, y) maps input/output pairs to the vec-

tor h1(x, y)...hK(x, y), and our log-linear model as-

signs probabilities in the usual way.

p(y|x) =
exp{θTf(x, y)}∑

y′∈Y(x) exp{θTf(x, y′)} (1)

The conditional log-likelihood objective function is

given by Eq. 2 (Figure 1). Now consider a function

`(y, y′) that returns the loss incurred by choosing to

output y′ when the correct output is y. The softmax-

margin objective simply modifies the unnormalised,

unexponentiated score θTf(x, y′) by adding `(y, y′)
to it. This yields the objective function (Eq. 3) and

gradient computation (Eq. 4) shown in Figure 1.

This straightforward extension has several desir-

able properties. In addition to having a probabilis-

tic interpretation, it is related to maximum margin

and minimum-risk frameworks, it can be shown to

minimise a bound on expected risk, and it is convex

(Gimpel and Smith, 2010b).

We can also see from Eq. 4 that the only differ-

ence from standard CLL training is that we must

compute feature expectations with respect to the

cost-augmented scoring function. As Gimpel and

Smith (2010a) discuss, if the loss function decom-

poses over the predicted structure, we can treat its

decomposed elements as unweighted features that

fire on the corresponding structures, and compute

expectations in the normal way. In the case of

our parser, where we compute expectations using

the inside-outside algorithm, a loss function decom-

poses if it decomposes over spans or productions of

a CKY chart.

3 Loss Functions for Parsing

Ideally, we would like to optimise our parser towards

a task-based evaluation. Our CCG parser is evalu-

ated on labeled, directed dependency recovery us-

ing F-measure (Clark and Hockenmaier, 2002). Un-

der this evaluation we will represent output y′ and

ground truth y as variable-sized sets of dependen-

cies. We can then compute precision P (y, y′), recall

R(y, y′), and F-measure F1(y, y
′).

P (y, y′) =
|y ∩ y′|
|y′| (5)

R(y, y′) =
|y ∩ y′|
|y| (6)

F1(y, y
′) =

2PR

P +R
=

2|y ∩ y′|
|y|+ |y′| (7)

These metrics are positively correlated with perfor-

mance – they are gain functions. To incorporate

them in the softmax-margin framework we reformu-

late them as loss functions by subtracting from one.

3.1 Computing F-Measure-Augmented

Expectations at the Sentence Level

Unfortunately, none of these metrics decompose

over parses. However, the individual statistics that

are used to compute them do decompose, a fact we

will exploit to devise an algorithm that computes the

necessary expectations. Note that since y is fixed,

F1 is a function of two integers: |y ∩ y′|, represent-

ing the number of correct dependencies in y′; and

|y′|, representing the total number of dependencies

in y′, which we will denote as n and d, respectively.1

Each pair 〈n, d〉 leads to a different value of F1. Im-

portantly, both n and d decompose over parses.

The key idea will be to treat F1 as a non-local fea-

ture of the parse, dependent on values n and d.2 To

compute expectations we split each span in an oth-

erwise usual inside-outside computation by all pairs

〈n, d〉 incident at that span.

Formally, our goal will be to compute expecta-

tions over the sentence a1...aL. In order to abstract

away from the particulars of CCG we present the al-

gorithm in relatively familiar terms as a variant of

1For numerator and denominator.
2This is essentially the same trick used in the oracle F-measure

algorithm of Huang (2008), and indeed our algorithm is a sum-

product variant of that max-product algorithm.
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min
θ

m∑

i=1


−θTf(x(i), y(i)) + log

∑

y∈Y(x(i))
exp{θTf(x(i), y)}


 (2)

min
θ

m∑

i=1


−θTf(x(i), y(i)) + log

∑

y∈Y(x(i))
exp{θTf(x(i), y) + `(y(i), y)}


 (3)

∂

∂λk
=

m∑

i=1


−hk(x(i), y(i)) +

∑

y∈Y(x(i))

exp{θTf(x(i), y) + `(y(i), y)}∑
y′∈Y(x(i)) exp{θTf(x(i), y′) + `(y(i), y′)}hk(x

(i), y)


 (4)

Figure 1: Conditional log-likelihood (Eq. 2), Softmax-margin objective (Eq. 3) and gradient (Eq. 4).

the classic inside-outside algorithm (Baker, 1979).

We use the notation a : A for lexical entries and

BC ⇒ A to indicate that categories B and C com-

bine to form category A via forward or backward

composition or application.3 The weight of a rule

is denoted with w. The classic algorithm associates

inside score I(Ai,j) and outside score O(Ai,j) with

category A spanning sentence positions i through j,
computed via the following recursions.

I(Ai,i+1) =w(ai+1 : A)

I(Ai,j) =
∑

k,B,C

I(Bi,k)I(Ck,j)w(BC ⇒ A)

I(GOAL) =I(S0,L)

O(GOAL) =1

O(Ai,j) =
∑

k,B,C

O(Ci,k)I(Bj,k)w(AB ⇒ C)+

∑

k,B,C

O(Ck,j)I(Bk,i)w(BA⇒ C)

The expectation of A spanning positions i through j
is then I(Ai,j)O(Ai,j)/I(GOAL).

Our algorithm extends these computations to

state-split itemsAi,j,n,d.4 Using functions n+(·) and

d+(·) to respectively represent the number of cor-

rect and total dependencies introduced by a parsing

action, we present our algorithm in Fig. 3. The fi-

nal inside equation and initial outside equation in-

corporate the loss function for all derivations hav-

ing a particular F-score, enabling us to obtain the

3These correspond respectively to unary rules A → a and bi-

nary rules A → BC in a Chomsky normal form grammar.
4Here we use state-splitting to refer to splitting an item Ai,j into

many items Ai,j,n,d, one for each 〈n, d〉 pair.

desired expectations. A simple modification of the

goal equations enables us to optimise precision, re-

call or a weighted F-measure.

To analyze the complexity of this algorithm, we

must ask: how many pairs 〈n, d〉 can be incident at

each span? A CCG parser does not necessarily re-

turn one dependency per word (see Figure 2 for an

example), so d is not necessarily equal to the sen-

tence length L as it might be in many dependency

parsers, though it is still bounded by O(L). How-

ever, this behavior is sufficiently uncommon that we

expect all parses of a sentence, good or bad, to have

close to L dependencies, and hence we expect the

range of d to be constant on average. Furthermore,

n will be bounded from below by zero and from

above by min(|y|, |y′|). Hence the set of all possi-

ble F-measures for all possible parses is bounded by

O(L2), but on average it should be closer to O(L).

Following McAllester (1999), we can see from in-

spection of the free variables in Fig. 3 that the algo-

rithm requires worst-case O(L7) and average-case

O(L5) time complexity, and worse-case O(L4) and

average-case O(L3) space complexity.

Note finally that while this algorithm computes

exact sentence-level expectations, it is approximate

at the corpus level, since F-measure does not decom-

pose over sentences. We give the extension to exact

corpus-level expectations in Appendix A.

3.2 Approximate Loss Functions

We will also consider approximate but more effi-

cient alternatives to our exact algorithms. The idea

is to use cost functions which only utilise statistics
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I(Ai,i+1,n,d) = w(ai+1 : A) iffn = n+(ai+1 : A), d = d+(ai+1 : A)

I(Ai,j,n,d) =
∑

k,B,C

∑

{n′,n′′:n′+n′′+n+(BC⇒A)=n},
{d′,d′′:d′+d′′+d+(BC⇒A)=d}

I(Bi,k,n′,d′)I(Ck,j,n′′,d′′)w(BC ⇒ A)

I(GOAL) =
∑

n,d

I(S0,L,n,d)

(
1− 2n

d+ |y|

)

O(S0,N,n,d) =

(
1− 2n

d+ |y|

)

O(Ai,j,n,d) =
∑

k,B,C

∑

{n′,n′′:n′−n′′−n+(AB⇒C)=n},
{d′,d′′:d′−d′′−d+(AB⇒C)=d}

O(Ci,k,n′,d′)I(Bj,k,n′′,d′′)w(AB ⇒ C)+

∑

k,B,C

∑

{n′,n′′:n′−n′′−n+(BA⇒C)=n},
{d′,d′′:d′−d′′−d+(BA⇒C)=d}

O(Ck,j,n′,d′)I(Bk,i,n′′,d′′)w(BA⇒ C)

Figure 3: State-split inside and outside recursions for computing softmax-margin with F-measure.

Figure 2: Example of flexible dependency realisation in

CCG: Our parser (Clark and Curran, 2007) creates de-

pendencies arising from coordination once all conjuncts

are found and treats “and” as the syntactic head of coor-

dinations. The coordination rule (Φ) does not yet estab-

lish the dependency “and - pears” (dotted line); it is the

backward application (<) in the larger span, “apples and

pears”, that establishes it, together with “and - pears”.

CCG also deals with unbounded dependencies which po-

tentially lead to more dependencies than words (Steed-

man, 2000); in this example a unification mechanism cre-

ates the dependencies “likes - apples” and “likes - pears”

in the forward application (>). For further examples and

a more detailed explanation of the mechanism as used in

the C&C parser refer to Clark et al. (2002).

available within the current local structure, similar to

those used by Taskar et al. (2004) for tracking con-

stituent errors in a context-free parser. We design

three simple losses to approximate precision, recall

and F-measure on CCG dependency structures.

Let T (y) be the set of parsing actions required

to build parse y. Our decomposable approximation

to precision simply counts the number of incorrect

dependencies using the local dependency counts,

n+(·) and d+(·).

DecP (y) =
∑

t∈T (y)
d+(t)− n+(t) (8)

To compute our approximation to recall we require

the number of gold dependencies, c+(·), which

should have been introduced by a particular parsing

action. A gold dependency is due to be recovered

by a parsing action if its head lies within one child

span and its dependent within the other. This yields a

decomposed approximation to recall that counts the

number of missed dependencies.

DecR(y) =
∑

t∈T (y)
c+(t)− n+(t) (9)
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Unfortunately, the flexible handling of dependencies

in CCG complicates our formulation of c+, render-

ing it slightly more approximate. The unification

mechanism of CCG sometimes causes dependencies

to be realised later in the derivation, at a point when

both the head and the dependent are in the same

span, violating the assumption used to compute c+
(see again Figure 2). Exceptions like this can cause

mismatches between n+ and c+. We set c+ = n+
whenever c+ < n+ to account for these occasional

discrepancies.

Finally, we obtain a decomposable approximation

to F-measure.

DecF1(y) = DecP (y) +DecR(y) (10)

4 Experiments

Parsing Strategy. CCG parsers use a pipeline strat-

egy: we first multitag each word of the sentence with

a small subset of its possible lexical categories us-

ing a supertagger, a sequence model over these cat-

egories (Bangalore and Joshi, 1999; Clark, 2002).

Then we parse the sentence under the requirement

that the lexical categories are fixed to those preferred

by the supertagger. In our experiments we used two

variants on this strategy.

First is the adaptive supertagging (AST) approach

of Clark and Curran (2004). It is based on a step

function over supertagger beam widths, relaxing the

pruning threshold for lexical categories only if the

parser fails to find an analysis. The process either

succeeds and returns a parse after some iteration or

gives up after a predefined number of iterations. As

Clark and Curran (2004) show, most sentences can

be parsed with very tight beams.

Reverse adaptive supertagging is a much less ag-

gressive method that seeks only to make sentences

parsable when they otherwise would not be due to an

impractically large search space. Reverse AST starts

with a wide beam, narrowing it at each iteration only

if a maximum chart size is exceeded. Table 1 shows

beam settings for both strategies.

Adaptive supertagging aims for speed via pruning

while the reverse strategy aims for accuracy by ex-

posing the parser to a larger search space. Although

Clark and Curran (2007) found no actual improve-

ments from the latter strategy, we will show that

with our softmax-margin-trained models it can have

a substantial effect.

Parser. We use the C&C parser (Clark and Cur-

ran, 2007) and its supertagger (Clark, 2002). Our

baseline is the hybrid model of Clark and Curran

(2007), which contains features over both normal-

form derivations and CCG dependencies. The parser

relies solely on the supertagger for pruning, using

exact CKY for search over the pruned space. Train-

ing requires calculation of feature expectations over

packed charts of derivations. For training, we lim-

ited the number of items in this chart to 0.3 million,

and for testing, 1 million. We also used a more per-

missive training supertagger beam (Table 2) than in

previous work (Clark and Curran, 2007). Models

were trained with the parser’s L-BFGS trainer.

Evaluation. We evaluated on CCGbank (Hocken-

maier and Steedman, 2007), a right-most normal-

form CCG version of the Penn Treebank. We use

sections 02-21 (39603 sentences) for training, sec-

tion 00 (1913 sentences) for development and sec-

tion 23 (2407 sentences) for testing. We supply

gold-standard part-of-speech tags to the parsers. We

evaluate on labelled and unlabelled predicate argu-

ment structure recovery and supertag accuracy.

4.1 Training with Maximum F-measure Parses

So far we discussed how to optimise towards task-

specific metrics via changing the training objective.

In our first experiment we change the data on which

we optimise CLL. This is a kind of simple base-

line to our later experiments, attempting to achieve

the same effect by simpler means. Specifically, we

use the algorithm of Huang (2008) to generate or-

acle F-measure parses for each sentence. Updating

towards these oracle parses corrects the reachabil-

ity problem in standard CLL training. Since the su-

pertagger is used to prune the training forests, the

correct parse is sometimes pruned away – reducing

data utilisation to 91%. Clark and Curran (2007)

correct for this by adding the gold tags to the parser

input. While this increases data utilisation, it bi-

ases the model by training in an idealised setting not

available at test time. Using oracle parses corrects

this bias while permitting 99% data utilisation. The

labelled F-score of the oracle parses lies at 98.1%.

Though we expected that this might result in some

improvement, results (Table 3) show that this has no
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Condition Parameter Iteration 1 2 3 4 5

AST
β (beam width) 0.075 0.03 0.01 0.005 0.001

k (dictionary cutoff) 20 20 20 20 150

Reverse
β 0.001 0.005 0.01 0.03 0.075

k 150 20 20 20 20

Table 1: Beam step function used for standard (AST) and less aggressive (Reverse) AST throughout our experiments.

Parameter β is a beam threshold while k bounds the number of lexical categories considered for each word.

Condition Parameter Iteration 1 2 3 4 5 6 7

Training
β 0.001 0.001 0.0045 0.0055 0.01 0.05 0.1

k 150 20 20 20 20 20 20

C&C ’07
β 0.0045 0.0055 0.01 0.05 0.1

k 20 20 20 20 20

Table 2: Beam step functions used for training: The first row shows the large scale settings used for most experiments

and the standard C&C settings. (cf. Table 1)

LF LP LR UF UP UR Data Util (%)

Baseline 87.40 87.85 86.95 93.11 93.59 92.63 91%

Max-F Parses 87.46 87.95 86.98 93.09 93.61 92.57 99%

CCGbank+Max-F 87.45 87.96 86.94 93.09 93.63 92.55 99%

Table 3: Performance on section 00 of CCGbank when comparing models trained with treebank-parses (Baseline)

and maximum F-score parses (Max-F) using adaptive supertagging as well as a combination of CCGbank and Max-F

parses. Evaluation is based on labelled and unlabelled F-measure (LF/UF), precision (LP/UP) and recall (LR/UR).

effect. However, it does serve as a useful baseline.

4.2 Training with the Exact Algorithm

We first tested our assumptions about the feasibil-

ity of training with our exact algorithm by measur-

ing the amount of state-splitting. Figure 4 plots the

average number of splits per span against the rela-

tive span-frequency; this is based on a typical set of

training forests containing over 600 million states.

The number of splits increases exponentially with

span size but equally so decreases the number of

spans with many splits. Hence the small number of

states with a high number of splits is balanced by a

large number of spans with only a few splits: The

highest number of splits per span observed with our

settings was 4888 but we find that the average num-

ber of splits lies at 44. Encouragingly, this enables

experimentation in all but very large scale settings.

Figure 5 shows the distribution of n and d pairs

across all split-states in the training corpus; since
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Figure 4: Average number of state-splits per span length

as introduced by a sentence-level F-measure loss func-

tion. The statistics are averaged over the training forests

generated using the settings described in §4.

n, the number of correct dependencies, over d, the

number of all recovered dependencies, is precision,

the graph shows that only a minority of states have

either very high or very low precision. The range

of values suggests that the softmax-margin criterion
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will have an opportunity to substantially modify the

expectations, hopefully to good effect.
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Figure 5: Distribution of states with d dependencies of

which n are correct in the training forests.

We next turn to the question of optimization with

these algorithms. Due to the significant computa-

tional requirements, we used the computationally

less intensive normal-form model of Clark and Cur-

ran (2007) as well as their more restrictive training

beam settings (Table 2). We train on all sentences of

the training set as above and test with AST.

In order to provide greater control over the influ-

ence of the loss function, we introduce a multiplier

τ , which simply amends the second term of the ob-

jective function (3) to:

log
∑

y∈Y (xi)

exp{θT f(xi, y) + τ × `(yi, y)}

Figure 6 plots performance of the exact loss func-

tions across different settings of τ on various evalu-

ation criteria, for models restricted to at most 3000

items per chart at training time to allow rapid ex-

perimentation with a wide parameter set. Even in

this constrained setting, it is encouraging to see that

each loss function performs best on the criteria it op-

timises. The precision-trained parser also does very

well on F-measure; this is because the parser has a

tendency to perform better in terms of precision than

recall.

4.3 Exact vs. Approximate Loss Functions

With these results in mind, we conducted a compar-

ison of parsers trained using our exact and approxi-

mate loss functions. Table 4 compares their perfor-

mance head to head when restricting training chart

sizes to 100,000 items per sentence, the largest set-

ting our computing resources allowed us to experi-

ment with. The results confirm that the loss-trained

models improve over a likelihood-trained baseline,

and furthermore that the exact loss functions seem

to have the best performance. However, the approx-

imations are extremely competitive with their exact

counterparts. Because they are also efficient, this

makes them attractive for larger-scale experiments.

Training time increases by an order of magnitude

with exact loss functions despite increased theoreti-

cal complexity (§3.1); there is no significant change

with approximate loss functions.

Table 5 shows performance of the approximate

losses with the large scale settings initially outlined

(§4). One striking result is that the softmax-margin

trained models coax more accurate parses from the

larger search space, in contrast to the likelihood-

trained models. Our best loss model improves the

labelled F-measure by over 0.8%.

4.4 Combination with Integrated Parsing and

Supertagging

As a final experiment, we embed our loss-trained

model into an integrated model that incorporates

Markov features over supertags into the parsing

model (Auli and Lopez, 2011). These features have

serious implications on search: even allowing for the

observation of Fowler and Penn (2010) that our CCG

is weakly context-free, the search problem is equiva-

lent to finding the optimal derivation in the weighted

intersection of a regular and context-free language

(Bar-Hillel et al., 1964), making search very expen-

sive. Therefore parsing with this model requires ap-

proximations.

To experiment with this combined model we use

loopy belief propagation (LBP; Pearl et al., 1985),

previously applied to dependency parsing by Smith

and Eisner (2008). A more detailed account of its

application to our combined model can be found in

(2011), but we sketch the idea here. We construct a

graphical model with two factors: one is a distribu-
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Figure 6: Performance of exact cost functions optimizing F-measure, precision and recall in terms of (a) labelled

F-measure, (b) precision, (c) recall and (d) supertag accuracy across various settings of τ on the development set.

section 00 (dev) section 23 (test)

LF LP LR UF UP UR LF LP LR UF UP UR

CLL 86.76 87.16 86.36 92.73 93.16 92.30 87.46 87.80 87.12 92.85 93.22 92.49

DecP 87.18 87.93 86.44 92.93 93.73 92.14 87.75 88.34 87.17 93.04 93.66 92.43

DecR 87.31 87.55 87.07 93.00 93.26 92.75 87.57 87.71 87.42 92.92 93.07 92.76

DecF1 87.27 87.78 86.77 93.04 93.58 92.50 87.69 88.10 87.28 93.04 93.48 92.61

P 87.25 87.85 86.66 92.99 93.63 92.36 87.76 88.23 87.30 93.06 93.55 92.57

R 87.34 87.51 87.16 92.98 93.17 92.80 87.57 87.62 87.51 92.92 92.98 92.86

F1 87.34 87.74 86.94 93.05 93.47 92.62 87.71 88.01 87.41 93.02 93.34 92.70

Table 4: Performance of exact and approximate loss functions against conditional log-likelihood (CLL): decomposable

precision (DecP), recall (DecR) and F-measure (DecF1) versus exact precision (P), recall (R) and F-measure (F1).

Evaluation is based on labelled and unlabelled F-measure (LF/UF), precision (LP/UP) and recall (LR/UR).
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section 00 (dev) section 23 (test)

AST Reverse AST Reverse

LF UF ST LF UF ST LF UF ST LF UF ST

CLL 87.38 93.08 94.21 87.36 93.13 93.99 87.73 93.09 94.33 87.65 93.06 94.01

DecP 87.35 92.99 94.25 87.75 93.25 94.22 88.10 93.26 94.51 88.51 93.50 94.39

DecR 87.48 93.00 94.34 87.70 93.16 94.30 87.66 92.83 94.38 87.77 92.91 94.22

DecF1 87.67 93.23 94.39 88.12 93.52 94.46 88.09 93.28 94.50 88.58 93.57 94.53

Table 5: Performance of decomposed loss functions in large-scale training setting. Evaluation is based on labelled and

unlabelled F-measure (LF/UF) and supertag accuracy (ST).

tion over supertag variables defined by a supertag-

ging model, and the other is a distribution over these

variables and a set of span variables defined by our

parsing model.5 The factors communicate by pass-

ing messages across the shared supertag variables

that correspond to their marginal distributions over

those variables. Hence, to compute approximate ex-

pectations across the entire model, we run forward-

backward to obtain posterior supertag assignments.

These marginals are passed as inside values to the

inside-outside algorithm, which returns a new set

of posteriors. The new posteriors are incorporated

into a new iteration of forward-backward, and the

algorithm iterates until convergence, or until a fixed

number of iterations is reached – we found that a

single iteration is sufficient, corresponding to a trun-

cated version of the algorithm in which posteriors

are simply passed from the supertagger to the parser.

To decode, we use the posteriors in a minimum-risk

parsing algorithm (Goodman, 1996).

Our baseline models are trained separately as be-

fore and combined at test time. For softmax-margin,

we combine a parsing model trained with F1 and

a supertagger trained with Hamming loss. Table 6

shows the results: we observe a gain of up to 1.5%

in labelled F1 and 0.9% in unlabelled F1 on the test

set. The loss functions prove their robustness by im-

proving the more accurate combined models up to

0.4% in labelled F1. Table 7 shows results with au-

tomatic part-of-speech tags and a direct comparison

with the Petrov parser trained on CCGbank (Fowler

and Penn, 2010) which we outpeform on all metrics.

5These complex factors resemble those of Smith and Eisner

(2008) and Dreyer and Eisner (2009); they can be thought of

as case-factor diagrams (McAllester et al., 2008)

5 Conclusion and Future Work

The softmax-margin criterion is a simple and effec-

tive approach to training log-linear parsers. We have

shown that it is possible to compute exact sentence-

level losses under standard parsing metrics, not only

approximations (Taskar et al., 2004). This enables

us to show the effectiveness of these approxima-

tions, and it turns out that they are excellent sub-

stitutes for exact loss functions. Indeed, the approxi-

mate losses are as easy to use as standard conditional

log-likelihood.

Empirically, softmax-margin training improves

parsing performance across the board, beating the

state-of-the-art CCG parsing model of Clark and

Curran (2007) by up to 0.8% labelled F-measure.

It also proves robust, improving a stronger base-

line based on a combined parsing and supertagging

model. Our final result of 89.3%/94.0% labelled

and unlabelled F-measure is the best result reported

for CCG parsing accuracy, beating the original C&C

baseline by up to 1.5%.

In future work we plan to scale our exact loss

functions to larger settings and to explore training

with loss functions within loopy belief propagation.

Although we have focused on CCG parsing in this

work, we expect our methods to be equally appli-

cable to parsing with other grammar formalisms in-

cluding context-free grammar or LTAG.
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section 00 (dev) section 23 (test)

AST Reverse AST Reverse

LF UF ST LF UF ST LF UF ST LF UF ST

CLL 87.38 93.08 94.21 87.36 93.13 93.99 87.73 93.09 94.33 87.65 93.06 94.01

BP 87.67 93.26 94.43 88.35 93.72 94.73 88.25 93.33 94.60 88.86 93.75 94.84

+DecF1 87.90 93.40 94.52 88.58 93.88 94.79 88.32 93.32 94.66 89.15 93.89 94.98

+SA 87.73 93.28 94.49 88.40 93.71 94.75 88.47 93.48 94.71 89.25 93.98 95.01

Table 6: Performance of combined parsing and supertagging with belief propagation (BP); using decomposed-F1 as

parser-loss function and supertag-accuracy (SA) as loss in the supertagger.

section 00 (dev) section 23 (test)

LF LP LR UF UP UR LF LP LR UF UP UR

CLL 85.53 85.73 85.33 91.99 92.20 91.77 85.74 85.90 85.58 91.92 92.09 91.75

Petrov I-5 85.79 86.09 85.50 92.44 92.76 92.13 86.01 86.29 85.73 92.34 92.64 92.04

BP 86.45 86.75 86.17 92.60 92.92 92.29 86.84 87.08 86.61 92.57 92.82 92.32

+DecF1 86.73 87.07 86.39 92.79 93.16 92.43 87.08 87.37 86.78 92.68 93.00 92.37

+SA 86.51 86.86 86.16 92.60 92.98 92.23 87.20 87.50 86.90 92.76 93.08 92.44

Table 7: Results on automatically assigned POS tags. Petrov I-5 is based on the parser output of Fowler and Penn

(2010); evaluation is based on sentences for which all parsers returned an analysis.
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A Computing F-Measure-Augmented

Expectations at the Corpus Level

To compute exact corpus-level expectations for softmax-

margin using F-measure, we add an additional transition

before reaching the GOAL item in our original program.

To reach it, we must parse every sentence in the corpus,

associating statistics of aggregate 〈n, d〉 pairs for the en-

tire training set in intermediate symbols Γ(1)...Γ(m) with

the following inside recursions.

I(Γ
(1)
n,d) = I(S

(1)

0,|x(1)|,n,d)

I(Γ
(`)
n,d) =

∑

n′,n′′:n′+n′′=n

I(Γ
(`−1)
n′,d′ )I(S

(`)
0,N,n′′,d′′)

I(GOAL) =
∑

n,d

I(Γ
(m)
n,d )

(
1− 2n

d+ |y|

)

Outside recursions follow straightforwardly. Implemen-

tation of this algorithm would require substantial dis-

tributed computation or external data structures, so we

did not attempt it.
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