
Proceedings of the 2011 Conference on Empirical Methods in Natural Language Processing, pages 204–215,
Edinburgh, Scotland, UK, July 27–31, 2011. c©2011 Association for Computational Linguistics

Augmenting String-to-Tree Translation Models with Fuzzy Use of
Source-side Syntax

Jiajun Zhang, Feifei Zhai and Chengqing Zong
Institute of Automation, Chinese Academy of Sciences

Beijing, China
{jjzhang, ffzhai, cqzong}@nlpr.ia.ac.cn

Abstract

Due to its explicit modeling of the
grammaticality of the output via target-side
syntax, the string-to-tree model has been
shown to be one of the most successful
syntax-based translation models. However,
a major limitation of this model is that it
does not utilize any useful syntactic
information on the source side. In this
paper, we analyze the difficulties of
incorporating source syntax in a string-to-
tree model. We then propose a new way to
use the source syntax in a fuzzy manner,
both in source syntactic annotation and in
rule matching. We further explore three
algorithms in rule matching: 0-1 matching,
likelihood matching, and deep similarity
matching. Our method not only guarantees
grammatical output with an explicit target
tree, but also enables the system to choose
the proper translation rules via fuzzy use of
the source syntax. Our extensive
experiments have shown significant
improvements over the state-of-the-art
string-to-tree system.

1 Introduction

In recent years, statistical translation models based
upon linguistic syntax have shown promising
progress in improving translation quality. It
appears that encoding syntactic annotations on
either side or both sides in translation rules can
increase the expressiveness of rules and can
produce more accurate translations with improved
reordering.

One of the most successful syntax-based models

is the string-to-tree model (Galley et al., 2006;
Marcu et al., 2006; Shen et al., 2008; Chiang et al.,
2009). Since it explicitly models the
grammaticality of the output via target-side syntax,
the string-to-tree model (Xiao et al., 2010)
significantly outperforms both the state-of-the-art
phrase-based system Moses (Koehn et al., 2007)
and the formal syntax-based system Hiero (Chiang,
2007). However, there is a major limitation in the
string-to-tree model: it does not utilize any useful
source-side syntactic information, and thus to some
extent lacks the ability to distinguish good
translation rules from bad ones.

The source syntax is well-known to be helpful in
improving translation accuracy, as shown
especially by tree-to-string systems (Quirk et al.,
2005; Liu et al., 2006; Huang et al., 2006; Mi et al.,
2008; Zhang et al., 2009). The tree-to-string
systems are simple and efficient, but they also have
a major limitation: they cannot guarantee the
grammaticality of the translation output because
they lack target-side syntactic constraints.

Thus a promising solution is to combine the
advantages of the tree-to-string and string-to-tree
approaches. A natural idea is the tree-to-tree model
(Ding and Palmer, 2005; Cowan et al., 2006; Liu et
al., 2009). However, as discussed by Chiang
(2010), while tree-to-tree translation is indeed
promising in theory, in practice it usually ends up
over-constrained. Alternatively, Mi and Liu (2010)
proposed to enhance the tree-to-string model with
target dependency structures (as a language model).
In this paper, we explore in the other direction:
based on the strong string-to-tree model which
builds an explicit target syntactic tree during
decoding rather than apply only a syntactic
language model, we aim to find a useful way to
incorporate the source-side syntax.

204

First, we give a motivating example to show the
importance of the source syntax for a string-to-tree
model. Then we discuss the difficulties of
integrating the source syntax into the string-to-tree
model. Finally, we propose our solutions.

Figure 1 depicts a standard process that
transforms a Chinese string into an English tree
using several string-to-tree translation rules. The
tree with solid lines is produced by the baseline
string-to-tree system. Although the yield is
grammatical, the translation is not correct since the
system mistakenly applies rule r2, thus translating
the Chinese preposition 和 (hé) in the example
sentence into the English conjunction and. As a
result, the Chinese prepositional phrase ‘和 恐怖
组织 网’ (“with terrorist networks”) is wrongly
translated as a part of the relevant noun phrase
(“[Hussein] and terrorists networks”). Why does
this happen? We find that r2 occurs 103316 times
in our training data, while r3 occurs only 1021
times. Thus, without source syntactic clues, the
Chinese word 和 (h é) is converted into the
conjunction and in most cases. In general, this
conversion is correct when the word 和(hé) is used
as a conjunction. But 和(hé) is a preposition in the
source sentence. If we are given this source
syntactic clue, rule r3 will be preferred. This
example motivates us to provide a moderate
amount of source-side syntactic information so as
to obtain the correct English tree with dotted lines
(as our proposed system does).

A natural question may arise that is it easy to
incorporate source syntax in the string-to-tree
model? To the best of our knowledge, no one has
studied this approach before. In fact, it is not a
trivial question if we look into the string-to-tree
model. We find that the difficulties lie in at least
three problems: 1) For a string-to-tree rule such as
r6 in figure 1, how should we syntactically annotate
its source string? 2) Given the source-annotated
string-to-tree rules, how should we match these
rules according to the test source tree during
decoding? 3) How should we binarize the source-
annotated string-to-tree rules for efficient decoding?

For the first problem, one may require the
source side of a string-to-tree rule to be a
constituent. However, such excessive constraints
will exclude many good string-to-tree rules whose
source strings are not constituents. Inspired by
Chiang (2010), we adopt a fuzzy way to label

every source string with the complex syntactic
categories of SAMT (Zollmann and Venugopal,
2006). This method leads to a one-to-one
correspondence between the new rules and the
string-to-tree rules. We will detail our fuzzy
labeling method in Section 2.

For the second problem, it appears simple and
intuitive to match rules by requiring a rule’s source
syntactic category to be the same as the category of
the test string. However, this hard constraint will
greatly narrow the search space during decoding.
Continuing to pursue the fuzzy methodology, we
adopt a fuzzy matching procedure to enable
matching of all the rules whose source strings
match the test string, and then determine the
degree of matching between the test source tree
and each rule. We will discuss three fuzzy
matching algorithms, from simple to complex, in
Section 3.

The third question is a technical problem, and
we will give our solution in Section 4.

Our method not only guarantees the
grammaticality of the output via the target tree
structure, but also enables the system to choose
appropriate translation rules during decoding
through source syntactic fuzzy labeling and fuzzy
matching.

The main contributions of this paper are as
follows:

1) We propose a fuzzy method for both source
syntax annotation and rule matching for
augmenting string-to-tree models.

2) We design and investigate three fuzzy rule
matching algorithms: 0-1 matching,
likelihood matching, and deep similarity
matching.

We hope that this paper will demonstrate how to
effectively incorporate both source and target
syntax into a translation model with promising
results.

2 Rule Extraction

Since we annotate the source side of each string-to-
tree rule with source parse tree information in a
fuzzy way, we will henceforward denote the
source-syntax-decorated string-to-tree rule as a
fuzzy-tree to exact-tree rule. We first briefly
review issues of string-to-tree rule extraction; then
we discuss how to augment the string-to-tree rules
to yield fuzzy-tree to exact-tree rules.

205

Figure 1: Two alternative derivations for a sample string-to-tree translation. The rules used are listed on the right.

The target yield of the tree with solid lines is hussein and terrorist networks established relations. The target yield
of the tree with dotted lines is hussein established relations with terrorist networks.

2.1 String-to-Tree Rule Extraction

Galley et al. (2004) proposed the GHKM algorithm
for extracting (minimal) string-to-tree translation
rules from a triple (f, et, a), where f is the source-
language sentence, et is a target-language parse tree
whose yield e is the translation of f, and a is the set
of word alignments between e and f. The basic idea
of GHKM is to obtain the set of minimally-sized
translation rules which can explain the mappings
between source string and target parse tree. The
minimal string-to-tree rules are extracted in three
steps: (1) frontier set computation; (2)
fragmentation; and (3) extraction.
 The frontier set (FS) is the set of potential points
at which to cut the graph G constructed by the
triple (f, et, a) into fragments. A node satisfying the
word alignment is a frontier. Bold italic nodes in
the English parse tree in Figure 2 are all frontiers.
 Given the frontier set, a well-formed
fragmentation of G is generated by restricting each
fragment to take only nodes in FS as the root and
leaf nodes.
 With fragmentation completed, the rules are
extracted through a depth-first traversal of te : for
each frontier being visited, a rule is extracted.
These extracted rules are called minimal rules
(Galley et al., 2004). For example, rules r ra i in
Figure 2 are part of the total of 13 minimal rules.

To improve the rule coverage, SPMT models
can be employed to obtain phrasal rules (Marcu et
at., 2006). In addition, the minimal rules which
share the adjacent tree fragments can be connected

together to form composed rules (Galley et al.,
2006). In Figure 2, jr is a rule composed by

combining cr and gr .

2.2 Fuzzy-tree to Exact-tree Rule Extraction

Our fuzzy-tree to exact-tree rule extraction works
on word-aligned tree-to-tree data (Figure 2
illustrates a Chinese-English tree pair). Basically,
the extraction algorithm includes two parts:
(1) String-to-tree rule extraction (without

considering the source parse tree);
(2) Decoration of the source side of the string-to-

tree rules with syntactic annotations.
We use the same algorithm introduced in the

previous section for extracting the base string-to-
tree rules. The source-side syntactic decoration is
much more complicated.

The simplest way to decorate, as mentioned in
the Introduction, is to annotate the source-side of a
string-to-tree rule with the syntactic tag that
exactly covers the source string. This is what the
exact tree-to-tree procedure does (Liu et al., 2009).
However, many useful string-to-tree rules will
become invalid if we impose such a tight
restriction. For example, in Figure 2, the English
phrase discuss … them is a VP, but its Chinese
counterpart is not a constituent. Thus we will miss
the rule rh although it is a useful reordering rule.
According to the analysis of our training data, the
rules with rigid source-side syntactic constraints
account for only about 74.5% of the base string-to-
tree rules. In this paper, we desire more general
applicability.

206

IP

NP VP

ADJP PP VP

AD P NP VP NP

PN VV NN

PN

我

乐意 和

他们 讨论 此事

i

the

happy
to

discuss

matter

am

with them

NPIN

PP

NNDT

NPVB

VPTO

 VPJJ

 ADJPVBP

VP

S

NP

FW

rb: 乐意 JJ(happy)

String-to-Tree rules:

ra: 我 FW(i)

rm: 和{P} IN(with)

rd: 他们 NP(them)
re: 讨论 VB(discuss)
rf: 此事 NP(DT(the) NN(matter))
rg: x0 x1 PP(x0:IN x1:NP)
rh: x2 x0 x1 VP(x0:VB x1:NP x2:PP)
ri: x0 VP(TO(to) x0:VP)

rj: 和 x0 PP(IN(with) x0:VP)

Fuzzy-tree to exact-tree rules:

rk: 我{PN} FW(i)

rl: 乐意{AD} JJ(happy)

rc: 和 IN(with)

rn: x2 x0 x1{PP*VP} VP(x0:VB x1:NP x2:PP)

ro: x0{PP*VP} VP(TO(to) x0:VP)

...

...

Figure 2: A sample Chinese-English tree pair for rule extraction. The bold italic nodes in the target English tree are
frontiers. Note that string-to-tree rules are extracted without considering source-side syntax (upper-right). The new

fuzzy-tree to exact-tree rules are extracted with both-side parse trees (bottom-right).

Inspired by (Zollmann and Venugopal, 2006;
Chiang, 2010), we resort to SAMT-style syntactic
categories in the style of categorial grammar (Bar-
Hillel, 1953). The annotation of the source side of
string-to-tree rules is processed in three steps: (1)
If the source-side string corresponds to a syntactic
category C in the source parse tree, we label the
source string with C. (2) Otherwise, we check if
there exists an extended category of the forms
C1*C2, C1/C2 or C2\C1

1, indicating respectively that
the source string spans two adjacent syntactic
categories, a partial syntactic category C1 missing a
C2 on the right, or a partial C1 missing a C2 on the
left. (3) If the second step fails, we check if there is
an extended category of the forms C1*C2*C3 or
C1..C2, showing that the source string spans three
adjacent syntactic categories or a partial category
with C1 and C2 on each side. In the worst case,
C1..C2 can denote every source string, thus all of
the decorations in our training data can be
explained within the above three steps. Using the
SAMT-style grammar, each source string can be
associated with a syntactic category. Thus our
fuzzy-tree to exact-tree extraction does not lose

1 The kinds of categories are checked in order. This means that
if C1*C2, C1/C2 can both describe the same source string, we
will choose C1*C2.

any rules as compared with string-to-tree
extraction. For example, rule ro in Figure 2 uses the
product category *PP VP on the source side.

A problem may arise: How should we handle the
situation where several rules are observed which
only differ in their source-side syntactic categories?
For example, besides the rule rm in Figure 2, we
encountered rules like    CC IN with和 in the

training data. Which source tag should we retain?
We do not make a partial choice in the rule
extraction phase. Instead, we simply make a union
of the relevant rules and retain the respective tag
counts. Applying this strategy, the rule takes the
form of    : 6, : 4P CC IN with和

2, indicating that

the source-side preposition tag appears six times
while the conjunction occurs four times. Note that
the final rule format used in translation depends on
the specific fuzzy rule matching algorithm adopted.

3 Fuzzy Rule Matching Algorithms

The extracted rules will ultimately be applied to
derive translations during decoding. One way to
apply the fuzzy-tree to exact-tree rules is to narrow
the rule search space. Given a test source sentence

2 6 and 4 are not real counts. They are used for illustration
only.

207

with its parse tree, we can according to this
strategy choose only the rules whose source syntax
matches the test source tree. However, this
restriction will rule out many potentially correct
rules. In this study, we keep the rule search space
identical to that of the string-to-tree setting, and
postpone the use of source-side syntax until the
derivation stage. During derivation, a fuzzy
matching algorithm will be adopted to compute a
score to measure the compatibility between the
rule and the test source syntax. The translation
model will learn to distinguish good rules from bad
ones via the compatibility scores.
 In this section, three fuzzy matching algorithms,
from simple to complex, are investigated in order.

3.1 0-1 Matching

0-1 matching is a straightforward approach that
rewards rules whose source syntactic category
exactly matches the syntactic category of the test
string and punishes mismatches. It has mainly been
employed in hierarchical phrase-based models for
integrating source or both-side syntax (Marton and
Resnik, 2008; Chiang et al., 2009; Chiang, 2010).
Since it is verified to be very effective in
hierarchical models, we borrow this idea in our
source-syntax-augmented string-to-tree translation.

In 0-1 matching, the rule’s source side must
contain only one syntactic category, but a rule may
have been decorated with more than one syntactic
category on the source side. Thus we have to
choose the most reliable category and discard the
others. Here, we select the one with the highest
frequency. For example, the tag P in the rule

   : 6, : 4P CC IN with和 appears more frequently,

so the final rule used in 0-1 matching will be
   P IN with和 . Accordingly, we design two

features:
1. match_count calculates in a derivation the

number of rules whose source-side syntactic
category matches the syntactic category of the
test string.

2. unmatch_count counts the number of
mismatches.

For example, in the derivations of Figure 1, we
know the Chinese word 和(hé) is a preposition in
this sentence (and thus can be written as P(和)),
therefore, match_count += 1 if the above rule

   P IN with和 is employed.

These two features are integrated into the log-
linear translation model and the corresponding
feature weights will be tuned along with other
model features to learn which rules are preferred.

3.2 Likelihood Matching

It appears intuitively that the 0-1 matching
algorithm does not make full use of the source-side
syntax because it keeps only the most-frequent
syntactic label and discards some potentially useful
information. Therefore, it runs the risk of treating
all the discarded source syntactic categories of the
rule as equally likely. For example, there is an
extracted rule as follows:

   :11233, :11073, : 65DEC DEG DEV IN of的

 0-1 matching converts it into    DEC IN of的 .

The use of this rule will be penalized if the
syntactic category of the test string 的(dē) is parsed
as DEG or DEV. On one hand, the frequency of the
tag DEG is just slightly less than that of DEC, but
the 0-1 matching punishes the former while
rewarding the latter. On the other hand, the
frequency of DEG is much more than that of DEV,
but they are penalized equally. It is obvious that
the syntactic categories are not finely distinguished.
 Considering this situation, we propose the
likelihood matching algorithm. First, we compute
the likelihood of the rule’s source syntactic
categories. Since we need to deal with the potential
problem that the rule is hit by the test string but the
syntactic category of the test string is not in the
category set of the rule’s source side, we apply the
m-estimate of probability (Mitchell, 1997) to
calculate a smoothed likelihood

c
c

n mp
likelihood

n m




 (1)

in which nc is the count of each syntactic category
c in a specific rule, n denotes the total count of the
rule, m is a constant called the equivalent sample
size, and p is the prior probability of the category c.
In our work, we set the constant m=1 and the prior
p to 1/12599 where 12599 is the total number of
source-side syntactic categories in our training data.
For example, the rule    : 6, : 4P CC IN with和

becomes    : 0.545, : 0.364, 7.2 -6P CC e IN with和 

after likelihood computation. Then, if we apply
likelihood matching in the derivations in Figure 1
where the test string is 和 and its syntax is P(和),

208

the matching score with the above rule will be
0.545. When the test Chinese word 和 is parsed as
a category other than P or CC, the matching score
with the above rule will be 7.2e-6.
 Similar to 0-1 matching, likelihood matching will
serve as an additional model feature representing
the compatibility between categories and rules.

3.3 Deep Similarity Matching

Considering the two algorithms above, we can see
that the purpose of fuzzy matching is in fact to
calculate a similarity. 0-1 matching assigns
similarity 1 for exact matches and 0 for mismatch,
while likelihood matching directly utilizes the
likelihood to measure the similarity. Going one
step further, we adopt a measure of deep similarity,
computed using latent distributions of syntactic
categories. Huang et al. (2010) proposed this
method to compute the similarity between two
syntactic tag sequences, used to impose soft
syntactic constraints in hierarchical phrase-based
models. Analogously, we borrow this idea to
calculate the similarity between two SAMT-style
syntactic categories, and then apply it to calculate
the degree of matching between a translation rule
and the syntactic category of a test source string
for purposes of fuzzy matching. We call this
procedure deep similarity matching.

Instead of directly using the SAMT-style
syntactic categories, we represent each category by
a real-valued feature vector. Suppose there is a set
of n latent syntactic categories  1, , nV v v  (n=16

in our experiments). For each SAMT-style
syntactic category, we compute its distribution of
latent syntactic categories       1 , ,c c c nP V P v P v


 .

For example,    * 0.4, 0.2, 0.3, 0.1VP NPP V 


 means that

the latent syntactic categories v1, v2, v3, v4 are
distributed as p(v1)=0.4, p(v2)=0.2, p(v3)=0.3 and
p(v4)=0.1 for the SAMT-style syntactic category
VP*NP. Then we further transform the distribution
to a normalized feature vector
     c cF c P V P V
  

 to represent the SAMT-style

syntactic category c.
With the real-valued vector representation for

each SAMT-style syntactic category, the degree of
similarity between two syntactic categories can be
simply computed as a dot-product of their feature
vectors:

       
1

' 'i i
i n

F c F c f c f c
 

  
 

 (2)

This computation yields a similarity score ranging
from 0 (totally different syntactically) to 1 (totally
identical syntactically).

Since we can now compute the similarity of any
syntactic category pair, we are currently ready to
compute the matching degree between the
syntactic category of a test source string and a
fuzzy-tree to exact-tree rule. To do this, we first
convert the original fuzzy-tree to exact-tree rule to
the rule of likelihood format without any
smoothing. For example, the rule

   : 6, : 4P CC IN with和  becomes

   : 0.6, : 0.4P CC IN with和 after conversion. We

then denote the syntax of a rule’s source-side RS
by weighting all the SAMT-style categories in RS

     RS
c RS

F RS P c F c


 
 

 (3)

where  RSP c is the likelihood of the category c.

Finally, the deep similarity between a SAMT-style
syntactic category tc of a test source string and a
fuzzy-tree to exact-tree rule is computed as follows:

     ,DeepSim tc RS F tc F RS 
 

 (4)

This deep similarity score will serve as a useful
feature in the string-to-tree model which will
enable the model to learn how to take account of
the source-side syntax during translation.

We have ignored the details of latent syntactic
category induction in this paper. In brief, the set of
latent syntactic categories is automatically induced
from a source-side parsed, word-aligned parallel
corpus. The EM algorithm is employed to induce
the parameters. We simply follow the algorithm of
(Huang et al., 2010), except that we replace the tag
sequence with SAMT-style syntactic categories.

4 Rule Binarization

In the baseline string-to-tree model, the rules are
not in Chomsky Normal Form. There are several
ways to ensure cubic-time decoding. One way is to
prune the extracted rules using a scope-3 grammar
and do SCFG decoding without binarization
(Hopkins and Lengmead, 2010). The other, and
most popular way is to binarize the translation
rules (Zhang et al., 2006). We adopt the latter
approach for efficient decoding with integrated n-
gram language models since this binarization
technique has been well studied in string-to-tree

209

translation. However, when the rules’ source string
is decorated with syntax (fuzzy-tree to exact-tree
rules), how should we binarize these rules?
 We use the rule rn in Figure 2 for illustration:

   2 0 1 0 1 2: * : : :nr x x x PP VP VP x VB x NP x PP .

Without regarding the source-side syntax, we
obtain the following two binarized rules:

 
 

0 1

0 1

2 0*1 0*1 * 2

0 1 * 0 1

1: : :

2 : : :

x x

x x

B x x VP x V x PP

B x x V x VB x NP





Since the source-side syntax PP*VP in rule rn
only accounts for the entire source side, it is
unclear how to annotate the source side of a partial
rule such as the second binary rule B2.

Analyzing the derivation process, we observe
that a partial rule such as binary rule B2 never
appears in the final derivation unless the rooted
binary rule B1 also appears in the derivation.
Based on this observation, we design a heuristic3
strategy: we simply attach the syntax PP*VP in the
rooted binary rule B1, and do not decorate other
binary rules with source syntax. Thus rule rn will
be binarized as:

     
   

0 1

0 1

2 0*1 0*1 * 2

0 1 * 0 1

1 * : :

2 : :

x x

x x

x x PP VP VP x V x PP

x x V x VB x NP





5 Translation Model and Decoding

The proposed translation system is an
augmentation of the string-to-tree model. In the
baseline string-to-tree model, the decoder searches
for the optimal derivation *d that parses a source
string f into a target tree et from all possible
derivations D:

    

 

*
1 2

3

arg max log

|

LM
d D

d p d d

d R d f

   




 

 
 (5)

where the first element is a language model score
in which  d is the target yield of derivation d ;

the second element is the translation length penalty;
the third element is used to control the derivation
length; and the last element is a translation score
that includes six features:

3 We call it heuristic because there may be other syntactic
annotation strategies for the binarized rules. It should be noted
that our strategy makes the annotated binarized rules
equivalent to the original rule.

     

   
   

4 5

6 7

8 9

| log | () log | ()

log | () log () | ()

log () | () _

r d

lex

lex

R d f p r root r p r lhs r

p r rhs r p lhs r rhs r

p rhs r lhs r is comp

 

 

  



 

 

 


(6)

In equation (6), the first three elements denote the
conditional probability of the rule given the root,
the source-hand side, and the target-hand side. The
next two elements are bidirectional lexical
translation probabilities. The last element is the
preferred binary feature for learning: either the
composed rule or the minimal rule.
 In our source-syntax-augmented model, the
decoder also searches for the best derivation. With
the help of the source syntactic information, the
derivation rules in our new model are much more
distinguishable than that in the string-to-tree model:

    

 

*
1 2

3

arg max log

|

LM
d D

d p d d

d R d f

   




 

 
 (7)

Here, all elements except the last one are the same
as in the string-to-tree model. The last item is:

   
    

    
      

10

11

12 13

| |

log ,

log ,

01

r d

R d f R d f

DeepSim DeepSim tag r

likelihood likelihood tag r

match unmatch

 

 

    









 

 (8)

The 0-1 matching4 is triggered only when we set
 01 1  . The other two fuzzy matching algorithms

are triggered in a similar way.
During decoding, we use a CKY-style parser

with beam search and cube-pruning (Huang and
Chiang, 2007) to decode the new source sentences.

6 Experiments

6.1 Experimental Setup

The experiments are conducted on Chinese-to-
English translation, with training data consisting of
about 19 million English words and 17 million
Chinese words5. We performed bidirectional word
alignment using GIZA++, and employed the grow-
diag-final balancing strategy to generate the final

4 In theory, the features unmatch_count, match_count and
derivation_length are linearly dependent, so the
unmatch_count is redundant. In practice, since the derivation
may include glue rules which are not scored by fuzzy
matching. Thus, "unmatch_count + match_count +
glue_rule_number = derivation_length".
5 LDC catalog number: LDC2002E18, LDC2003E14,
LDC2003E07, LDC2004T07 and LDC2005T06.

210

symmetric word alignment. We parsed both sides
of the parallel text with the Berkeley parser (Petrov
et al., 2006) and trained a 5-gram language model
with the target part of the bilingual data and the
Xinhua portion of the English Gigaword corpus.
 For tuning and testing, we use NIST MT
evaluation data for Chinese-to-English from 2003
to 2006 (MT03 to MT06). The development data
set comes from MT06 in which sentences with
more than 20 words are removed to speed up
MERT6 (Och, 2003). The test set includes MT03
to MT05.
 We implemented the baseline string-to-tree
system ourselves according to (Galley et al., 2006;
Marcu et al., 2006). We extracted minimal GHKM
rules and the rules of SPMT Model 1 with source
language phrases up to length L=4. We further
extracted composed rules by composing two or
three minimal GHKM rules. We also ran the state-
of-the-art hierarchical phrase-based system Joshua
(Li et al., 2009) for comparison. In all systems, we
set the beam size to 200. The final translation
quality is evaluated in terms of case-insensitive
BLEU-4 with shortest length penalty. The
statistical significance test is performed using the
re-sampling approach (Koehn, 2004).

6.2 Results

Table 1 shows the translation results on
development and test sets. First, we investigate the
performance of the strong baseline string-to-tree
model (s2t for short). As the table shows, s2t
outperforms the hierarchical phrase-based system
Joshua by more than 1.0 BLEU point in all
translation tasks. This result verifies the superiority
of the baseline string-to-tree model.
 With the s2t system providing a baseline, we
further study the effectiveness of our source-
syntax-augmented string-to-tree system with
fuzzy-tree to exact-tree rules (we use FT2ET to
denote our proposed system). The last three lines
in Table 1 show that, for each fuzzy matching
algorithm, our new system TF2ET performs
significantly better than the baseline s2t system,
with an improvement of more than 0.5 absolute
BLEU points in all tasks. This result demonstrates
the success of our new method of incorporating
source-side syntax in a string-to-tree model.

6 The average decoding speed is about 50 words per minute in
the baseline string-to-tree system and our proposed systems.

System MT06
(dev)

MT03 MT04 MT05

Joshua 29.42 28.62 31.52 31.39

s2t 30.84 29.75 32.68 32.41

0-1 31.61** 30.60** 33.45** 33.37**

LH 31.35* 30.34* 33.21* 33.05*

FT2ET

DeepSim 31.77** 30.82** 33.69** 33.50**

Table 1: Results (in BLEU scores) of different
translation models in multiple tasks. LH=likelihood.
*or**=significantly better than s2t system (p<0.05 or

0.01 respectively).

 Very similar

   'F c F c
 

>0.9

Very dissimilar

   'F c F c
 

<0.1

ADJP JJ; AD\ADJP VP; ADVP\NP
NP DT*NN; LCP*P*NP CP; BA*CP

Table 2: Example of similar and dissimilar categories.

Specifically, the FT2ET system with deep

similarity matching obtains the best translation
quality in all tasks and surpasses the baseline s2t
system by 0.93 BLEU points in development data
and by more than 1.0 BLEU point in test sets. The
0-1 matching algorithm is simple but effective, and
it yields quite good performance (line 3). The
contribution of 0-1 matching as reflected in our
experiments is consistent with the conclusions of
(Marton and Resnik, 2008; Chiang, 2010). By
contrast, the system with likelihood matching does
not perform as well as the other two algorithms,
although it also significantly improves the baseline
s2t in all tasks.

6.3 Analysis and Discussion

We are a bit surprised at the large improvement
gained by the 0-1 matching algorithm. This
algorithm has several advantages: it is simple and
easy to implement, and enhances the translation
model by enabling its rules to take account of the
source-side syntax to some degree. However, a
major deficiency of this algorithm is that it does
not make full use of the source side syntax, since it
retains only the most frequent SAMT-style
syntactic category to describe the rule’s source
syntax. Thus this algorithm penalizes all the other
categories equally, although some may be more
frequent than others, as in the case of DEG and
DEV in the rule

   :11233, :11073, : 65DEC DEG DEV IN of的 .

To some extent, the likelihood matching
algorithm solves the main problem of 0-1 matching.

211

Instead of rewarding or penalizing, this algorithm
uses the likelihood of the syntactic category to
approximate the degree of matching between the
test source syntactic category and the rule. For a
category not in the rule’s source syntactic category
set, the likelihood algorithm computes a smoothed
likelihood. However, the likelihood algorithm does
not in fact lead to very promising improvement.
We conjecture that this disappointing performance
is due to the simple smoothing method we
employed. Future work will investigate more fully.

Compared with the above two matching
algorithms, the deep similarity matching algorithm
based on latent syntactic distribution is much more
beautiful in theory. This algorithm can successfully
measure the similarity between any two SAMT-
style syntactic categories (Table 2 gives some
examples of similar and dissimilar category pairs).
Then it can accurately compute the degree of
matching between a test source syntactic category
and a fuzzy-tree to exact-tree rule. Thus this
algorithm obtains the best translation quality.
However, the deep similarity matching algorithm
has two practical shortcomings. First, it is not easy
to determine the number of latent categories. We
have to conduct multiple experiments to arrive at a
number which can yield a tradeoff between
translation quality and model complexity. In our
work, we have tried the numbers n=4, 8, 16, 32,
and have found n=16 to give the best tradeoff. The
second shortcoming is that the induction of latent
syntactic categories has been very time consuming,
since we have applied the EM algorithm to the
entire source-parsed parallel corpus. Even with
n=8, it took more than a week to induce the latent
syntactic categories on our middle-scale training
data when using a Xeon four-core computer
(2.5 2 16GHz CPU GB  memory). When the training
data contains tens of millions of sentence pairs, the
computation time may no longer be tolerable.

Table 3 shows some translation examples for
comparison. In the first example, the Chinese
preposition word 和 is mistakenly translated into
English conjunction word and in Joshua and
baseline string-to-tree system s2t, however, our
source-syntax-augmented system FT2ET-DeepSim
correctly converts the Chinese word 和 into
English preposition with and finally yield the right
translation. In the second example, our proposed
system moves the prepositional phrase at an early

date after the sibling verb phrase. It is more
reasonable compared with the baseline system s2t.
In the third example, the proposed system FT2ET-
DeepSim successfully recognizes the Chinese long
prepositional phrase 在 与 中国 总理 温家宝 举行 峰
会 后 发布 的联合 声明 中 and short verb phrase 说,
and obtains the correct phrase reordering at last.

7 Related Work

Several studies have tried to incorporate source or
target syntax into translation models in a fuzzy
manner.

Zollmann and Venugopal (2006) augment the
hierarchical string-to-string rules (Chiang, 2005)
with target-side syntax. They annotate the target
side of each string-to-string rule using SAMT-style
syntactic categories and aim to generate the output
more syntactically. Zhang et al. (2010) base their
approach on tree-to-string models, and generate
grammatical output more reliably with the help of
tree-to-tree sequence rules. Neither of them builds
target syntactic trees using target syntax, however.
Thus they can be viewed as integrating target
syntax in a fuzzy manner. By contrast, we base our
approach on a string-to-tree model which does
construct target syntactic trees during decoding.

(Marton and Resnik, 2008; Chiang et al., 2009
and Huang et al., 2010) apply fuzzy techniques for
integrating source syntax into hierarchical phrase-
based systems (Chiang, 2005, 2007). The first two
studies employ 0-1 matching and the last tries deep
similarity matching between two tag sequences. By
contrast, we incorporate source syntax into a
string-to-tree model. Furthermore, we apply fuzzy
syntactic annotation on each rule’s source string
and design three fuzzy rule matching algorithms.

Chiang (2010) proposes a method for learning to
translate with both source and target syntax in the
framework of a hierarchical phrase-based system.
He not only executes 0-1 matching on both sides of
rules, but also designs numerous features such as

. 'X Xroot which counts the number of rules whose
source-side root label is X and target-side root
label is 'X . This fuzzy use of source and target
syntax enables the translation system to learn
which tree labels are similar enough to be
compatible, which ones are harmful to combine,
and which ones can be ignored. The differences
between us are twofold: 1) his work applies fuzzy
syntax in both sides, while ours bases on the string-

212

Source sentence 海珊 也 [和 恐怖 组织网] 建立 了 联系

Reference hussein also established ties with terrorist networks

Joshua hussein also and terrorist networks established relations

s2t hussein also and terrorist networks established relations

1

FT2ET- DeepSim hussein also established relations with terrorist networks

Source sentence … [以 期] [早日] [结束] [以 巴 之间 多年 的 流血 冲突]

Reference .. to end years of bloody conflict between israel and palestine as soon as possible

.. to end at an early date years of bloody conflict between israel and palestine

Joshua … in the early period to end years of blood conflict between israel and palestine

s2t … at an early date to end years of blood conflict between israel and palestine

2

FT2ET- DeepSim … to end years of blood conflict between israel and palestine at an early date

Source sentence 欧盟 [在 与 中国 总理 温家宝 举行 峰会 后 发布 的联合 声明 中] [说] …

Reference

the europen union said in a joint statement issued after its summit meeting with china ‘s
premier wen jiabao …
in a joint statement released after the summit with chinese premier wen jiabao , the
europen union said …

Joshua the europen union with chinese premier wen jiabao in a joint statement issued after the
summit meeting said …

s2t the europen union in a joint statement issued after the summit meeting with chinese
premier wen jiabao said …

3

FT2ET- DeepSim the europen union said in a joint statement issued after the summit meeting with chinese
premier wen jiabao …

Table 3: Some translation examples produced by Joshua, string-to-tree system s2t and source-syntax-augmented

string-to-tree system FT2ET with deep similarity matching algorithm

to-tree model and applies fuzzy syntax on source
side; and 2) we not only adopt the 0-1 fuzzy rule
matching algorithm, but also investigate likelihood
matching and deep similarity matching algorithms.

8 Conclusion and Future Work

In this paper, we have proposed a new method for
augmenting string-to-tree translation models with
fuzzy use of the source syntax. We first applied a
fuzzy annotation method which labels the source
side of each string-to-tree rule with SAMT-style
syntactic categories. Then we designed and
explored three fuzzy rule matching algorithms: 0-1
matching, likelihood matching, and deep similarity
matching. The experiments show that our new
system significantly outperforms the strong
baseline string-to-tree system. This substantial
improvement verifies that our fuzzy use of source
syntax is effective and can enhance the ability to
choose proper translation rules during decoding
while guaranteeing grammatical output with
explicit target trees. We believe that our work may
demonstrate effective ways of incorporating both-
side syntax in a translation model to yield
promising results.

 Next, we plan to further study the likelihood
fuzzy matching and deep similarity matching
algorithms in order to fully exploit their potential.
For example, we will combine the merits of 0-1
matching and likelihood matching so as to avoid
the setting of parameter m in likelihood matching.
We also plan to explore another direction: we will
annotate the source side of each string-to-tree rule
with subtrees or subtree sequences. We can then
apply tree-kernel methods to compute a degree of
matching between a rule and a test source subtree
or subtree sequence.

Acknowledgments

The research work has been funded by the Natural
Science Foundation of China under Grant No.
60975053, 61003160 and 60736014 and supported
by the External Cooperation Program of the
Chinese Academy of Sciences. We would also like
to thank Mark Seligman and Yu Zhou for revising
the early draft, and anonymous reviewers for their
valuable suggestions.

213

References

Yehoshua Bar-Hillel, 1953. A quasi-arithmetical
notation for syntactic description. Language, 29 (1).
pages 47-58.

David Chiang, 2005. A hiearchical phrase-based model
for statistical machine translation. In Proc. of ACL
2005, pages 263-270.

David Chiang, 2007. Hierarchical phrase-based
translation. Computational Linguistics, 33 (2).
pages 201-228.

David Chiang, 2010. Learning to translate with source
and target syntax. In Proc. of ACL 2010, pages
1443-1452.

David Chiang, Kevin Knight and Wei Wang, 2009.
11,001 new features for statistical machine
translation. In Proc. of NAACL 2009, pages 218-
226.

Brooke Cowan, Ivona Kucerova and Michael Collins,
2006. A discriminative model for tree-to-tree
translation. In Proc. of EMNLP, pages 232-241.

Yuan Ding and Martha Palmer, 2005. Machine
translation using probabilistic synchronous
dependency insertion grammars. In Proc. of ACL
2005, pages 541-548.

Michel Galley, Mark Hopkins, Kevin Knight and Daniel
Marcu, 2004. What’s in a translation rule. In Proc.
of HLT-NAACL 2004, pages 273–280.

Michel Galley, Jonathan Graehl, Kevin Knight, Daniel
Marcu, Steve DeNeefe, Wei Wang and Ignacio
Thayer, 2006. Scalable inference and training of
context-rich syntactic translation models. In Proc.
of ACL-COLING 2006.

Mark Hopkins and Greg Langmead, 2010. SCFG
decoding without binarization. In Proc. of EMNLP
2010, pages 646-655.

Liang Huang and David Chiang, 2007. Forest rescoring:
Faster decoding with integrated language models.
In Proc. of ACL 2007, pages 144-151.

Liang Huang, Kevin Knight and Aravind Joshi, 2006. A
syntax-directed translator with extended domain of
locality. In Proc. of AMTA 2006, pages 65-73.

Zhongqiang Huang, Martin Cmejrek and Bowen Zhou,
2010. Soft syntactic constraints for hierarchical
phrase-based translation using latent syntactic
distributions. In Proc. of EMNLP 2010, pages 138-
147.

Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris
Callison-Burch, Marcello Federico, Nicola Bertoldi,
Brooke Cowan, Wade Shen, Christine Moran,
Richard Zens, Chris Dyer, Ondrej Bojar,
Alexandra Constantin and Evan Herbst, 2007.
Moses: Open source toolkit for statistical machine
translation. In Proc. of ACL 2007, pages 177-180.

Philipp Koehn, 2004. Statistical significance tests for
machine translation evaluation. In Proc. of EMNLP
2004, pages 388–395.

Zhifei Li, Chris Callison-Burch, Chris Dyer, Juri
Ganitkevitch, Sanjeev Khudanpur, Lane Schwartz,
Wren N.G. Thornton, Jonathan Weese and Omar F.
Zaidan, 2009. Joshua: An open source toolkit for
parsing-based machine translation. In Proc. of ACL
2009, pages 135-139.

Yang Liu, Qun Liu and Shouxun Lin, 2006. Tree-to-
string alignment template for statistical machine
translation. In Proc. of ACL-COLING 2006, pages
609-616.

Yang Liu, Yajuan Lv and Qun Liu, 2009. Improving
tree-to-tree translation with packed forests. In Proc.
of ACL-IJCNLP 2009, pages 558-566.

Daniel Marcu, Wei Wang, Abdessamad Echihabi and
Kevin Knight, 2006. SPMT: Statistical machine
translation with syntactified target language
phrases. In Proc. of EMNLP 2006, pages 44-52.

Yuval Marton and Philip Resnik, 2008. Soft syntactic
constraints for hierarchical phrased-based
translation. In Proc. of ACL-08: HLT. pages 1003–
1011.

Haitao Mi, Liang Huang and Qun Liu, 2008. Forest-
based translation. In Proc. of ACL-08: HLT. pages
192–199.

Haitao Mi and Qun Liu, 2010. Constituency to
dependency translation with forests. In Proc. of
ACL 2010, pages 1433-1442.

Tom M. Mitchell, 1997. Machine learning. Mac Graw
Hill.

Franz Josef Och, 2003. Minimum error rate training in
statistical machine translation. In Proc. of ACL
2003, pages 160-167.

Slav Petrov, Leon Barrett, Romain Thibaux and Dan
Klein, 2006. Learning accurate, compact, and
interpretable tree annotation. In Proc. of COLING-
ACL 2006, pages 433-440.

Chris Quirk, Arul Menezes and Colin Cherry, 2005.
Dependency treelet translation: Syntactically
informed phrasal SMT. In Proc. of ACL 2005,
pages 271-279.

Libin Shen, Jinxi Xu and Ralph Weischedel, 2008. A
new string-to-dependency machine translation
algorithm with a target dependency language
model. In Proc. of ACL-08: HLT, pages 577-585.

Tong Xiao, Jingbo Zhu, Muhua Zhu and and Huizhen
Wang, 2010. Boosting-based System Combination
for Machine Translation. In Proc. of ACL 2010,
pages 739-748.

Hao Zhang, Liang Huang, Daniel Gildea and Kevin
Knight, 2006. Synchronous binarization for
machine translation. In Proc. of HLT-NAACL 2006,
pages 256-263.

214

Hui Zhang, Min Zhang, Haizhou Li, Aiti Aw, Chew
Lim Tan, 2009. Forest-based tree sequence to
string translation model. In Proc. of ACL-IJCNLP
2009, pages 172-180.

Hui Zhang, Min Zhang, Haizhou Li and Chng Eng
Siong, 2010. Non-isomorphic forest pair
translation. In Proc. of EMNLP 2010, pages 440-
450.

Andreas Zollmann and Ashish Venugopal, 2006. Syntax
augmented machine translation via chart parsing.
In Proc. of Workshop on Statistical Machine
Translation 2006, pages 138-141.

215

