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Abstract

Class-instance label propagation algorithms
have been successfully used to fuse informa-
tion from multiple sources in order to enrich
a set of unlabeled instances with class labels.
Yet, nobody has explored the relationships be-
tween the instances themselves to enhance an
initial set of class-instance pairs. We pro-
pose two graph-theoretic methods (centrality
and regularization), which start with a small
set of labeled class-instance pairs and use the
instance-instance network to extend the class
labels to all instances in the network. We carry
out a comparative study with state-of-the-art
knowledge harvesting algorithm and show that
our approach can learn additional class labels
while maintaining high accuracy. We conduct
a comparative study between class-instance
and instance-instance graphs used to propa-
gate the class labels and show that the latter
one achieves higher accuracy.

1 Introduction

Many natural language processing applications use
and rely on semantic knowledge resources. Since
manually built lexical repositories such as Word-
Net (Fellbaum, 1998) cover a limited amount of
knowledge and are tedious to maintain over time, re-
searchers have developed algorithms for automatic
knowledge extraction from structured and unstruc-
tured texts. There is a substantial body of work
on extracting is-a relations (Etzioni et al., 2005;
Kozareva et al., 2008), part-of relations (Girju et al.,
2003; Pantel and Pennacchiotti, 2006) and general
facts (Lin and Pantel, 2001; Davidov and Rappoport,

2009; Jain and Pantel, 2010). The usefulness of the
generated resources has been shown to be valuable
to information extraction (Riloff and Jones, 1999),
question answering (Katz et al., 2003) and textual
entailment (Zanzotto et al., 2006) systems.

Among the most common knowledge acquisi-
tion approaches are those based on lexical patterns
(Hearst, 1992; Etzioni et al., 2005; Kozareva et al.,
2008) and clustering (Lin and Pantel, 2002; Davidov
and Rappoport, 2008). While clustering can find in-
stances and classes that are not explicitly expressed
in text, they often may not generate the granularity
needed by the users. In contrast, pattern-based ap-
proaches generate highly accurate lists, but they are
constraint to the information matched by the pattern
and often suffer from recall. (Paşca, 2004; Snow
et al., 2006; Kozareva and Hovy, 2010) have shown
that complete lists of semantic classes and instances
are valuable for the enrichment of existing resources
like WordNet and for taxonomy induction. There-
fore, researchers have focused on the development
of methods that can automatically augment the ini-
tially extracted class-instance pairs.

(Pennacchiotti and Pantel, 2009) fused informa-
tion from pattern-based and distributional systems
using an ensemble method and a rich set of features
derived from query logs, web-crawl and Wikipedia.
(Talukdar et al., 2008) improved class-instance ex-
tractions exploring the relationships between the
classes and the instances to propagate the initial
class-labels to the remaining unlabeled instances.
Later on (Talukdar and Pereira, 2010) showed that
class-instance extraction with label propagation can
be further improved by adding semantic information
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in the form of instance-attribute edges derived from
independently developed knowledge base. Similarly
to (Talukdar et al., 2008) and (Talukdar and Pereira,
2010), we are interested in enriching class-instance
extractions with label propagation. However, un-
like the previous work, we model the relationships
between the instances themselves to propagate the
initial set of class labels to the remaining unlabeled
instances. To our knowledge, this is the first work
to explore the connections between instances for the
task of class-label propagation.

Our work addresses the following question: Is it
possible to effectively explore the structure of the
text-mined instance-instance networks to enhance
an incomplete set of class labels? Our intuition is
that if an instance like bear belongs to a seman-
tic class carnivore, and the instance bear is con-
nected to the instance fox, then it is more likely that
the unlabeled instance fox is also of class carnivore.
To solve this problem, we propose two graph-based
approaches that use the structure of the instance-
instance graph to propagate the class labels. Our
methods are agnostic to the sources of semantic in-
stances and classes. In this work, we carried out ex-
periments with a state-of-the-art instance extraction
system and conducted a comparative study between
the original and the enhanced class-instance pairs.
The results show that this labeling procedure can be-
gin to bridge the gap between the extraction power
of the pattern-based approaches and the desired re-
call by finding class-instance pairs that are not ex-
plicitly mentioned in text. The contributions of the
paper are as follows:

• We use only the relationships between the in-
stances themselves to propagate class labels.

• We observe how often labels are propagated
along the edges of our semantic network, and
propose two ways to extend an initial set of
class labels to all the instance nodes in the net-
work. The first approach uses a linear sys-
tem to compute the network centrality relative
to the initially labeled instances. The second
approach uses a regularization framework with
respect to a random walk on the network.

• We evaluate the proposed approaches and show
that they discover many new class-instance
pairs compared to state-of-the-art knowledge

harvesting algorithm, while still maintaining
high accuracy.

• We conduct a comparative study between class-
instance and instance-instance graphs used
to propagate class labels. The experiments
show that considering relationships between in-
stances achieves higher accuracy.

The rest of the paper is organized as follows. In
Section 2, we review related work. Section 3 de-
scribes the Web-based knowledge harvesting algo-
rithm used to extract the instance network and the
class-instance pairs necessary for our experimen-
tal evaluation. Section 4 describes the two graph-
theoretic methods for class label propagation using
an instance-instance network. Section 5 shows a
comparative study between the proposed graph al-
gorithms and different baselines. We also show
a comparison between class-instance and instance-
instance graphs used in the label propagation. Fi-
nally, we conclude in Section 6.

2 Related Work

In the past decade, we have reached a good under-
standing on the knowledge harvesting technology
from structured (Suchanek et al., 2007) and unstruc-
tured text. Researchers have harvested with vary-
ing success semantic lexicons (Riloff and Shepherd,
1997) and concept lists (Katz et al., 2003). Many
efforts have also focused on the extraction of is-a
relations (Hearst, 1992; Paşca, 2004; Etzioni et al.,
2005; Paşca, 2007; Kozareva et al., 2008), part-of re-
lations (Girju et al., 2003; Pantel and Pennacchiotti,
2006) and general facts (Etzioni et al., 2005; Davi-
dov and Rappoport, 2009; Jain and Pantel, 2010).
Various approaches have been proposed following
the patterns of (Hearst, 1992) and clustering (Lin
and Pantel, 2002; Davidov and Rappoport, 2008). A
substantial body of work has explored issues such as
reranking the harvested knowledge using mutual in-
formation (Etzioni et al., 2005) and graph algorithms
(Hovy et al., 2009), estimating the goodness of text-
mining seeds (Vyas et al., 2009), organizing the
extracted information (Cafarella et al., 2007a; Ca-
farella et al., 2007b) and inducing term taxonomies
with WordNet (Snow et al., 2006) or starting from
scratch (Kozareva and Hovy, 2010).
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Since pattern-based approaches tend to be high-
precision and low-recall in nature, recently of great
interest to the research community is the develop-
ment of approaches that can increment the recall of
the harvested class-instance pairs. (Pennacchiotti
and Pantel, 2009) proposed an ensemble seman-
tic framework that mixes distributional and pattern-
based systems with a large set of features from a
web-crawl, query logs, and Wikipedia. (Talukdar
et al., 2008) combined extractions from free text
and structured sources using graph-based label prop-
agation algorithm. (Talukdar and Pereira, 2010)
conducted a comparative study of graph algorithms
and showed that class-instance extraction can be
improved using additional information that can be
modeled as instance-attribute edges.

Closest to our work is that of (Talukdar et al.,
2008; Talukdar and Pereira, 2010) who model class-
instance relations to propagate class-labels. Al-
though these algorithms can be applied to other rela-
tions (Alfonseca et al., 2010), to our knowledge yet
nobody has modeled the connections between the in-
stances themselves for the task of class-label prop-
agation. We propose regularization and centrality
graph-theoretic methods, which exploit the instance-
instance network and a small set of class-instance
pairs to propagate the class-labels to the remaining
unlabeled instances. While objectives similar to reg-
ularization have been used for class-label propaga-
tion, the application of node centrality for this task is
also novel. The proposed solutions are intuitive and
almost parameter-free (both methods have a single
parameter, which is easy to interpret and does not
require careful tuning).

3 Knowledge Harvesting from the Web

Our proposed class-label enhancement approaches
are agnostic to the sources of semantic instances and
classes. Several methods have been developed to
harvest instances from the Web (Paşca, 2004; Et-
zioni et al., 2005; Paşca, 2007; Kozareva et al.,
2008) and potentially we can use any of them.
In our experiments, we use the doubly-anchored
(DAP) method of (Kozareva et al., 2008), because it
achieves higher precision than (Etzioni et al., 2005;
Paşca, 2007), it is easy to implement and requires
minimum supervision (only one seed instance and a

lexico-syntactic pattern).
For a given semantic class of interest say ani-

mals, the algorithm starts with a seed example of
the class, say whales. The seed instance is fed into
a doubly-anchored pattern “<semantic-class> such
as <seed> and *”, which extracts on the position
of the * new instances of the semantic class. Then,
the newly acquired instances are individually placed
on the position of the seed in the DAP pattern. The
bootstrapping procedure is repeated until no new in-
stances are found. We use the harvested instances to
build the instance-instance graph in which the nodes
are the learned instances and directed edges like
(whales,dolphins) indicate that the instance whales
extracted the instance dolphins. The edges between
the instances are weighted based on the number of
times the DAP pattern extracted the instances to-
gether.

Different strategies can be employed to acquire
semantic classes for each instance. We follow the
fully automated approach of (Hovy et al., 2009),
which takes the learned instance pairs from DAP and
feeds them into the pattern “* such as <instance1>
and <instance2>”. The algorithm extracts on the
position of the * new semantic classes related to
instance1. According to (Hovy et al., 2009), the
usage of two instances acts as a disambiguator and
leads to much more accurate semantic class extrac-
tion compared to (Ritter et al., 2009).

4 Methods

We model the output of the instance harvesting al-
gorithm as a directed weighted graph that is given
by a set of vertices V and a set of edges E. We use
n to denote the number of vertices. A node u corre-
sponds to a learned instance, and an edge (u, v) ∈ E
indicates that the instance v was learned from the in-
stance u using the DAP pattern. The weight of the
edge w(u, v) specifies the number of times the pair
of instances were found by the DAP pattern. We de-
fine the adjacency matrix of the graph as:

A(u, v) =

{
w(u, v) if (u, v) ∈ E
0 otherwise.

We use dout(u) to specify the out-degree of u:
dout(u) =

∑
(u,v)∈E w(u, v), and din(v) to specify

the in-degree of v: din(v) =
∑

(u,v)∈E w(u, v).
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We represent the initial set of instances L that are
believed to belong to class C (the set of labeled in-
stances) by a row vector l ∈ {0, 1}n, where l(u) = 1
if u ∈ L. Our objective is to compute a vector l̂
where l̂(u) is proportional to how likely it is that u
belongs to C. We write all vectors as row vectors,
and use ~c to denote a 1 by n constant vector such
that ~c(u) = c for all u ∈ V .

4.1 Personalized Centrality
Our first approach is based on the intuition that if
u ∈ C and (u, v) ∈ E, then it is more likely that
v ∈ C. Moreover, the larger the weight of the edge
w(u, v), the more likely it is that v ∈ C. When we
extend this intuition to all the in-neighbors, we say
that the score of each node is proportional to the sum
of the scores of its in-neighbors scaled by the edge
weights: l̂(v) = α

∑
(u,v)∈E l̂(u)w(u, v). We can

verify that the vector l̂ must then satisfy l̂ = αl̂A,
so it is an eigenvector of the adjacency matrix of the
graph with an eigenvalue of α.

However, this formulation is insufficient because
even though it captures our intuition that the nodes
get their scores from their in-neighbors, we are still
ignoring the initial scores of the nodes. A way to
take the initial scores into consideration is to com-
pute the following steady-state equation:

l̂ = l + α · l̂A. (1)

Equation 1 specifies that the score l̂(u) of each node
u is the sum of its initial score l(u) and the weighted
sum of the scores of its neighbors, which is scaled
by α. This equation is known as α-centrality, which
was first introduced by (Bonacich and Lloyd, 2001).
The α parameter controls how much the score of
each node depends on the scores of its neighbors.
When α = 0 the score of each node is equivalent to
its initial score, and does not depend on the scores
of its neighbors at all.

Alternately, we can think of the vector l̂ as the
fixed-point of the process in which in each iteration
some node v updates its score l̃(v) by setting l̃(v) =
l(v) + α

∑
(u,v)∈E w(u, v)l̃(u).

Solving Equation 1 we can see that l̂ = l(I −
αA)−1, where I is the identity matrix of size n.
The solution is also closely related to the following
expression, which is known as a Katz score (Katz,
1953):

s

∞∑

t=1

αtAt.

We can verify that At(u, v) gives the number of
paths of length t between u and v. Katz proposed
using the above expression with the starting vector
s = ~1 to measure centrality in a network. Therefore,
the score of node v is given by the number of paths
from u to v for all u ∈ V , with longer paths given
less weight based on the value of α. The method
proposed here measures a similar quantity with a
non-uniform starting vector. To show the relation-
ship between the two measures we use the identity
that

∑∞
t=1 α

tAt = (I −αA)−1− I . It is easy to see
that

l̂ = l(I − αA)−1

= l(
∑∞

t=1 α
tAt + I)

= l
∑∞

t=1 α
tAt + l

= l
∑∞

t=0 α
tAt.

(2)

Equation 2 shows that l̂(v) is given by the number
of paths from u to v for all u ∈ L (the initial labeled
set). Using a larger value of α corresponds to giving
more weight to paths of longer length. The summa-
tion

∑∞
t=0 α

tAt converges as long as |α| < 1/λmax,
where λmax is the largest eigenvalue of A. There-
fore, we can only consider values of α in this range.

4.2 Regularization Using Random Walks
Our second approach constrains l̂ to be as consistent
or smooth as possible with respect to the structure
of the graph. The simplest way to express this is
to require that for each edge (u, v) ∈ E, the scores
of the endpoints l̂(u) and l̂(v) must be as similar as
possible. Moreover, the greater the weight of the
edge w(u, v) the more important it is for the scores
to match. Using this intuition we can define the fol-
lowing optimization problem:

argminl̂∈{0,1}n
∑

(u,v)∈E
(l̂(u)− l̂(v))2.

Setting l̂ = ~0 or l̂ = ~1 clearly optimizes this func-
tion, but does not give a meaningful solution. How-
ever, we can additionally constrain l̂ by requiring
that the initial labels cannot be modified, or more
generally penalizing the discrepancy between l̂(u)
and l(u) for u ∈ L. The methods of (Talukdar and
Pereira, 2010) optimize objective functions of this
type.
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Unlike the work of (Talukdar and Pereira, 2010),
here we use an objective function that considers
smoothness with respect to a random walk on the
graph. Performing a random walk allows us to take
more of the graph structure into account. For exam-
ple, if nodes u and v are part of the same cluster then
it is likely that the edge (u, v) is heavily traversed
during the random walk, and should have a lot of
probability in the stationary distribution of the walk.
Simply considering the weight of the edge w(u, v)
gives us no such information. Therefore if our objec-
tive function requires the scores to be consistent with
respect to the stationary probability of the edges in
the random walk, we can compute scores that are
consistent with the clustering structure of the graph.

Our semantic network is not strongly connected,
so we must make some modifications to the random
walk to ensure that it has a stationary distribution.
Section 4.2.1 describes our random walk and how
we compute the transition probability matrix P and
its stationary probability distribution π. The defini-
tion of our objective function and the description of
how it is optimized is given in Section 4.2.2.

4.2.1 Teleporting Random Walk
Formally, a random walk is a process where at

each step we move from some node to one of its
neighbors. The transition probabilities are given
by edge weights, therefore the transition probability
matrix W is the normalized adjacency matrix where
each row sums to one:

W = D−1A.

Here the D matrix is the degree matrix, which is a
diagonal matrix given by

D(u, v) =

{
dout(u) if u = v
0 otherwise.

In our semantic network some nodes have no out-
neighbors, so in order to compute W we first add a
self-loop to any such node. In addition, we modify
the random walk to reset at each step with nonzero
probability β to ensure that it has a steady-state
probability distribution. When the walk resets it
jumps or teleports to any node in the graph with
equal probability. The transition probability matrix
of this process is given by

P = βK + (1− β)W,

where K is an n by n matrix given by K(u, v) = 1
n

for all u, v ∈ V . The stationary distribution π must
satisfy π = πP . Equivalently π can be viewed as a
solution to the following PageRank equation:

π = βs+ (1− β)πW.

Here the starting vector s = 1
n
~1 gives the prob-

ability distribution for where the walk transitions
when it resets. In our computations we use a jump
probability β = 0.15, which is standard for com-
putations of PageRank. The stationary distribution
π can be computed by either solving the PageRank
equation or computing the eigenvector of P corre-
sponding to the eigenvalue of 1.

4.2.2 Regularization
(Zhou et al., 2005) propose the following function

to measure the smoothness of l̂ with respect to the
stationary distribution of the random walk:

Ω(l̂) =
1

2

∑

(u,v)∈E
π(u)P (u, v)

(
l̂(u)√
π(u)

− l̂(v)√
π(v)

)2

.

Here π(u)P (u, v) gives the steady-state proba-
bility of traversing the edge (u, v), and π(u) and
π(v) specify how much probability u and v have
in the stationary distribution π. Zhou et al. point
out that using this function gives better results than
smoothness with respect to the edge weights, which
can be formulated by replacing π(u)p(u, v) with
w(u, v), and replacing π(u) and π(v) with dout(u)
and din(v), respectively. This observation is con-
sistent with our intuition that considering a random
walk takes more of the graph structure into account.

In addition to minimizing Ω(l̂), we also want l̂ to
be as close as possible to l, which gives the follow-
ing optimization problem:

argminl̂∈Rn{Ω(ŷ) + µ||l̂ − l||2}. (3)

Here the µ > 0 parameter specifies the tradeoff be-
tween the two terms: using a larger µ corresponds to
placing more emphasis on agreement with the initial
labels. (Zhou et al., 2005) show that this objective is
optimized by computing

l̂ = (I − γΘ)−1l, (4)

where Θ = (Π1/2PΠ−1/2 + Π−1/2PΠ1/2)/2, and
γ = 1/(1 + µ). Π is a diagonal matrix given by
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Π(u, v) =

{
π(u) if u = v
0 otherwise.

Zhou et al. propose this approach for semi-
supervised learning of labels on the graph, given an
initial vector l such that l(u) = 1 if vertex u has the
label, l(u) = −1 if u does not have the label, and
l(u) = 0 if the vertex is unlabeled. They propose
taking the sign of l̂(u) to classify u as positive or
negative. Using our labeling procedure we do not
have any negative examples, so our initial vector l
is non-negative, resulting in a non-negative vector l̂.
This is not a problem because we can still interpret
l̂(u) to be proportional to how likely it is that u has
the label. Rather than trying different settings of µ,
we directly vary γ, with a smaller γ placing more
emphasis on agreement with initial labels.

5 Experimental Evaluation

5.1 Data Collection

For our experimental study, we select three widely
used domains in the harvesting community (Et-
zioni et al., 2005; Paşca, 2007; Hovy et al., 2009;
Kozareva and Hovy, 2010): animals and vehicles.
For each domain we randomly selected different se-
mantic classes, which resulted in 20 classes alto-
gether. To generate the instance-instance seman-
tic network, we use the harvesting procedure de-
scribed in Section 3. For example, to learn instances
associated with animals, we instantiate the boot-
strapping algorithm with the semantic class animals,
the seed instance bears and the pattern “animals
such as bears and *”. We submitted the pattern as
queries to Yahoo!Boss and collected new instances.
We ranked the instances following (Kozareva et al.,
2008) which resulted in 397 animal, 4471 plant and
1425 vehicle instances. Table 1 shows the number
of nodes (instances) and directed edges for the con-
structed semantic networks.

class #instances #directed-edges
animals 397 2812
vehicles 1425 3191

Table 1: Nodes & Edges in the Instance Network.

Next, we use the harvested instances to auto-
matically learn the semantic classes associated with
them. For example, bears and wolves are animals
but also mammals, predators, vertebrates among

others. The obtained class harvesting results are
shown in Table 2. We indicate with Inst(Hovy et
al., 2009) the number of instances in the semantic
network that discovered the class during the pattern-
based harvesting, and with InstInWordNet the num-
ber of instances in the semantic network belonging
to the class according to WordNet.

ClassName Inst(Hovy et al., 2009) InstInWordNet

arthropods 12 50
carnivores 24 57
chordates 2 313
eutherians 3 193

insects 5 29
invertebrates 53 84

mammals 114 205
reptile 5 22

ruminants 14 34
ungulates 16 66

crafts 24 68
motor vehicles 27 127

self-propelled vehicles 36 145
vessels 11 36

wheeled vehicles 54 190

Table 2: Learned & Gold Standard Class-Instances.

We can see that the pattern-based approach of
(Hovy et al., 2009) does not recover a lot of the
class-instance relations present in WordNet. Be-
cause of this gap between the actual and the har-
vested class-instance pairs arises the objective of our
work, which is to explore the relationships between
the instances to propagate the initially learned class
labels to the remaining unlabeled instances. To eval-
uate the performance of our approach, we use as a
gold standard the WordNet class-instance mappings.

5.2 Testing Our Approach
Our approach is based on the intuition that given a
labeled instance u of class C, and an instance v in
our network, if there is an edge (u, v) then it is more
likely that v has the label C as well. For example,
if the instance bears is of class vertebrates and there
is an edge between the instances bears and wolves,
then it is likely that wolves are also vertebrates.
Before proceeding with the instance-instance class-
label propagation algorithms, first we study whether
this intuition is correct.

Individually for each class label C, we construct a
set TC that contains all instances in the network be-
longing to C according to WordNet. Then we com-
pute the probability that v belongs to C in WordNet
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given that (u, v) is an edge in the instance network
and u belongs to C in WordNet: Prh = Pr[v ∈
TC | (u, v) ∈ E and u ∈ TC ]. We compare
this to the background probability Prb = Pr[v ∈
TC | u, v ∈ V and u ∈ TC ], which gives the proba-
bility that v belongs to C in WordNet if it is chosen
at random. In other words, if Prh = 1, this means
that whenever u has the label C and (u, v) is an
edge, then v is always labeled with C. If indeed this
is the case, then a good classifier can simply take the
initial set L and extend the labels to all nodes reach-
able from L in the semantic network. The larger the
difference between Prh and Prb, the more informa-
tion the links of the instance network carry for the
task of label propagation. Table 3 shows the Prh
and Prb values for each class.

CLASS Prh Prb

arthropods .46 .12
carnivores .49 .14
chordates .95 .80
eutherians .80 .49

insects .31 .07
invertebrates .74 .21

mammals .82 .52
reptile .27 .05

ruminants .39 .08
ungulates .60 .16

crafts .07 .05
motor vehicles .10 .09

self-propelled vehicles .11 .10
vessels .08 .02

wheeled vehicles .13 .13

Table 3: Learned & Gold Standard Class-Instances.

This study verifies our intuition that using the re-
lationships between the instances to extend a class
label to the remaining unlabeled nodes is an effec-
tive approach to enhancing an incomplete set of ini-
tial labels.

5.3 Comparative Study

The objective of our work is given a set of initially
labeled nodes L, to assign to each node a score
that indicates how likely it is to belong to L. The
simplest way to do this using the edges of the in-
stance network is to say that a node that has more
in-neighbors that have a certain label is more likely
to have this label. We define the in-neighbor score
i(v) of a node v as i(v) = |{u ∈ V |(u, v) ∈
E and u ∈ L}|. We expect that the higher the in-
neighbor score of v, the more likely it is that v has

the label L. The personalized centrality method
that we proposed generalizes this intuition to indi-
rect neighbors (see Methods). Our regularization
using random walks technique further explores the
link structure of the instance network by considering
a random walk on it (see Methods). We compare our
approaches with a method that labels nodes at ran-
dom. The expected accuracy for class C is given by
|TC |
n , where n is the number of nodes in the network,

and TC is the set containing all nodes that belong to
C according to WordNet. In other words, given that
there are 84 nodes in the network that are classified
as invertebrate according to WordNet, and there are
397 nodes in total, if we choose any number of nodes
at random our expected accuracy is 21%.

We evaluate the performance of our approaches
against the WordNet gold standard and show the ob-
tained results in Tables 4 and 5.

Invertebrates
rank centrality regularization in-neighbor random

5 1.0 1.0 .80 .21
10 1.0 1.0 .70 .21
20 .95 1.0 .75 .21
50 .96 .98 .76 .21

100 .69 .73 .67 .21
Mammals

rank centrality regularization in-neighbor random

5 .80 1.0 .80 .52
10 .90 1.0 .90 .52
20 .95 .95 .85 .52
50 .86 .96 .80 .52

100 .92 .92 .76 .52
Carnivores

rank centrality regularization in-neighbor random

5 1.0 1.0 .80 .14
10 .80 .80 .60 .14
20 .80 .85 .55 .14
50 .50 .68 .48 .14

100 .41 .44 .41 .14

Table 4: Accuracy @ Different Ranks.

Table 4 shows the accuracy at rank R calculated
as the number of correctly labeled instances with
class C at rank R divided by the total number of
instances with class C at rank R. Due to space limi-
tation, we show detailed ranking only for three of the
classes. We can see that using the semantic network
significantly enhances our ability to learn class la-
bels. Even the simple in-neighbor method produces
results that are very significant compared to chance.
Our centrality and regularization techniques further
explore the structure of the semantic network to give
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better predictions.
Table 5 shows the accuracy of the class label prop-

agation algorithms for each class. For each class we
consider the top k ranked nodes, where k is the num-
ber of instances that belong to this class according
to WordNet. For example, the accuracy of central-
ity for carnivores is 80% showing that from the top
57 ranked animal instances, 80% belong to carni-
vores. In the final column we also report the per-
formance of a label propagation algorithm that uses
class-instance graph instead of an instance-instance
graph. To build the graph we remove the edges
between the instances and keep the class-instance
mappings discovered by the harvesting algorithm of
(Hovy et al., 2009). We use the modified adsorption
algorithm (MAD) of (Talukdar et al., 2008), which
is freely available from the Junto toolkit1. To rank
the instances for each class label produced by Junto,
we use the computed label scores as a ranking crite-
ria and measure accuracy similarly to centrality and
regularization.

class Centrality Regular. Rand MAD

arthropods .50 .60 .12 .56
carnivores .80 .85 .14 .44
chordates .81 .83 .80 .79
eutherians .54 .60 .49 .60

insects .38 .52 .07 .17
invertebrates .94 .96 .21 .64

mammals .82 .90 .52 .63
reptile .45 .55 .05 .14

ruminants .41 .44 .08 .41
ungulates .44 .61 .16 .32

crafts .47 .56 .05 .35
motor vehicle .45 .48 .09 .24

self-propelled vehicle .49 .47 .10 .27
vessel .33 .39 .02 .31

wheeled vehicle .51 .52 .13 .33

Table 5: Comparative Study.

The obtained results show that for almost all cases
the methods that use the structure of the instance net-
work significantly outperform predictions that use
the class-instance graph. This indicates that we
can indeed learn a lot form the instance-instance
relationships by exploring the structure of the in-
stance network. Among all approaches regulariza-
tion achieves the best results. We believe that reg-
ularization works well because it considers a ran-
dom walk on the semantic graph, and within-cluster

1http://code.google.com/p/junto/

edges are traversed more often in a random walk.
The regularization technique computes scores that
are consistent with the clustering structure of the
graph by requiring that the endpoints of highly tra-
versed edges, which are likely in the same cluster,
have similar scores (see Methods). Overall, regu-
larization enhanced the original output generated by
the pattern-based knowledge harvesting approach of
(Hovy et al., 2009) with 1219 new class-instance
pairs (75% additional information) while maintain-
ing 61.87% accuracy.
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Figure 1: Parameter Tuning For Invertebrates.

5.4 Parameter Tuning

Both of our centrality and regularization methods
have a single tunable parameter. For centrality the
parameter α controls how much the label of each
node depends on the labels of its neighbors in the
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graph. The values range from 0 to 1/λmax, where
λmax is the largest eigenvalue of the adjacency ma-
trix of the semantic network. When α = 0 the label
of each node is equivalent to its initial label, while
higher values of α give more weight to the labels of
nodes that are further away.

For regularization the parameter γ controls how
much emphasis is placed on the agreement between
the initial and learned labels. The values of γ are
between 0 and 1. Smaller values require that the
learned labels be more consistent with the original
labels. When γ = 0 the learned labels will exactly
match the original labels.

For each method we try several parameter settings
and show the results in Figure 1 for the propagation
of the class label invertebrate. We can see that both
methods are quite insensitive to the parameter set-
tings, unless we choose very extreme values that ig-
nore the original labels.

5.5 Effect of number of labeled class-instances

We also study how the quality of the results is af-
fected by the number of initial class-instance pairs
used by our propagation methods. We conduct ex-
periments using only 25%, 50%, 75% and 100% of
the initial class-instance pairs learned by (Hovy et
al., 2009). Figure 2 shows the results for the label
propagation of the class invertebrate.

The performance of our methods significantly im-
proves when we incorporate more labels. Still, if we
are less concerned with recall and want to find small
sets of nodes with very high accuracy, the number
of initial labels is less important. For example, start-
ing with only 13 labeled nodes we can still achieve
100% accuracy for the top 30 nodes using regular-
ization, and 96% accuracy for the top 25 nodes using
centrality.

6 Conclusions

In this paper we proposed a centrality and regular-
ization graph-theoretic methods that explore the re-
lationships between the instances themselves to ef-
fectively extend a small set of class-instance labels
to all instances in a semantic network. The proposed
approaches are intuitive and almost parameter-free.
We conducted a series of experiments in which we
compared the effectiveness of the centrality and reg-
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Figure 2: Effect of Number of Initial Class-Instance
Pairs for Invertebrates.

ularization methods to learn new labels for the un-
labeled instances. We showed that the enhanced
class labels improve the original output generated by
the pattern-based knowledge harvesting approach of
(Hovy et al., 2009). Finally, we have studied the
impact of the class-instance and instance-instance
graphs for the class-label propagation task. The lat-
ter approach has shown to produce much more ac-
curate results. In the future, we want to apply our
approach to Web-based taxonomy induction, which
according to (Kozareva and Hovy, 2010) is stifled
due to the lacking relations between the instances
and the classes, and the classes themselves. The pro-
posed methods can be also applied to enhance fact
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farms (Jain and Pantel, 2010).
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