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Abstract

Minimum error rate training is a crucial compo-
nent to many state-of-the-art NLP applications,
such as machine translation and speech recog-
nition. However, common evaluation functions
such as BLEU or word error rate are generally
highly non-convex and thus prone to search
errors. In this paper, we present LP-MERT, an
exact search algorithm for minimum error rate
training that reaches the global optimum using
a series of reductions to linear programming.
Given a set of N -best lists produced from S
input sentences, this algorithm finds a linear
model that is globally optimal with respect to
this set. We find that this algorithm is poly-
nomial in N and in the size of the model, but
exponential in S. We present extensions of this
work that let us scale to reasonably large tuning
sets (e.g., one thousand sentences), by either
searching only promising regions of the param-
eter space, or by using a variant of LP-MERT
that relies on a beam-search approximation.
Experimental results show improvements over
the standard Och algorithm.

1 Introduction

Minimum error rate training (MERT)—also known
as direct loss minimization in machine learning—is a
crucial component in many complex natural language
applications such as speech recognition (Chou et al.,
1993; Stolcke et al., 1997; Juang et al., 1997), statisti-
cal machine translation (Och, 2003; Smith and Eisner,
2006; Duh and Kirchhoff, 2008; Chiang et al., 2008),
dependency parsing (McDonald et al., 2005), summa-
rization (McDonald, 2006), and phonetic alignment
(McAllester et al., 2010). MERT directly optimizes
the evaluation metric under which systems are being
evaluated, yielding superior performance (Och, 2003)
when compared to a likelihood-based discriminative

method (Och and Ney, 2002). In complex text gener-
ation tasks like SMT, the ability to optimize BLEU
(Papineni et al., 2001), TER (Snover et al., 2006), and
other evaluation metrics is critical, since these met-
rics measure qualities (such as fluency and adequacy)
that often do not correlate well with task-agnostic
loss functions such as log-loss.

While competitive in practice, MERT faces several
challenges, the most significant of which is search.
The unsmoothed error count is a highly non-convex
objective function and therefore difficult to optimize
directly; prior work offers no algorithm with a good
approximation guarantee. While much of the ear-
lier work in MERT (Chou et al., 1993; Juang et al.,
1997) relies on standard convex optimization tech-
niques applied to non-convex problems, the Och al-
gorithm (Och, 2003) represents a significant advance
for MERT since it applies a series of special line min-
imizations that happen to be exhaustive and efficient.
Since this algorithm remains inexact in the multidi-
mensional case, much of the recent work on MERT
has focused on extending Och’s algorithm to find
better search directions and starting points (Cer et al.,
2008; Moore and Quirk, 2008), and on experiment-
ing with other derivative-free methods such as the
Nelder-Mead simplex algorithm (Nelder and Mead,
1965; Zens et al., 2007; Zhao and Chen, 2009).

In this paper, we present LP-MERT, an exact
search algorithm for N -best optimization that ex-
ploits general assumptions commonly made with
MERT, e.g., that the error metric is decomposable
by sentence.1 While there is no known optimal algo-

1Note that MERT makes two types of approximations. First,
the set of all possible outputs is represented only approximately,
by N -best lists, lattices, or hypergraphs. Second, error func-
tions on such representations are non-convex and previous work
only offers approximate techniques to optimize them. Our work
avoids the second approximation, while the first one is unavoid-
able when optimization and decoding occur in distinct steps.
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rithm to optimize general non-convex functions, the
unsmoothed error surface has a special property that
enables exact search: the set of translations produced
by an SMT system for a given input is finite, so the
piecewise-constant error surface contains only a fi-
nite number of constant regions. As in Och (2003),
one could imagine exhaustively enumerating all con-
stant regions and finally return the best scoring one—
Och does this efficiently with each one-dimensional
search—but the idea doesn’t quite scale when search-
ing all dimensions at once. Instead, LP-MERT ex-
ploits algorithmic devices such as lazy enumeration,
divide-and-conquer, and linear programming to effi-
ciently discard partial solutions that cannot be max-
imized by any linear model. Our experiments with
thousands of searches show that LP-MERT is never
worse than the Och algorithm, which provides strong
evidence that our algorithm is indeed exact. In the
appendix, we formally prove that this search algo-
rithm is optimal. We show that this algorithm is
polynomial in N and in the size of the model, but
exponential in the number of tuning sentences. To
handle reasonably large tuning sets, we present two
modifications of LP-MERT that either search only
promising regions of the parameter space, or that rely
on a beam-search approximation. The latter modifica-
tion copes with tuning sets of one thousand sentences
or more, and outperforms the Och algorithm on a
WMT 2010 evaluation task.

This paper makes the following contributions. To
our knowledge, it is the first known exact search
algorithm for optimizing task loss on N -best lists in
general dimensions. We also present an approximate
version of LP-MERT that offers a natural means of
trading speed for accuracy, as we are guaranteed to
eventually find the global optimum as we gradually
increase beam size. This trade-off may be beneficial
in commercial settings and in large-scale evaluations
like the NIST evaluation, i.e., when one has a stable
system and is willing to let MERT run for days or
weeks to get the best possible accuracy. We think this
work would also be useful as we turn to more human
involvement in training (Zaidan and Callison-Burch,
2009), as MERT in this case is intrinsically slow.

2 Unidimensional MERT

Let fS1 = f1 . . . fS denote the S input sentences
of our tuning set. For each sentence fs, let Cs =

es,1 . . . es,N denote a set of N candidate translations.
For simplicity and without loss of generality, we
assume that N is constant for each index s. Each
input and output sentence pair (fs, es,n) is weighted
by a linear model that combines model parameters
w = w1 . . . wD ∈ RD with D feature functions
h1(f , e,∼) . . . hD(f , e,∼), where ∼ is the hidden
state associated with the derivation from f to e, such
as phrase segmentation and alignment. Furthermore,
let hs,n ∈ RD denote the feature vector representing
the translation pair (fs, es,n).

In MERT, the goal is to minimize an error count
E(r, e) by scoring translation hypotheses against a
set of reference translations rS1 = r1 . . . rS . As-
suming as in Och (2003) that error count is addi-
tively decomposable by sentence—i.e., E(rS1 , e

S
1 ) =∑

sE(rs, es)—this results in the following optimiza-
tion problem:2

ŵ = argmin
w

{ S∑

s=1

E(rs, ê(fs;w))

}

= argmin
w

{ S∑

s=1

N∑

n=1

E(rs, es,n)δ(es,n, ê(fs;w))

}

(1)
where

ê(fs;w) = argmax
n∈{1...N}

{
wᵀhs,n

}

The quality of this approximation is dependent on
how accurately the N -best lists represent the search
space of the system. Therefore, the hypothesis list is
iteratively grown: decoding with an initial parameter
vector seeds the N -best lists; next, parameter esti-
mation and N -best list gathering alternate until the
search space is deemed representative.

The crucial observation of Och (2003) is that the
error count along any line is a piecewise constant
function. Furthermore, this function for a single sen-
tence may be computed efficiently by first finding the
hypotheses that form the upper envelope of the model
score function, then gathering the error count for each
hypothesis along the range for which it is optimal. Er-
ror counts for the whole corpus are simply the sums
of these piecewise constant functions, leading to an

2A metric such as TER is decomposable by sentence. BLEU
is not, but its sufficient statistics are, and the literature offers
several sentence-level approximations of BLEU (Lin and Och,
2004; Liang et al., 2006).
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efficient algorithm for finding the global optimum of
the error count along any single direction.

Such a hill-climbing algorithm in a non-convex
space has no optimality guarantee: without a perfect
direction finder, even a globally-exact line search may
never encounter the global optimum. Coordinate as-
cent is often effective, though conjugate direction set
finding algorithms, such as Powell’s method (Powell,
1964; Press et al., 2007), or even random directions
may produce better results (Cer et al., 2008). Ran-
dom restarts, based on either uniform sampling or a
random walk (Moore and Quirk, 2008), increase the
likelihood of finding a good solution. Since random
restarts and random walks lead to better solutions
and faster convergence, we incorporate them into our
baseline system, which we refer to as 1D-MERT.

3 Multidimensional MERT

Finding the global optimum of Eq. 1 is a difficult
task, so we proceed in steps and first analyze the
case where the tuning set contains only one sentence.
This gives insight on how to solve the general case.
With only one sentence, one of the two summations
in Eq. 1 vanishes and one can exhaustively enumer-
ate the N translations e1,n (or en for short) to find
the one that yields the minimal task loss. The only
difficulty with S = 1 is to know for each translation
en whether its feature vector h1,n (or hn for short)
can be maximized using any linear model. As we
can see in Fig. 1(a), some hypotheses can be maxi-
mized (e.g., h1, h2, and h4), while others (e.g., h3

and h5) cannot. In geometric terminology, the former
points are commonly called extreme points, and the
latter are interior points.3 The problem of exactly
optimizing a single N -best list is closely related to
the convex hull problem in computational geometry,
for which generic solvers such as the QuickHull al-
gorithm exist (Eddy, 1977; Bykat, 1978; Barber et
al., 1996). A first approach would be to construct the
convex hull conv(h1 . . .hN ) of the N -best list, then
identify the point on the hull with lowest loss (h1 in
Fig. 1) and finally compute an optimal weight vector
using hull points that share common facets with the

3Specifically, a point h is extreme with respect to a convex
set C (e.g., the convex hull shown in Fig. 1(a)) if it does not lie
in an open line segment joining any two points of C. In a minor
abuse of terminology, we sometimes simply state that a given
point h is extreme when the nature of C is clear from context.

w 
h1 

h3: 0.41 

h1: 0.43 
h4: 0.48 

h5: 0.46 h2: 0.51 

LM 

CM 

(a) (b) 

Figure 1: N -best list (h1 . . .hN ) with associated losses
(here, TER scores) for a single input sentence, whose
convex hull is displayed with dotted lines in (a). For effec-
tive visualization, our plots use only two features (D = 2).
While we can find a weight vector that maximizes h1 (e.g.,
the w in (b)), no linear model can possibly maximize any
of the points strictly inside the convex hull.

optimal feature vector (h2 and h4). Unfortunately,
this doesn’t quite scale even with a single N -best list,
since the best known convex hull algorithm runs in
O(N bD/2c+1) time (Barber et al., 1996).4

Algorithms presented in this paper assume that D
is unrestricted, therefore we cannot afford to build
any convex hull explicitly. Thus, we turn to linear
programming (LP), for which we know algorithms
(Karmarkar, 1984) that are polynomial in the number
of dimensions and linear in the number of points, i.e.,
O(NT ), where T = D3.5. To check if point hi is
extreme, we really only need to know whether we can
define a half-space containing all points h1 . . .hN ,
with hi lying on the hyperplane delimiting that half-
space, as shown in Fig. 1(b) for h1. Formally, a
vertex hi is optimal with respect to argmaxi{wᵀhi}
if and only if the following constraints hold:5

wᵀhi = y (2)
wᵀhj ≤ y, for each j 6= i (3)

w is orthogonal to the hyperplane defining the half-
space, and the intercept y defines its position. The

4A convex hull algorithm polynomial in D is very unlikely.
Indeed, the expected number of facets of high-dimensional con-
vex hulls grows dramatically, and—assuming a uniform distribu-
tion of points, D = 10, and a sufficiently large N—the expected
number of facets is approximately 106N (Buchta et al., 1985).
In the worst case, the maximum number of facets of a convex
hull is O(NbD/2c/bD/2c!) (Klee, 1966).

5A similar approach for checking whether a given point is
extreme is presented in http://www.ifor.math.ethz.
ch/˜fukuda/polyfaq/node22.html, but our method
generates slightly smaller LPs.
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above equations represent a linear program (LP),
which can be turned into canonical form

maximize cᵀ w
subject to Aw ≤ b

by substituting y with wᵀhi in Eq. 3, by defining
A = {an,d}1≤n≤N ;1≤d≤D with an,d = hj,d − hi,d
(where hj,d is the d-th element of hj), and by setting
b = (0, . . . , 0)ᵀ = 0. The vertex hi is extreme if
and only if the LP solver finds a non-zero vector w
satisfying the canonical system. To ensure that w is
zero only when hi is interior, we set c = hi − hµ,
where hµ is a point known to be inside the hull (e.g.,
the centroid of the N -best list).6 In the remaining
of this section, we use this LP formulation in func-
tion LINOPTIMIZER(hi;h1 . . .hN ), which returns
the weight vector ŵ maximizing hi, or which returns
0 if hi is interior to conv(h1 . . .hN ). We also use
conv(hi;h1 . . .hN ) to denote whether hi is extreme
with respect to this hull.

Algorithm 1: LP-MERT (for S = 1).
input : sent.-level feature vectors H = {h1 . . .hN}
input : sent.-level task losses E1 . . . EN , where

En := E(r1, e1,n)
output :optimal weight vector ŵ

1 begin
. sort N -best list by increasing losses:

2 (i1 . . . iN )← INDEXSORT(E1 . . . EN )
3 for n← 1 to N do

. find ŵ maximizing in-th element:
4 ŵ← LINOPTIMIZER(hin ;H)
5 if ŵ 6= 0 then
6 return ŵ
7 return 0

An exact search algorithm for optimizing a single
N -best list is shown above. It lazily enumerates fea-
ture vectors in increasing order of task loss, keeping
only the extreme ones. Such a vertex hj is known to
be on the convex hull, and the returned vector ŵ max-
imizes it. In Fig. 1, it would first run LINOPTIMIZER

on h3, discard it since it is interior, and finally accept
the extreme point h1. Each execution of LINOPTI-
MIZER requires O(NT ) time with the interior point

6We assume that h1 . . .hN are not degenerate, i.e., that they
collectively span RD . Otherwise, all points are necessarily on
the hull, yet some of them may not be uniquely maximized.
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Figure 2: Running times to exactly optimize N -best lists
with an increasing number of dimensions. To determine
which feature vectors were on the hull, we use either linear
programming (Karmarkar, 1984) or one of the most effi-
cient convex hull computation tools (Barber et al., 1996).

method of (Karmarkar, 1984), and since the main
loop may run O(N) times in the worst case, time
complexity is O(N2T ). Finally, Fig. 2 empirically
demonstrates the effectiveness of a linear program-
ming approach, which in practice is seldom affected
by D.

3.1 Exact search: general case
We now extend LP-MERT to the general case, in
which we are optimizing multiple sentences at once.
This creates an intricate optimization problem, since
the inner summations over n = 1 . . . N in Eq. 1
can’t be optimized independently. For instance,
the optimal weight vector for sentence s = 1 may
be suboptimal with respect to sentence s = 2.
So we need some means to determine whether a
selection m = m(1) . . .m(S) ∈ M = [1, N ]S of
feature vectors h1,m(1) . . .hS,m(S) is extreme, that is,
whether we can find a weight vector that maximizes
each hs,m(s). Here is a reformulation of Eq. 1 that
makes this condition on extremity more explicit:

m̂ = argmin
conv(h[m];H)

m∈M

{ S∑

s=1

E(rs, es,m(n))

}
(4)

where
h[m] =

S∑

s=1

hs,m(s)

H =
⋃

m′∈M
h[m′]
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One naı̈ve approach to address this optimization
problem is to enumerate all possible combinations
among the S distinct N -best lists, determine for each
combination m whether h[m] is extreme, and return
the extreme combination with lowest total loss. It is
evident that this approach is optimal (since it follows
directly from Eq. 4), but it is prohibitively slow since
it processes O(NS) vertices to determine whether
they are extreme, which thus requires O(NST ) time
per LP optimization and O(N2ST ) time in total. We
now present several improvements to make this ap-
proach more practical.

3.1.1 Sparse hypothesis combination
In the naı̈ve approach presented above, each LP

computation to evaluate conv(h[m];H) requires
O(NST ) time since H contains NS vertices, but
we show here how to reduce it to O(NST ) time.
This improvement exploits the fact that we can elimi-
nate the majority of the NS points of H , since only
S(N −1)+1 are really needed to determine whether
h[m] is extreme. This is best illustrated using an ex-
ample, as shown in Fig. 3. Both h1,1 and h2,1 in (a)
and (b) are extreme with respect to their own N -best
list, and we ask whether we can find a weight vector
that maximizes both h1,1 and h2,1. The algorith-
mic trick is to geometrically translate one of the two
N -best lists so that h1,1 = h′2,1, where h′2,1 is the
translation of h′2,1. Then we use linear programming
with the new set of 2N − 1 points, as shown in (c), to
determine whether h1,1 is on the hull, in which case
the answer to the original question is yes. In the case
of the combination of h1,1 and h2,2, we see in (d) that
the combined set of points prevents the maximization
h1,1, since this point is clearly no longer on the hull.
Hence, the combination (h1,1,h2,2) cannot be maxi-
mized using any linear model. This trick generalizes
to S ≥ 2. In both (c) and (d), we used S(N − 1) + 1
points instead of NS to determine whether a given
point is extreme. We show in the appendix that this
simplification does not sacrifice optimality.

3.1.2 Lazy enumeration, divide-and-conquer
Now that we can determine whether a given combi-

nation is extreme, we must next enumerate candidate
combinations to find the combination that has low-
est task loss among all of those that are extreme.
Since the number of feature vector combinations is
O(NS), exhaustive enumeration is not a reasonable

h1,1 

h2,2 
h2,1 

(a) (b) 

h1,1 h’2,2 

(c) (d) 

h1,1 h’2,1 

Figure 3: Given two N -best lists, (a) and (b), we use
linear programming to determine which hypothesis com-
binations are extreme. For instance, the combination h1,1

and h2,1 is extreme (c), while h1,1 and h2,2 is not (d).

option. Instead, we use lazy enumeration to pro-
cess combinations in increasing order of task loss,
which ensures that the first extreme combination for
s = 1 . . . S that we encounter is the optimal one. An
S-ary lazy enumeration would not be particularly ef-
ficient, since the runtime is still O(NS) in the worst
case. LP-MERT instead uses divide-and-conquer
and binary lazy enumeration, which enables us to
discard early on combinations that are not extreme.
For instance, if we find that (h1,1,h2,2) is interior for
sentences s = 1, 2, the divide-and-conquer branch
for s = 1 . . . 4 never actually receives this bad com-
bination from its left child, thus avoiding the cost
of enumerating combinations that are known to be
interior, e.g., (h1,1,h2,2,h3,1,h4,1).

The LP-MERT algorithm for the general case is
shown as Algorithm 2. It basically only calls a re-
cursive divide-and-conquer function (GETNEXTBEST)
for sentence range 1 . . . S. The latter function uses bi-
nary lazy enumeration in a manner similar to (Huang
and Chiang, 2005), and relies on two global variables:
I and L. The first of these, I , is used to memoize the
results of calls to GETNEXTBEST; given a range of
sentences and a rank n, it stores the nth best combina-
tion for that range of sentences. The global variable
L stores hypotheses combination matrices, one ma-
trix for each range of sentences (s, t) as shown in
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Figure 4: LP-MERT minimizes loss (TER) on four sen-
tences. O(N4) translation combinations are possible,
but the LP-MERT algorithm only tests two full combi-
nations. Without divide-and-conquer—i.e., using 4-ary
lazy enumeration—ten full combinations would have been
checked unnecessarily.

Algorithm 2: LP-MERT
input : feature vectors H = {hs,n}1≤s≤S;1≤n≤N
input : task losses E = {Es,n}1≤s≤S;1≤n≤N ,

where sent.-level costs Es,n := E(rs, es,n)
output :optimal weight vector ŵ and its loss L

1 begin
. sort N -best lists by increasing losses:

2 for s← 1 to S do
3 (is,1..is,N )← INDEXSORT(Es,1..Es,N )

. find best hypothesis combination for 1 . . . S:
4 (h∗, H∗, L)← GETNEXTBEST(H,E, 1, S)
5 ŵ← LINOPTIMIZER(h∗;H∗)
6 return (ŵ, L)

Fig. 4, to determine which combination to try next.
The function EXPANDFRONTIER returns the indices
of unvisited cells that are adjacent (right or down) to
visited cells and that might correspond to the next
best hypothesis. Once no more cells need to be added
to the frontier, LP-MERT identifies the lowest loss
combination on the frontier (BESTINFRONTIER), and
uses LP to determine whether it is extreme. To do so,
it first generates an LP using COMBINE, a function
that implements the method described in Fig. 3. If
the LP offers no solution, this combination is ignored.
LP-MERT iterates until it finds a cell entry whose
combination is extreme. Regarding ranges of length
one (s = t), lines 3-10 are similar to Algorithm 1 for
S = 1, but with one difference: GETNEXTBEST may
be called multiple times with the same argument s,
since the first output of GETNEXTBEST might not be
extreme when combined with other feature vectors.
Lines 3-10 of GETNEXTBEST handle this case effi-
ciently, since the algorithm resumes at the (n+1)-th

Function GetNextBest(H,E,s,t)
input : sentence range (s, t)
output :h∗: current best extreme vertex
output :H∗: constraint vertices
output :L: task loss of h∗
. Losses of partial hypotheses:

1 L← L[s, t]
2 if s = t then

. n is the index where we left off last time:
3 n← NBROWS(L)
4 Hs ← {hs,1 . . .hs,N}
5 repeat
6 n← n+ 1
7 ŵ← LINOPTIMIZER(hs,in ;Hs)
8 L[n, 1]← Es,in

9 until ŵ 6= 0
10 return (hs,in , Hs,L[n, 1])

11 else
12 u← b(s+ t)/2c, v ← u+ 1
13 repeat
14 while HASINCOMPLETEFRONTIER(L) do
15 (m,n)← EXPANDFRONTIER(L)
16 x← NBROWS(L)
17 y ← NBCOLUMNS(L)
18 for m′ ← x+ 1 to m do
19 I[s, u,m′]← GETNEXTBEST(H,E, s, u)
20 for n′ ← y + 1 to n do
21 I[v, t, n′]← GETNEXTBEST(H,E, v, t)
22 L[m,n]← LOSS(I[s, u,m])+LOSS(I[v, t, n])
23 (m,n)← BESTINFRONTIER(L)
24 (hm, Hm, Lm)← I[s, u,m]
25 (hn, Hn, Ln)← I[v, t, n]
26 (h∗, H∗)← COMBINE(hm, Hm,hn, Hn)
27 ŵ← LINOPTIMIZER(h∗;H∗)
28 until ŵ 6= 0
29 return (h∗, H∗,L[m,n])

element of the N -best list (where n is the position
where the previous execution left off).7 We can see
that a strength of this algorithm is that inconsistent
combinations are deleted as soon as possible, which
allows us to discard fruitless candidates en masse.

3.2 Approximate Search

We will see in Section 5 that our exact algorithm
is often too computationally expensive in practice
to be used with either a large number of sentences
or a large number of features. We now present two

7Each N -best list is augmented with a placeholder hypothesis
with loss +∞. This ensures n never runs out of bounds at line 7.
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Function Combine(h, H,h′, H ′)
input :H,H ′: constraint vertices
input :h,h′: extreme vertices, wrt. H and H ′

output :h∗, H∗: combination as in Sec. 3.1.1
1 for i← 1 to size(H) do
2 Hi ← Hi + h′

3 for i← 1 to size(H ′) do
4 H ′i ← H ′i + h

5 return (h+ h′, H ∪H ′)

approaches to make LP-MERT more scalable, with
the downside that we may allow search errors.

In the first case, we make the assumption that we
have an initial weight vector w0 that is a reasonable
approximation of ŵ, where w0 may be obtained ei-
ther by using a fast MERT algorithm like 1D-MERT,
or by reusing the weight vector that is optimal with
respect to the previous iteration of MERT. The idea
then is to search only the set of weight vectors that
satisfy cos(ŵ,w0) ≥ t, where t is a threshold on
cosine similarity provided by the user. The larger the
t, the faster the search, but at the expense of more
search errors. This is implemented with two simple
changes in our algorithm. First, LINOPTIMIZER sets
the objective vector c = w0. Second, if the output
ŵ originally returned by LINOPTIMIZER does not
satisfy cos(ŵ,w0) ≥ t, then it returns 0. While this
modification of our algorithm may lead to search
errors, it nevertheless provides some theoretical guar-
antee: our algorithm finds the global optimum if it
lies within the region defined by cos(ŵ,w0) ≥ t.

The second method is a beam approximation of LP-
MERT, which normally deals with linear programs
that are increasingly large in the upper branches of
GETNEXTBEST’s recursive calls. The main idea is
to prune the output of COMBINE (line 26) by model
score with respect to wbest, where wbest is our cur-
rent best model on the entire tuning set. Note that
beam pruning can discard h∗ (the current best ex-
treme vertex), in which case LINOPTIMIZER returns
0. wbest is updated as follows: each time we pro-
duce a new non-zero ŵ, run wbest ← ŵ if ŵ has a
lower loss than wbest on the entire tuning set. The
idea of using a beam here is similar to using cosine
similarity (since wbest constrains the search towards
a promising region), but beam pruning also helps
reduce LP optimization time and thus enables us to

explore a wider space. Since wbest often improves
during search, it is useful to run multiple iterations of
LP-MERT until wbest doesn’t change. Two or three
iterations suffice in our experience. In our experi-
ments, we use a beam size of 1000.

4 Experimental Setup

Our experiments in this paper focus on only the ap-
plication of machine translation, though we believe
that the current approach is agnostic to the particular
system used to generate hypotheses. Both phrase-
based systems (e.g., Koehn et al. (2007)) and syntax-
based systems (e.g., Li et al. (2009), Quirk et al.
(2005)) commonly use MERT to train free param-
eters. Our experiments use a syntax-directed trans-
lation approach (Quirk et al., 2005): it first applies
a dependency parser to the source language data at
both training and test time. Multi-word translation
mappings constrained to be connected subgraphs of
the source tree are extracted from the training data;
these provide most lexical translations. Partially lexi-
calized templates capturing reordering and function
word insertion and deletion are also extracted. At
runtime, these mappings and templates are used to
construct transduction rules to convert the source tree
into a target string. The best transduction is sought
using approximate search techniques (Chiang, 2007).

Each hypothesis is scored by a relatively standard
set of features. The mappings contain five features:
maximum-likelihood estimates of source given target
and vice versa, lexical weighting estimates of source
given target and vice versa, and a constant value that,
when summed across a whole hypothesis, indicates
the number of mappings used. For each template,
we include a maximum-likelihood estimate of the
target reordering given the source structure. The
system may fall back to templates that mimic the
source word order; the count of such templates is a
feature. Likewise we include a feature to count the
number of source words deleted by templates, and a
feature to count the number of target words inserted
by templates. The log probability of the target string
according to a language models is also a feature; we
add one such feature for each language model. We
include the number of target words as features to
balance hypothesis length.

For the present system, we use the training data of
WMT 2010 to construct and evaluate an English-to-
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Figure 5: Line graph of sorted differences in
BLEUn4r1[%] scores between LP-MERT and 1D-MERT
on 1000 tuning sets of size S = 2, 4, 8. The highest differ-
ences for S = 2, 4, 8 are respectively 23.3, 19.7, 13.1.

German translation system. This consists of approx-
imately 1.6 million parallel sentences, along with a
much larger monolingual set of monolingual data.
We train two language models, one on the target side
of the training data (primarily parliamentary data),
and the other on the provided monolingual data (pri-
marily news). The 2009 test set is used as develop-
ment data for MERT, and the 2010 one is used as test
data. The resulting system has 13 distinct features.

5 Results

The section evaluates both the exact and beam ver-
sion of LP-MERT. Unless mentioned otherwise, the
number of features isD = 13 and theN -best list size
is 100. Translation performance is measured with
a sentence-level version of BLEU-4 (Lin and Och,
2004), using one reference translation. To enable
legitimate comparisons, LP-MERT and 1D-MERT
are evaluated on the same combined N -best lists,
even though running multiple iterations of MERT
with either LP-MERT or 1D-MERT would normally
produce different combined N -best lists. We use
WMT09 as tuning set, and WMT10 as test set. Be-
fore turning to large tuning sets, we first evaluate
exact LP-MERT on data sizes that it can easily han-
dle. Fig. 5 offers a comparison with 1D-MERT, for
which we split the tuning set into 1,000 overlapping
subsets for S = 2, 4, 8 on a combined N -best after
five iterations of MERT with an average of 374 trans-
lation per sentence. The figure shows that LP-MERT
never underperforms 1D-MERT in any of the 3,000
experiments, and this almost certainly confirms that

length tested comb. total comb. order
8 639,960 1.33× 1020 O(N8)
4 134,454 2.31× 1010 O(2N4)
2 49,969 430,336 O(4N2)
1 1,059 2,624 O(8N)

Table 1: Number of tested combinations for the experi-
ments of Fig. 5. LP-MERT with S = 8 checks only 600K
full combinations on average, much less than the total
number of combinations (which is more than 1020).
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Figure 6: Effect of the number of features (runtime on
1 CPU of a modern computer). Each curve represents a
different number of tuning sentences.

LP-MERT systematically finds the global optimum.
In the case S = 1, Powell rarely makes search er-
rors (about 15%), but the situation gets worse as S
increases. For S = 4, it makes search errors in 90%
of the cases, despite using 20 random starting points.

Some combination statistics for S up to 8 are
shown in Tab. 1. The table shows the speedup pro-
vided by LP-MERT is very substantial when com-
pared to exhaustive enumeration. Note that this is
using D = 13, and that pruning is much more ef-
fective with less features, a fact that is confirmed in
Fig. 6. D = 13 makes it hard to use a large tuning
set, but the situation improves with D = 2 . . . 5.

Fig. 7 displays execution times when LP-MERT
constrains the output ŵ to satisfy cos(w0, ŵ) ≥ t,
where t is on the x-axis of the figure. The figure
shows that we can scale to 1000 sentences when
(exactly) searching within the region defined by
cos(w0, ŵ) ≥ .84. All these running times would
improve using parallel computing, since divide-and-
conquer algorithms are generally easy to parallelize.

We also evaluate the beam version of LP-MERT,
which allows us to exploit tuning sets of reasonable
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Figure 7: Effect of a constraint on w (runtime on 1 CPU).

32 64 128 256 512 1024
1D-MERT 22.93 20.70 18.57 16.07 15.00 15.44
our work 25.25 22.28 19.86 17.05 15.56 15.67

+2.32 +1.59 +1.29 +0.98 +0.56 +0.23

Table 2: BLEUn4r1[%] scores for English-German on
WMT09 for tuning sets ranging from 32 to 1024 sentences.

size. Results are displayed in Table 2. The gains
are fairly substantial, with gains of 0.5 BLEU point
or more in all cases where S ≤ 512.8 Finally, we
perform an end-to-end MERT comparison, where
both our algorithm and 1D-MERT are iteratively used
to generate weights that in turn yield newN -best lists.
Tuning on 1024 sentences of WMT10, LP-MERT
converges after seven iterations, with a BLEU score
of 16.21%; 1D-MERT converges after nine iterations,
with a BLEU score of 15.97%. Test set performance
on the full WMT10 test set for LP-MERT and 1D-
MERT are respectively 17.08% and 16.91%.

6 Related Work

One-dimensional MERT has been very influential. It
is now used in a broad range of systems, and has been
improved in a number of ways. For instance, lattices
or hypergraphs may be used in place of N -best lists
to form a more comprehensive view of the search
space with fewer decoding runs (Macherey et al.,
2008; Kumar et al., 2009; Chatterjee and Cancedda,
2010). This particular refinement is orthogonal to our
approach, though. We expect to extend LP-MERT

8One interesting observation is that the performance of 1D-
MERT degrades as S grows from 2 to 8 (Fig. 5), which contrasts
with the results shown in Tab. 2. This may have to do with the
fact that N -best lists with S = 2 have much fewer local maxima
than with S = 4, 8, in which case 20 restarts is generally enough.

to hypergraphs in future work. Exact search may be
challenging due to the computational complexity of
the search space (Leusch et al., 2008), but approxi-
mate search should be feasible.

Other research has explored alternate methods
of gradient-free optimization, such as the downhill-
simplex algorithm (Nelder and Mead, 1965; Zens
et al., 2007; Zhao and Chen, 2009). Although the
search space is different than that of Och’s algorithm,
it still relies on one-dimensional line searches to re-
flect, expand, or contract the simplex. Therefore, it
suffers the same problems of one-dimensional MERT:
feature sets with complex non-linear interactions are
difficult to optimize. LP-MERT improves on these
methods by searching over a larger subspace of pa-
rameter combinations, not just those on a single line.

We can also change the objective function in a
number of ways to make it more amenable to op-
timization, leveraging knowledge from elsewhere
in the machine learning community. Instance re-
weighting as in boosting may lead to better param-
eter inference (Duh and Kirchhoff, 2008). Smooth-
ing the objective function may allow differentiation
and standard ML learning techniques (Och and Ney,
2002). Smith and Eisner (2006) use a smoothed ob-
jective along with deterministic annealing in hopes
of finding good directions and climbing past locally
optimal points. Other papers use margin methods
such as MIRA (Watanabe et al., 2007; Chiang et al.,
2008), updated somewhat to match the MT domain,
to perform incremental training of potentially large
numbers of features. However, in each of these cases
the objective function used for training no longer
matches the final evaluation metric.

7 Conclusions

Our primary contribution is the first known exact
search algorithm for direct loss minimization on N -
best lists in multiple dimensions. Additionally, we
present approximations that consistently outperform
standard one-dimensional MERT on a competitive
machine translation system. While Och’s method of
MERT is generally quite successful, there are cases
where it does quite poorly. A more global search
such as LP-MERT lowers the expected risk of such
poor solutions. This is especially important for cur-
rent machine translation systems that rely heavily on
MERT, but may also be valuable for other textual ap-
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plications. Recent speech recognition systems have
also explored combinations of more acoustic and lan-
guage models, with discriminative training of 5-10
features rather than one million (Lööf et al., 2010);
LP-MERT could be valuable here as well.

The one-dimensional algorithm of Och (2003)
has been subject to study and refinement for nearly
a decade, while this is the first study of multi-
dimensional approaches. We demonstrate the poten-
tial of multi-dimensional approaches, but we believe
there is much room for improvement in both scalabil-
ity and speed. Furthermore, a natural line of research
would be to extend LP-MERT to compact representa-
tions of the search space, such as hypergraphs.

There are a number of broader implications from
this research. For instance, LP-MERT can aid in the
evaluation of research on MERT. This approach sup-
plies a truly optimal vector as ground truth, albeit
under limited conditions such as a constrained direc-
tion set, a reduced number of features, or a smaller
set of sentences. Methods can be evaluated based on
not only improvements over prior approaches, but
also based on progress toward a global optimum.
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Appendix A: Proof of optimality

In this appendix, we prove that LP-MERT (Algorithm 2)
is exact. As noted before, the naı̈ve approach of solving
Eq. 4 is to enumerate allO(NS) hypotheses combinations
inM, discard the ones that are not extreme, and return
the best scoring one. LP-MERT relies on algorithmic
improvements to speed up this approach, and we now show
that none of them affect the optimality of the solution.

Divide-and-conquer. Divide-and-conquer in Algo-
rithm 2 discards any partial hypothesis combination
h[m(j) . . .m(k)] if it is not extreme, even before consid-
ering any extension h[m(i) . . .m(j) . . .m(k) . . .m(l)].
This does not sacrifice optimality, since if conv(h;H)
is false, then conv(h;H ∪G) is false for any set G.
Proof: Assume conv(h;H) is false, so h is interior to
H . By definition, any interior point h can be written as
a linear combination of other points: h =

∑
i λihi, with

∀i(hi ∈ H , hi 6= h, λi ≥ 0) and
∑

i λi = 1. This same
combination of points also demonstrates that h is interior
to H ∪G, thus conv(h;H ∪G) is false as well.

Sparse hypothesis combination. We show here
that the simplification of linear programs in Section 3.1.1
from size O(NS) to size O(NS) does not change the
value of conv(h;H). More specifically, this means that
linear optimization of the output of the COMBINE method
at lines 26-27 of function GETNEXTBEST does not
introduce any error. Let (g1 . . .gU ) and (h1 . . .hV ) be
two N -best lists to be combined, then:

conv

(
gu + hv;

U⋃

i=1

(gi + hv) ∪
V⋃

j=1

(gu + hj)

)

= conv

(
gu + hv;

U⋃

i=1

V⋃

j=1

(gi + hj)

)

Proof: To prove this equality, it suffices to show that: (1)
if gu+hv is interior wrt. the first conv binary predicate
in the above equation, then it is interior wrt. the second
conv, and (2) if gu+hv is interior wrt. the second conv,
then it is interior wrt. the first conv. Claim (1) is evident,
since the set of points in the first conv is a subset of the
other set of points. Thus, we only need to prove (2). We
first geometrically translate all points by −gu−hv . Since
gu+hv is interior wrt. the second conv, we can write:

0 =

U∑

i=1

V∑

j=1

λi,j(gi + hj − gu − hv)

=

U∑

i=1

V∑

j=1

λi,j(gi − gu) +

U∑

i=1

V∑

j=1

λi,j(hj − hv)

=

U∑

i=1

(gi − gu)

V∑

j=1

λi,j +

V∑

j=1

(hj − hv)

U∑

i=1

λi,j

=

U∑

i=1

λ′i(gi − gu) +

V∑

j=1

λ′U+j(hj − hv)

where {λ′i}1≤i≤U+V values are computed from
{λi,j}1≤i≤U,1≤j≤V as follows: λ′i =

∑
j λi,j , i ∈ [1, U ]

and λ′U+j =
∑

i λi,j , j ∈ [1, V ]. Since the interior
point is 0, λ′i values can be scaled so that they sum to 1
(necessary condition in the definition of interior points),
which proves that the following predicate is false:

conv

(
0;

U⋃

i=1

(gi − gu) ∪
V⋃

j=1

(hj − hv)

)

which is equivalent to stating that the following is false:

conv

(
gu + hv;

U⋃

i=1

(gi + hv) ∪
V⋃

j=1

(gu + hj)

)
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