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Abstract

The rapid growth of geotagged social media
raises new computational possibilities for in-
vestigating geographic linguistic variation. In
this paper, we present a multi-level generative
model that reasons jointly about latent topics
and geographical regions. High-level topics
such as “sports” or “entertainment” are ren-
dered differently in each geographic region,
revealing topic-specific regional distinctions.
Applied to a new dataset of geotagged mi-
croblogs, our model recovers coherent top-
ics and their regional variants, while identi-
fying geographic areas of linguistic consis-
tency. The model also enables prediction of
an author’s geographic location from raw text,
outperforming both text regression and super-
vised topic models.

1 Introduction

Sociolinguistics and dialectology study how lan-
guage varies across social and regional contexts.
Quantitative research in these fields generally pro-
ceeds by counting the frequency of a handful of
previously-identified linguistic variables: pairs of
phonological, lexical, or morphosyntactic features
that are semantically equivalent, but whose fre-
quency depends on social, geographical, or other
factors (Paolillo, 2002; Chambers, 2009). It is left to
the experimenter to determine which variables will
be considered, and there is no obvious procedure for
drawing inferences from the distribution of multiple
variables. In this paper, we present a method for
identifying geographically-aligned lexical variation
directly from raw text. Our approach takes the form
of a probabilistic graphical model capable of iden-
tifying both geographically-salient terms and coher-
ent linguistic communities.

One challenge in the study of lexical variation is
that term frequencies are influenced by a variety of
factors, such as the topic of discourse. We address
this issue by adding latent variables that allow us to
model topical variation explicitly. We hypothesize
that geography and topic interact, as “pure” topi-
cal lexical distributions are corrupted by geographi-
cal factors; for example, a sports-related topic will
be rendered differently in New York and Califor-
nia. Each author is imbued with a latent “region”
indicator, which both selects the regional variant of
each topic, and generates the author’s observed ge-
ographical location. The regional corruption of top-
ics is modeled through a cascade of logistic normal
priors—a general modeling approach which we call
cascading topic models. The resulting system has
multiple capabilities, including: (i) analyzing lexi-
cal variation by both topic and geography; (ii) seg-
menting geographical space into coherent linguistic
communities; (iii) predicting author location based
on text alone.

This research is only possible due to the rapid
growth of social media. Our dataset is derived from
the microblogging website Twitter,1 which permits
users to post short messages to the public. Many
users of Twitter also supply exact geographical co-
ordinates from GPS-enabled devices (e.g., mobile
phones),2 yielding geotagged text data. Text in
computer-mediated communication is often more
vernacular (Tagliamonte and Denis, 2008), and as
such it is more likely to reveal the influence of ge-
ographic factors than text written in a more formal
genre, such as news text (Labov, 1966).

We evaluate our approach both qualitatively and
quantitatively. We investigate the topics and regions

1http://www.twitter.com
2User profiles also contain self-reported location names, but

we do not use that information in this work.
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that the model obtains, showing both common-sense
results (place names and sports teams are grouped
appropriately), as well as less-obvious insights about
slang. Quantitatively, we apply our model to predict
the location of unlabeled authors, using text alone.
On this task, our model outperforms several alterna-
tives, including both discriminative text regression
and related latent-variable approaches.

2 Data

The main dataset in this research is gathered from
the microblog website Twitter, via its official API.
We use an archive of messages collected over the
first week of March 2010 from the “Gardenhose”
sample stream,3 which then consisted of 15% of
all public messages, totaling millions per day. We
aggressively filter this stream, using only messages
that are tagged with physical (latitude, longitude)
coordinate pairs from a mobile client, and whose au-
thors wrote at least 20 messages over this period. We
also filter to include only authors who follow fewer
than 1,000 other people, and have fewer than 1,000
followers. Kwak et al. (2010) find dramatic shifts
in behavior among users with social graph connec-
tivity outside of that range; such users may be mar-
keters, celebrities with professional publicists, news
media sources, etc. We also remove messages con-
taining URLs to eliminate bots posting information
such as advertising or weather conditions. For inter-
pretability, we restrict our attention to authors inside
a bounding box around the contiguous U.S. states,
yielding a final sample of about 9,500 users and
380,000 messages, totaling 4.7 million word tokens.
We have made this dataset available online.4

Informal text from mobile phones is challeng-
ing to tokenize; we adapt a publicly available tok-
enizer5 originally developed for Twitter (O’Connor
et al., 2010), which preserves emoticons and blocks
of punctuation and other symbols as tokens. For
each user’s Twitter feed, we combine all messages
into a single “document.” We remove word types
that appear in fewer than 40 feeds, yielding a vocab-
ulary of 5,216 words. Of these, 1,332 do not appear
in the English, French, or Spanish dictionaries of the

3http://dev.twitter.com/pages/streaming_api
4http://www.ark.cs.cmu.edu/GeoTwitter
5http://tweetmotif.com

spell-checking program aspell.
Every message is tagged with a location, but most

messages from a single individual tend to come from
nearby locations (as they go about their day); for
modeling purposes we use only a single geographic
location for each author, simply taking the location
of the first message in the sample.

The authors in our dataset are fairly heavy Twit-
ter users, posting an average of 40 messages per day
(although we see only 15% of this total). We have
little information about their demographics, though
from the text it seems likely that this user set skews
towards teens and young adults. The dataset cov-
ers each of the 48 contiguous United States and the
District of Columbia.

3 Model

We develop a model that incorporates two sources
of lexical variation: topic and geographical region.
We treat the text and geographic locations as out-
puts from a generative process that incorporates both
topics and regions as latent variables.6 During infer-
ence, we seek to recover the topics and regions that
best explain the observed data.

At the base level of model are “pure” topics (such
as “sports”, “weather”, or “slang”); these topics are
rendered differently in each region. We call this gen-
eral modeling approach a cascading topic model; we
describe it first in general terms before moving to the
specific application to geographical variation.

3.1 Cascading Topic Models

Cascading topic models generate text from a chain
of random variables. Each element in the chain de-
fines a distribution over words, and acts as the mean
of the distribution over the subsequent element in
the chain. Thus, each element in the chain can be
thought of as introducing some additional corrup-
tion. All words are drawn from the final distribution
in the chain.

At the beginning of the chain are the priors, fol-
lowed by unadulerated base topics, which may then
be corrupted by other factors (such as geography or
time). For example, consider a base “food” topic

6The region could be observed by using a predefined geo-
graphical decomposition, e.g., political boundaries. However,
such regions may not correspond well to linguistic variation.
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that emphasizes words like dinner and delicious;
the corrupted “food-California” topic would place
weight on these words, but might place extra em-
phasis on other words like sprouts.

The path through the cascade is determined by a
set of indexing variables, which may be hidden or
observed. As in standard latent Dirichlet allocation
(Blei et al., 2003), the base topics are selected by
a per-token hidden variable z. In the geographical
topic model, the next level corresponds to regions,
which are selected by a per-author latent variable r.

Formally, we draw each level of the cascade from
a normal distribution centered on the previous level;
the final multinomial distribution over words is ob-
tained by exponentiating and normalizing. To ensure
tractable inference, we assume that all covariance
matrices are uniform diagonal, i.e., aI with a > 0;
this means we do not model interactions between
words.

3.2 The Geographic Topic Model
The application of cascading topic models to ge-
ographical variation is straightforward. Each doc-
ument corresponds to the entire Twitter feed of a
given author during the time period covered by our
corpus. For each author, the latent variable r cor-
responds to the geographical region of the author,
which is not observed. As described above, r se-
lects a corrupted version of each topic: the kth basic
topic has mean µk, with uniform diagonal covari-
ance σ2

k; for region j, we can draw the regionally-
corrupted topic from the normal distribution, ηjk ∼
N(µk, σ2

kI).
Because η is normally-distributed, it lies not in

the simplex but in RW . We deterministically com-
pute multinomial parameters β by exponentiating
and normalizing: βjk = exp(ηjk)/

∑
i exp(η(i)

jk ).
This normalization could introduce identifiability
problems, as there are multiple settings for η that
maximize P (w|η) (Blei and Lafferty, 2006a). How-
ever, this difficulty is obviated by the priors: given
µ and σ2, there is only a single η that maximizes
P (w|η)P (η|µ, σ2); similarly, only a single µmax-
imizes P (η|µ)P (µ|a, b2).

The observed latitude and longitude, denoted y,
are normally distributed and conditioned on the re-
gion, with mean νr and precision matrix Λr indexed
by the region r. The region index r is itself drawn

from a single shared multinomial ϑ. The model is
shown as a plate diagram in Figure 1.

Given a vocabulary size W , the generative story
is as follows:

• Generate base topics: for each topic k < K

– Draw the base topic from a normal distribu-
tion with uniform diagonal covariance: µk ∼
N(a, b2I),

– Draw the regional variance from a Gamma
distribution: σ2

k ∼ G(c, d).
– Generate regional variants: for each region
j < J ,
∗ Draw the region-topic ηjk from a normal

distribution with uniform diagonal covari-
ance: ηjk ∼ N(µk, σ

2
kI).

∗ Convert ηjk into a multinomial
distribution over words by ex-
ponentiating and normalizing:
βjk = exp

(
ηjk

)
/
∑W

i exp(η(i)
jk ),

where the denominator sums over the
vocabulary.

• Generate regions: for each region j < J ,

– Draw the spatial mean νj from a normal dis-
tribution.

– Draw the precision matrix Λj from a Wishart
distribution.

• Draw the distribution over regions ϑ from a sym-
metric Dirichlet prior, ϑ ∼ Dir(αϑ1).

• Generate text and locations: for each document d,

– Draw topic proportions from a symmetric
Dirichlet prior, θ ∼ Dir(α1).

– Draw the region r from the multinomial dis-
tribution ϑ.

– Draw the location y from the bivariate Gaus-
sian, y ∼ N(νr,Λr).

– For each word token,
∗ Draw the topic indicator z ∼ θ.
∗ Draw the word token w ∼ βrz .

4 Inference

We apply mean-field variational inference: a fully-
factored variational distribution Q is chosen to min-
imize the Kullback-Leibler divergence from the
true distribution. Mean-field variational inference
with conjugate priors is described in detail else-
where (Bishop, 2006; Wainwright and Jordan,
2008); we restrict our focus to the issues that are
unique to the geographic topic model.
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µk log of base topic k’s distribution over word types
σ2

k variance parameter for regional variants of topic k
ηjk region j’s variant of base topic µk

θd author d’s topic proportions
rd author d’s latent region
yd author d’s observed GPS location
νj region j’s spatial center
Λj region j’s spatial precision
zn token n’s topic assignment
wn token n’s observed word type
α global prior over author-topic proportions
ϑ global prior over region classes

Figure 1: Plate diagram for the geographic topic model, with a table of all random variables. Priors (besides α) are
omitted for clarity, and the document indices on z and w are implicit.

We place variational distributions over all latent
variables of interest: θ, z, r,ϑ,η,µ, σ2,ν, and Λ,
updating each of these distributions in turn, until
convergence. The variational distributions over θ
and ϑ are Dirichlet, and have closed form updates:
each can be set to the sum of the expected counts,
plus a term from the prior (Blei et al., 2003). The
variational distributions q(z) and q(r) are categor-
ical, and can be set proportional to the expected
joint likelihood—to set q(z) we marginalize over r,
and vice versa.7 The updates for the multivariate
Gaussian spatial parameters ν and Λ are described
by Penny (2001).

4.1 Regional Word Distributions

The variational region-topic distribution ηjk is nor-
mal, with uniform diagonal covariance for tractabil-
ity. Throughout we will write 〈x〉 to indicate the ex-
pectation of x under the variational distribution Q.
Thus, the vector mean of the distribution q(ηjk) is
written 〈ηjk〉, while the variance (uniform across i)
of q(η) is written V(ηjk).

To update the mean parameter 〈ηjk〉, we max-
imize the contribution to the variational bound L
from the relevant terms:

L
[〈η(i)

jk 〉]
= 〈log p(w|β, z, r)〉+〈log p(η(i)

jk |µ
(i)
k , σ

2
k)〉,
(1)

7Thanks to the naı̈ve mean field assumption, we can
marginalize over z by first decomposing across all Nd words
and then summing over q(z).

with the first term representing the likelihood of the
observed words (recall that β is computed determin-
istically from η) and the second term corresponding
to the prior. The likelihood term requires the expec-
tation 〈logβ〉, but this is somewhat complicated by
the normalizer

∑W
i exp(η(i)), which sums over all

terms in the vocabulary. As in previous work on lo-
gistic normal topic models, we use a Taylor approx-
imation for this term (Blei and Lafferty, 2006a).

The prior on η is normal, so the contribution from
the second term of the objective (Equation 1) is
− 1

2〈σ2
k〉
〈(η(i)

jk − µ
(i)
k )2〉. We introduce the following

notation for expected counts: N(i, j, k) indicates the
expected count of term i in region j and topic k, and
N(j, k) =

∑
iN(i, j, k). After some calculus, we

can write the gradient ∂L/∂〈η((i))
jk 〉 as

N(i, j, k)−N(j, k)〈β(i)
jk 〉 − 〈σ

−2
k 〉(〈η

(i)
jk 〉 − 〈µ

(i)
k 〉),

(2)
which has an intuitive interpretation. The first two
terms represent the difference in expected counts for
term i under the variational distributions q(z, r) and
q(z, r, β): this difference goes to zero when β(i)

jk per-
fectly matches N(i, j, k)/N(j, k). The third term
penalizes η(i)

jk for deviating from its prior µ(i)
k , but

this penalty is proportional to the expected inverse
variance 〈σ−2

k 〉. We apply gradient ascent to maxi-
mize the objective L. A similar set of calculations
gives the gradient for the variance of η; these are
described in an forthcoming appendix.
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4.2 Base Topics

The base topic parameters areµk and σ2
k; in the vari-

ational distribution, q(µk) is normally distributed
and q(σ2

k) is Gamma distributed. Note that µk and
σ2
k affect only the regional word distributions ηjk.

An advantage of the logistic normal is that the vari-
ational parameters over µk are available in closed
form,

〈µ(i)
k 〉 =

b2
∑J

j 〈η
(i)
jk 〉+ 〈σ2

k〉a(i)

b2J + 〈σ2
k〉

V(µk) = (b−2 + J〈σ−2
k 〉)

−1,

where J indicates the number of regions. The ex-
pectation of the base topic µ incorporates the prior
and the average of the generated region-topics—
these two components are weighted respectively by
the expected variance of the region-topics 〈σ2

k〉 and
the prior topical variance b2. The posterior variance
V(µ) is a harmonic combination of the prior vari-
ance b2 and the expected variance of the region top-
ics.

The variational distribution over the region-topic
variance σ2

k has Gamma parameters. These param-
eters cannot be updated in closed form, so gradi-
ent optimization is again required. The derivation
of these updates is more involved, and is left for a
forthcoming appendix.

5 Implementation

Variational scheduling and initialization are impor-
tant aspects of any hierarchical generative model,
and are often under-discussed. In our implementa-
tion, the variational updates are scheduled as fol-
lows: given expected counts, we iteratively update
the variational parameters on the region-topics η and
the base topicsµ, until convergence. We then update
the geographical parameters ν and Λ, as well as the
distribution over regions ϑ. Finally, for each doc-
ument we iteratively update the variational param-
eters over θ, z, and r until convergence, obtaining
expected counts that are used in the next iteration
of updates for the topics and their regional variants.
We iterate an outer loop over the entire set of updates
until convergence.

We initialize the model in a piecewise fashion.
First we train a Dirichlet process mixture model on

the locations y, using variational inference on the
truncated stick-breaking approximation (Blei and
Jordan, 2006). This automatically selects the num-
ber of regions J , and gives a distribution over each
region indicator rd from geographical information
alone. We then run standard latent Dirichlet alloca-
tion to obtain estimates of z for each token (ignoring
the locations). From this initialization we can com-
pute the first set of expected counts, which are used
to obtain initial estimates of all parameters needed
to begin variational inference in the full model.

The prior a is the expected mean of each topic
µ; for each term i, we set a(i) = logN(i) − logN ,
where N(i) is the total count of i in the corpus and
N =

∑
iN(i). The variance prior b2 is set to 1, and

the prior on σ2 is the Gamma distribution G(2, 200),
encouraging minimal deviation from the base topics.
The symmetric Dirichlet prior on θ is set to 1

2 , and
the symmetric Dirichlet parameter on ϑ is updated
from weak hyperpriors (Minka, 2003). Finally, the
geographical model takes priors that are linked to the
data: for each region, the mean is very weakly en-
couraged to be near the overall mean, and the covari-
ance prior is set by the average covariance of clusters
obtained by running K-means.

6 Evaluation

For a quantitative evaluation of the estimated rela-
tionship between text and geography, we assess our
model’s ability to predict the geographic location of
unlabeled authors based on their text alone.8 This
task may also be practically relevant as a step toward
applications for recommending local businesses or
social connections. A randomly-chosen 60% of au-
thors are used for training, 20% for development,
and the remaining 20% for final evaluation.

6.1 Systems

We compare several approaches for predicting au-
thor location; we divide these into latent variable
generative models and discriminative approaches.

8Alternatively, one might evaluate the attributed regional
memberships of the words themselves. While the Dictionary of
American Regional English (Cassidy and Hall, 1985) attempts
a comprehensive list of all regionally-affiliated terms, it is based
on interviews conducted from 1965-1970, and the final volume
(covering Si–Z) is not yet complete.
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6.1.1 Latent Variable Models
Geographic Topic Model This is the full version
of our system, as described in this paper. To pre-
dict the unseen location yd, we iterate until con-
vergence on the variational updates for the hidden
topics zd, the topic proportions θd, and the region
rd. From rd, the location can be estimated as ŷd =
arg maxy

∑J
j p(y|νj ,Λj)q(rd = j). The develop-

ment set is used to tune the number of topics and to
select the best of multiple random initializations.

Mixture of Unigrams A core premise of our ap-
proach is that modeling topical variation will im-
prove our ability to understand geographical varia-
tion. We test this idea by fixing K = 1, running our
system with only a single topic. This is equivalent
to a Bayesian mixture of unigrams in which each au-
thor is assigned a single, regional unigram language
model that generates all of his or her text. The de-
velopment set is used to select the best of multiple
random initializations.

Supervised Latent Dirichlet Allocation In a
more subtle version of the mixture-of-unigrams
model, we model each author as an admixture of re-
gions. Thus, the latent variable attached to each au-
thor is no longer an index, but rather a vector on the
simplex. This model is equivalent to supervised la-
tent Dirichlet allocation (Blei and McAuliffe, 2007):
each topic is associated with equivariant Gaussian
distributions over the latitude and longitude, and
these topics must explain both the text and the ob-
served geographical locations. For unlabeled au-
thors, we estimate latitude and longitude by esti-
mating the topic proportions and then applying the
learned geographical distributions. This is a linear
prediction

f(z̄d;a) = (z̄T
da

lat, z̄T
da

lon)

for an author’s topic proportions z̄d and topic-
geography weights a ∈ R2K .

6.1.2 Baseline Approaches
Text Regression We perform linear regression
to discriminatively learn the relationship between
words and locations. Using term frequency features
xd for each author, we predict locations with word-
geography weights a ∈ R2W :

f(xd;a) = (xT
da

lat, xT
da

lon)

Weights are trained to minimize the sum of squared
Euclidean distances, subject to L1 regularization:∑

d

(xT
da

lat − ylat
d )2 + (xT

da
lon − ylon

d )2

+ λlat||alat||1 + λlon||alon||1

The minimization problem decouples into two sep-
arate latitude and longitude models, which we fit
using the glmnet elastic net regularized regres-
sion package (Friedman et al., 2010), which ob-
tained good results on other text-based prediction
tasks (Joshi et al., 2010). Regularization parameters
were tuned on the development set. The L1 penalty
outperformed L2 and mixtures of L1 and L2.

Note that for both word-level linear regression
here, and the topic-level linear regression in SLDA,
the choice of squared Euclidean distance dovetails
with our use of spatial Gaussian likelihoods in the
geographic topic models, since optimizing a is
equivalent to maximum likelihood estimation un-
der the assumption that locations are drawn from
equivariant circular Gaussians centered around each
f(xd;a) linear prediction. We experimented with
decorrelating the location dimensions by projecting
yd into the principal component space, but this did
not help text regression.

K-Nearest Neighbors Linear regression is a poor
model for the multimodal density of human popula-
tions. As an alternative baseline, we applied super-
vised K-nearest neighbors to predict the location yd
as the average of the positions of the K most sim-
ilar authors in the training set. We computed term-
frequency inverse-document frequency features and
applied cosine similarity over their first 30 principal
components to find the neighbors. The choices of
principal components, IDF weighting, and neighbor-
hood size K = 20 were tuned on the development
set.

6.2 Metrics
Our principle error metrics are the mean and median
distance between the predicted and true location in
kilometers.9 Because the distance error may be dif-
ficult to interpret, we also report accuracy of classi-

9For convenience, model training and prediction use latitude
and longitude as an unprojected 2D Euclidean space. However,
properly measuring the physical distance between points on the
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Regression Classification accuracy (%)
System Mean Dist. (km) Median Dist. (km) Region (4-way) State (49-way)
Geographic topic model 900 494 58 24
Mixture of unigrams 947 644 53 19
Supervised LDA 1055 728 39 4
Text regression 948 712 41 4
K-nearest neighbors 1077 853 37 2
Mean location 1148 1018
Most common class 37 27

Table 1: Location prediction results; lower scores are better on the regression task, higher scores are better on the
classification task. Distances are in kilometers. Mean location and most common class are computed from the test set.
Both the geographic topic model and supervised LDA use the best number of topics from the development set (10 and
5, respectively).

fication by state and by region of the United States.
Our data includes the 48 contiguous states plus the
District of Columbia; the U.S. Census Bureau di-
vides these states into four regions: West, Midwest,
Northeast, and South.10 Note that while major pop-
ulation centers straddle several state lines, most re-
gion boundaries are far from the largest cities, re-
sulting in a clearer analysis.

6.3 Results

As shown in Table 1, the geographic topic model
achieves the strongest performance on all metrics.
All differences in performance between systems
are statistically significant (p < .01) using the
Wilcoxon-Mann-Whitney test for regression error
and the χ2 test for classification accuracy. Figure 2
shows how performance changes as the number of
topics varies.

Note that the geographic topic model and the mix-
ture of unigrams use identical code and parametriza-
tion – the only difference is that the geographic topic
model accounts for topical variation, while the mix-
ture of unigrams sets K = 1. These results validate
our basic premise that it is important to model the
interaction between topical and geographical varia-
tion.

Text regression and supervised LDA perform es-
pecially poorly on the classification metric. Both
methods make predictions that are averaged across

Earth’s surface requires computing or approximating the great
circle distance – we use the Haversine formula (Sinnott, 1984).
For the continental U.S., the relationship between degrees and
kilometers is nearly linear, but extending the model to a conti-
nental scale would require a more sophisticated approach.

10http://www.census.gov/geo/www/us_regdiv.pdf
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Figure 2: The effect of varying the number of topics on
the median regression error (lower is better).

each word in the document: in text regression, each
word is directly multiplied by a feature weight; in
supervised LDA the word is associated with a la-
tent topic first, and then multiplied by a weight. For
these models, all words exert an influence on the pre-
dicted location, so uninformative words will draw
the prediction towards the center of the map. This
yields reasonable distance errors but poor classifica-
tion accuracy. We had hoped that K-nearest neigh-
bors would be a better fit for this metric, but its per-
formance is poor at all values of K. Of course it is
always possible to optimize classification accuracy
directly, but such an approach would be incapable
of predicting the exact geographical location, which
is the focus of our evaluation (given that the desired
geographical partition is unknown). Note that the
geographic topic model is also not trained to opti-
mize classification accuracy.
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“basketball”
“popular
music”

“daily life” “emoticons” “chit chat”

PISTONS KOBE
LAKERS game

DUKE NBA
CAVS STUCKEY

JETS KNICKS

album music
beats artist video

#LAKERS
ITUNES tour
produced vol

tonight shop
weekend getting
going chilling
ready discount

waiting iam

:) haha :d :( ;) :p
xd :/ hahaha

hahah

lol smh jk yea
wyd coo ima

wassup
somethin jp

Boston
+ CELTICS victory

BOSTON
CHARLOTTE

playing daughter
PEARL alive war

comp
BOSTON ;p gna loveee

ese exam suttin
sippin

N. California+ THUNDER
KINGS GIANTS
pimp trees clap

SIMON dl
mountain seee 6am OAKLAND

pues hella koo
SAN fckn

hella flirt hut
iono OAKLAND

New York + NETS KNICKS BRONX iam cab oww wasssup nm

Los Angeles+ #KOBE
#LAKERS
AUSTIN

#LAKERS load
HOLLYWOOD
imm MICKEY

TUPAC

omw tacos hr
HOLLYWOOD

af papi raining
th bomb coo

HOLLYWOOD

wyd coo af nada
tacos messin
fasho bomb

Lake Erie
+ CAVS

CLEVELAND
OHIO BUCKS od

COLUMBUS

premiere prod
joint TORONTO
onto designer

CANADA village
burr

stink CHIPOTLE
tipsy

;d blvd BIEBER
hve OHIO

foul WIZ salty
excuses lames

officer lastnight

Table 2: Example base topics (top line) and regional variants. For the base topics, terms are ranked by log-odds
compared to the background distribution. The regional variants show words that are strong compared to both the base
topic and the background. Foreign-language words are shown in italics, while terms that are usually in proper nouns
are shown in SMALL CAPS. See Table 3 for definitions of slang terms; see Section 7 for more explanation and details
on the methodology.

Figure 3: Regional clustering of the training set obtained by one randomly-initialized run of the geographical topic
model. Each point represents one author, and each shape/color combination represents the most likely cluster as-
signment. Ellipses represent the regions’ spatial means and covariances. The same model and coloring are shown in
Table 2.
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7 Analysis

Our model permits analysis of geographical vari-
ation in the context of topics that help to clarify
the significance of geographically-salient terms. Ta-
ble 2 shows a subset of the results of one randomly-
initialized run, including five hand-chosen topics (of
50 total) and five regions (of 13, as chosen automat-
ically during initialization). Terms were selected by
log-odds comparison. For the base topics we show
the ten strongest terms in each topic as compared to
the background word distribution. For the regional
variants, we show terms that are strong both region-
ally and topically: specifically, we select terms that
are in the top 100 compared to both the background
distribution and to the base topic. The names for the
topics and regions were chosen by the authors.

Nearly all of the terms in column 1 (“basketball”)
refer to sports teams, athletes, and place names—
encouragingly, terms tend to appear in the regions
where their referents reside. Column 2 contains sev-
eral proper nouns, mostly referring to popular mu-
sic figures (including PEARL from the band Pearl
Jam).11 Columns 3–5 are more conversational.
Spanish-language terms (papi, pues, nada, ese) tend
to appear in regions with large Spanish-speaking
populations—it is also telling that these terms ap-
pear in topics with emoticons and slang abbrevia-
tions, which may transcend linguistic barriers. Other
terms refer to people or subjects that may be espe-
cially relevant in certain regions: tacos appears in
the southern California region and cab in the New
York region; TUPAC refers to a rap musician from
Los Angeles, and WIZ refers to a rap musician from
Pittsburgh, not far from the center of the “Lake Erie”
region.

A large number of slang terms are found to have
strong regional biases, suggesting that slang may
depend on geography more than standard English
does. The terms af and hella display especially
strong regional affinities, appearing in the regional
variants of multiple topics (see Table 3 for defini-
tions). Northern and Southern California use variant
spellings koo and coo to express the same meaning.

11This analysis is from an earlier version of our dataset that
contained some Twitterbots, including one from a Boston-area
radio station. The bots were purged for the evaluation in Sec-
tion 6, though the numerical results are nearly identical.

term definition
af as fuck (very)
coo cool
dl download
fasho for sure
gna going to
hella very
hr hour
iam I am
ima I’m going to
imm I’m
iono I don’t know
lames lame (not cool)

people

term definition
jk just kidding
jp just playing (kid-

ding)
koo cool
lol laugh out loud
nm nothing much
od overdone (very)
omw on my way
smh shake my head
suttin something
wassup what’s up
wyd what are you do-

ing?

Table 3: A glossary of non-standard terms from Ta-
ble 2. Definitions are obtained by manually inspecting
the context in which the terms appear, and by consulting
www.urbandictionary.com.

While research in perceptual dialectology does con-
firm the link of hella to Northern California (Bu-
choltz et al., 2007), we caution that our findings
are merely suggestive, and a more rigorous analysis
must be undertaken before making definitive state-
ments about the regional membership of individual
terms. We view the geographic topic model as an
exploratory tool that may be used to facilitate such
investigations.

Figure 3 shows the regional clustering on the
training set obtained by one run of the model. Each
point represents an author, and the ellipses represent
the bivariate Gaussians for each region. There are
nine compact regions for major metropolitan areas,
two slightly larger regions that encompass Florida
and the area around Lake Erie, and two large re-
gions that partition the country roughly into north
and south.

8 Related Work

The relationship between language and geography
has been a topic of interest to linguists since the
nineteenth century (Johnstone, 2010). An early
work of particular relevance is Kurath’s Word Geog-
raphy of the Eastern United States (1949), in which
he conducted interviews and then mapped the oc-
currence of equivalent word pairs such as stoop and
porch. The essence of this approach—identifying
variable pairs and measuring their frequencies—
remains a dominant methodology in both dialec-
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tology (Labov et al., 2006) and sociolinguis-
tics (Tagliamonte, 2006). Within this paradigm,
computational techniques are often applied to post
hoc analysis: logistic regression (Sankoff et al.,
2005) and mixed-effects models (Johnson, 2009) are
used to measure the contribution of individual vari-
ables, while hierarchical clustering and multidimen-
sional scaling enable aggregated inference across
multiple variables (Nerbonne, 2009). However, in
all such work it is assumed that the relevant linguis-
tic variables have already been identified—a time-
consuming process involving considerable linguistic
expertise. We view our work as complementary to
this tradition: we work directly from raw text, iden-
tifying both the relevant features and coherent lin-
guistic communities.

An active recent literature concerns geotagged in-
formation on the web, such as search queries (Back-
strom et al., 2008) and tagged images (Crandall et
al., 2009). This research identifies the geographic
distribution of individual queries and tags, but does
not attempt to induce any structural organization of
either the text or geographical space, which is the
focus of our research. More relevant is the work
of Mei et al. (2006), in which the distribution over
latent topics in blog posts is conditioned on the ge-
ographical location of the author. This is somewhat
similar to the supervised LDA model that we con-
sider, but their approach assumes that a partitioning
of geographical space into regions is already given.

Methodologically, our cascading topic model is
designed to capture multiple dimensions of variabil-
ity: topics and geography. Mei et al. (2007) include
sentiment as a second dimension in a topic model,
using a switching variable so that individual word
tokens may be selected from either the topic or the
sentiment. However, our hypothesis is that individ-
ual word tokens reflect both the topic and the ge-
ographical aspect. Sharing this intuition, Paul and
Girju (2010) build topic-aspect models for the cross
product of topics and aspects. They do not impose
any regularity across multiple aspects of the same
topic, so this approach may not scale when the num-
ber of aspects is large (they consider only two as-
pects). We address this issue using cascading distri-
butions; when the observed data for a given region-
topic pair is low, the model falls back to the base
topic. The use of cascading logistic normal distri-

butions in topic models follows earlier work on dy-
namic topic models (Blei and Lafferty, 2006b; Xing,
2005).

9 Conclusion

This paper presents a model that jointly identifies
words with high regional affinity, geographically-
coherent linguistic regions, and the relationship be-
tween regional and topic variation. The key model-
ing assumption is that regions and topics interact to
shape observed lexical frequencies. We validate this
assumption on a prediction task in which our model
outperforms strong alternatives that do not distin-
guish regional and topical variation.

We see this work as a first step towards a unsuper-
vised methodology for modeling linguistic variation
using raw text. Indeed, in a study of morphosyn-
tactic variation, Szmrecsanyi (2010) finds that by
the most generous measure, geographical factors ac-
count for only 33% of the observed variation. Our
analysis might well improve if non-geographical
factors were considered, including age, race, gen-
der, income and whether a location is urban or ru-
ral. In some regions, estimates of many of these fac-
tors may be obtained by cross-referencing geogra-
phy with demographic data. We hope to explore this
possibility in future work.
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