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Abstract

In contrast with the booming increase of inter-
net data, state-of-art QA (question answering)
systems, otherwise, concerned data from spe-
cific domains or resources such as search en-
gine snippets, online forums and Wikipedia in
a somewhat isolated way. Users may welcome
a more general QA system for its capability
to answer questions of various sources, inte-
grated from existed specialized sub-QA en-
gines. In this framework, question classifica-
tion is the primary task.

However, the current paradigms of question
classification were focused on some speci-
fied type of questions, i.e. factoid questions,
which are inappropriate for the general QA.
In this paper, we propose a new question clas-
sification paradigm, which includes a ques-
tion taxonomy suitable to the general QA and
a question classifier based on MLN (Markov
logic network), where rule-based methods and
statistical methods are unified into a single
framework in a fuzzy discriminative learning
approach. Experiments show that our method
outperforms traditional question classification
approaches.

1 Introduction

During a long period of time, researches on question
answering are mainly focused on finding short and
concise answers from plain text for factoid questions
driven by annual trackes such as CLEF, TREC and
NTCIR. However, people usually ask more complex
questions in real world which cannot be handled by
these QA systems tailored to factoid questions.
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During recent years, social collaborative applica-
tions begin to flourish, such as Wikipedia, Facebook,
Yahoo! Answers and etc. A large amount of semi-
structured data, which has been accumulated from
these services, becomes new sources for question
answering. Previous researches show that different
sources are suitable for answering different ques-
tions. For example, the answers for factoid questions
can be extracted from webpages with high accuracy,
definition questions can be answered by correspond-
ing articles in wikipedia(Ye et al., 2009) while com-
munity question answering services provide com-
prehensive answers for complex questions(Jeon et
al., 2005). It will greatly enhance the overall per-
formance if we can classify questions into several
types, distribute each type of questions to suitable
sources and trigger corresponding strategy to sum-
marize returned answers.

Question classification (QC) in factoid QA is to
provide constraints on answer types that allows fur-
ther processing to pinpoint and verify the answer
(Li and Roth, 2004). Usually, questions are classi-
fied into a fine grained content-based taxonomy(e.g.
UIUC taxonomy (Li and Roth, 2002)). We can-
not use these taxonomies directly. To guide ques-
tion distribution and answer summarization, ques-
tions are classified according to their functions in-
stead of contents.

Motivated by related work on user goal classi-
fication(Broder, 2002; Rose and Levinson, 2004) ,
we propose a function-based question classification
category tailored to general QA. The category con-
tain six types, namely Fact, List, Reason, Solution,
Definition and Navigation. We will introduced this
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category in detail in Section 2.

To classify questions effectively, we unify rule-
based methods and statistical methods into a single
framework. Each question is splited into functional
words and content words. We generate strict pat-
terns from functional words and soft patterns from
content words. Each strict pattern is a regular ex-
pression while each soft pattern is a bi-gram clus-
ter. Given a question, we will evaluate its matching
degree to each patterns. The matching degree is ei-
ther O or 1 for strict pattern and between 0 and 1 for
soft pattern. Finally, Markov logic network (MLN)
(Richardson and Domingos, 2006) is used to com-
bine and evaluate all the patterns.

The classical MLN maximize the probability of
an assignment of truth values by evaluating the
weights of each formula. However, the real world
is full of uncertainty and is unnatural to be repre-
sented by a set of boolean values. In this paper,
we propose fuzzy discriminative weight learning of
Markov logic network. This method takes degrees
of confidence of each evidence predicates into ac-
count thus can model the matching degrees between
questions and soft patterns.

The remainder of this paper is organized as fol-
lows: In the next section we review related work
on question classification, query classification and
Markov logic network. Section 2 gives a detailed
introduction to our new taxonomy for general QA.
Section 4 introduces fuzzy discriminative weight
learning of MLN and our methodology to extract
strict and soft patterns. In Section 5 we compare our
method with previous methods on Chinese question
data from Baidu Zhidao and Sina iAsk. In the last
section we conclude this work.

Although we build patterns and do experiments
on Chinese questions, our method does not take ad-
vantage of the particularity of Chinese language and
thus can be easily implemented on other languages.

2 Related Work

Many question taxonomies have been proposed in
QA community. Lehnert (1977) developed the sys-
tem QUALM based on thirteen conceptual cate-
gories which are based on a theory of memory repre-
sentation. On the contrary, the taxonomy proposed
by Graesser et al. (1992) has foundations both in the-
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ory and in empirical research. Both of these tax-
onomies are for open-domain question answering.

With the booming of internet, researches on
question answering are becoming more practical.
Most taxonomies proposed are focused on factoid
questions, such as UIUC taxonomy (Li and Roth,
2002). UIUC taxonomy contains 6 coarse classes
(Abbreviation, Entity, Description, Human, Lo-
cation and Numeric Value) and 50 fine classes.
All coarse classes are factoid oriented except De-
scription. To classify questions effectively, Re-
searchers have proposed features of different levels,
such as lexical features, syntactic features (Nguyen
et al., 2007; Moschitti et al., 2007) and semantic fea-
tures (Moschitti et al., 2007; Li and Roth, 2004).
Zhang and Lee (2003) compared five machine learn-
ing methods and found SVM outperformed the oth-
ers.

In information retrieval community, researchers
have described frameworks for understanding goals
of user searches. Generally, web queries are classi-
fied into four types: Navigational, Informational,
Transactional (Broder, 2002) and Resource (Rose
and Levinson, 2004). Lee et al. (2005) automatically
classify Navigational and Informational queries
based on past user-click behavior and anchor-link
distribution. Jansen and Booth (2010) investigate
the correspondence between three user intents and
eighteen topics. The result shows that user intents
distributed unevenly among different topics.

Inspired by Rose and Levinson (2004)’s work in
user goals classification, Liu et al. (2008) describe
a three-layers cQA oriented question taxonomy and
use it to determine the expected best answer types
and summarize answers. Other than Navigational,
Informational and Transactional, the first layer
contains a new Social category which represents the
questions that do not intend to get an answer but to
elicit interaction with other people. Informational
contains two subcategories Constant and Dynamic.
Dynamic is further divided into Opinion, Context-
Dependent and Open.

Markov logic network (MLN) (Richardson and
Domingos, 2006) is a general model combining
first-order logic and probabilistic graphical models
in a single representation. Illustratively, MLN is a
first-order knowledge base with a weight attached
to each formula. The weights can be learnt ei-



TYPE

DESCRIPTION

EXAMPLES

1. Fact People ask these questions for general facts. Who is the president
The expected answer will be a short phrase. of United States?

2. List People ask these questions for a list of an- List Nobel price
swers. Each answer will be a single phrase winners in 1990s.
or a phrase with explanations or comments. Which movie star do

you like best?

3. Reason People ask these questions for opinions orex- Is it good to drink
planations. A good answer summary should milk while fasting?
contain a variety of opinions or comprehen- What do you think of
sive explanations. Sentence-level summariza- Avatar?
tion can be employed.

4. Solution People ask these questions for problem shoot- What should I do

ing. The sentences in an answer usually have
logical order thus the summary task cannot be
performed on sentence level.

during an earthquake?
How to make pizzas?

5. Definition

People ask these questions for description of
concepts. Usually these information can be
found in Wikipedia. If the answer is a too
long, we should summarize it into a shorter
one.

Who is Lady Gaga?
What does the Matrix
tell about?

6. Navigation

People ask these questions for finding web-
sites or resources. Sometimes the websites are
given by name and the resources are given di-
rectly.

Where can I download
the beta version of
StarCraft 27

Table 1: Question Taxonomy for general QA

ther generatively (Richardson and Domingos, 2006)
or discriminatively (Singla and Domingos, 2005).
Huynh and Mooney (2008) applies  -norm regu-
larized MLE to select candidate formulas generated
by a first-order logic induction system and prevent
overfitting. MLN has been introduced to NLP and
IE tasks such as semantic parsing (Poon et al., 2009)
and entity relation extraction (Zhu et al., 2009).

3 A Question Taxonomy

We suggest a function-based taxonomy tailored to
general QA systems by two principles. First, ques-
tions can be distributed into suitable QA subsys-
tems according to their types. Second, we can
employ suitable answer summarization strategy for
each question type. The taxonomy is shown in Tab.
1.

At first glance, classifying questions onto this tax-
onomy seems a solved problem for English ques-
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tions because of interrogative words. In most cases,
a question starting with “Why” is for reason and
“How” is for solution. But it is not always the case
for other languages. From table 2 we can see two
questions in Chinese share same function word “/&
2K but have different types.

In fact, even in English, only using interroga-
tive words is not enough for function-based ques-
tion classification. Sometimes the question content
is crucial. For example, for question “Who is the
current president of U.S. 77, the answer is “Barak
Obama” and the type is Fact. But for question “Who
is Barak Obama?”, it will be better if we return the
first paragraph from the corresponding Wiki article
instead of a short phrase “current president of U.S.”.
Therefore the question type will be Definition.

Compared to Wendy Lehnert’s or Arthur
Graesser’s taxonomy, our taxonomy is more prac-
tical on providing useful information for question



Question BAFFCE RN T ?
How to cook Kung Pao Chicken?
Type Solution
Question KA AT LIS B AFE?
What do you think of Avatar?
Type Reason

Table 2: Two Chinese questions share same function
words but have different types

extraction and summarization. Compared to ours,
The UIUC taxonomy is too much focused on factoid
questions. Apart from Description, all coarse types
in UIUC can be mapped into Fact. The cQA
taxonomy proposed in Liu et al. (2008) has similar
goal with ours. But it is hard to automatically
classify questions into that taxonomy, especially for
types Constant, Dynamic and Social. Actually the
author did not give implementation in the paper as
well. To examine reasonableness of our taxonomy,
we select and manually annotate 5800 frequent
asked questions from Baidu Zhidao (see Section
5.1). The distribution of six types is shown in Fig.
1. 98.5 percent of questions can be categorized
into our taxonomy. The proportion of each type is
between 7.5% and 23.8%.

The type Navigation was originally proposed in
IR community and did not cause too much concerns
in previous QA researches. But from Fig. 1 we
can see that navigational questions take a substan-
tial proportion in cQA data.

Moreover, we can further develop subtypes for
each type. For example, most categories in UIUC

Other
1.5%

. Definition
List 7.5% Reason

Navigation
14.8%

Solution
19.7%

14.4%

Figure 1: Distribution of six types in Baidu Zhidao data
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taxonomy can be regarded as refinement to Fact and
Navigation can be refined into Resource and Web-
site. We will not have further discussion on this is-
sue.

4 Methodology

Many efforts have been made to take advantage of
grammatical , semantic and lexical features in ques-
tion classification. Zhang and Lee (2003) proposed
a SVM based system which used tree kernel to in-
corporate syntactic features.

In this section, we propose a new question clas-
sification methodology which combines rule-based
methods and statistical methods by Markov logic
network. We do not use semantic and syntactic fea-
tures for two reasons. First, the questions posted on
online communities are casually written which can-
not be accurately parsed by NLP tools, especially for
Chinese. Second, the semantic and syntactic pars-
ing are time consuming thus unpractical to be used
in real systems.

We will briefly introduce MLN and fuzzy dis-
criminative learning in section 4.1. The construction
of strict patterns and soft patterns will be shown in
4.2 and 4.3. In section 4.4 we will give details on
MLN construction, inference and learning.

4.1 Markov Logic Network

A first-order knowledge base contains a set of for-
mulas constructed from logic operators and symbols
for predicates, constants, variables and functions.
An atomic formula or atom is a predicate symbol.
Formulas are recursively constructed from atomic
formulas using logical operators. The grounding
of a predicate (formula) is a replacement of all of
its arguments (variables) by constants. A possible
world is an assignment of truth values to all possible
groundings of all predicates.

In first-order KB, if a possible world violates
even one formula, it has zero probability. Markov
logic is a probabilistic extension and softens the hard
constraints by assigning a weight to each formula.
When a possible world violates one formula in the
KB, it is less probable. The higher the weight, the
greater the difference in log probability between a
world that satisfies the formula and a world does
not. Formally, Markov logic network is defined as



follows:

Definition 1 (Richardson & Domingos 2004) A

Markov logic network L is a set of pairs ( , ),

where  is a formula in first-order logic and  is a

real number. Together with a finite set of constants

C= , it defines a Markov network
as follows:

1. contains one binary node for each pos-
sible grounding of each predicate appearing in
L. The value of the node is 1 if the ground pred-
icate is true, and 0 otherwise.

2. contains one feature for each possible
grounding of each formula  in L. The value
of this feature is 1 if the ground formula is true,
and 0 otherwise. The weight of the feature is

the  associated with  in L.

There is an edge between two nodes of iff
the corresponding grounding predicates appear to-
gether in at least one grounding of one formula in

. An MLN can be regarded as a template for con-
structing Markov networks. From Definition 1 and
the definition of Markov networks, the probability
distribution over possible worlds specified by the

ground Markov network is given by
MLN  weights can be learnt genera-
tively(Richardson and Domingos, 2006) or

discriminatively(Singla and Domingos, 2005). In
discriminative weight learning, ground atom set
is partitioned into a set of evidence atoms  and
a set of query atoms The goal is to correctly
predict the latter given the former. In this paper, we
propose fuzzy discriminative weight learning which
can take the prior confidence of each evidence atom
into account.
Formally, we denote the ground formula set by
. Suppose each evidence atom is given with a
prior confidence , we define a confidence
function as follows. For each ground
atom , if then we have , else
. For each ground non-atomic formulas,
is defined on standard fuzzy operators, which are
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We redefined the conditional likelihood of
given  as

Where is the set of ground formulas involving
query atoms, is the set of formulas with at least
one grounding involving a query atom and

is the sum of confidence of the groundings of the ith
formula involving query atoms. The gradient of the
conditional log-likelihood (CLL) is

)

By fuzzy discriminative learning we can incorpo-
rate evidences of different confidence levels into one
learning framework. Fuzzy discriminative learn-
ing will reduce to traditional discriminative learning
when all prior confidences equal to 1.

4.2 Strict Patterns

In our question classification task, we find function
words are much more discriminative and less sparse
than content words. Therefore, we extract strict pat-
terns from function words and soft patterns from
content words. The definition of content and func-
tion words may vary with languages. In this paper,
nouns, verbs, adjectives, adverbs, numerals and pro-
nouns are regarded as content words and the rest are
function words.

The outline of strict pattern extraction is shown
in Alg. 1. In line 3, we build template by re-
moving punctuations and replacing each character
in each content word by a single dot. In line 4, we
generate patterns from the template as follows. First
we generate n-grams(n is between 2 and ) from



Algorithm 1: Strict Pattern Extraction

Input: Question Set ,
Parameters  and
Output: Pattern Set
Initialize Pattern Set  ;
for each Question do
String =ReplaceContentWords( , );
Pattern Set  =GeneratePatterns( , )
for each Pattern in do
if in then
L UpdateTypeFreq( , );

else
9 LAdd to ;

N S B R W N -

=)

10
11

Merge similar patterns in

Sort by Information Gain on type
frequencies;
return top

12 Patterns in

during which each dot is treated as a character
of zero length. For coverage concern, if a gener-
ated n-gram is not start(end) with dot, we build
another n-gram by adding a dot before(behind)
and add both and into n-gram set. Then for each
n-gram, we replace each consecutive dot sequence
by ’.*” and the n-gram is transformed into a regular
expression. A example is shown in Tab. 3. Although
generated without exhaustively enumerating all pos-
sible word combinations, these regular expressions
can capture most long range dependencies between
function words.
Each pattern consists of a regular expression as
well as its frequency in each type of questions. Still

Question L b ] DU 8 9 AR 2
Can I launch online banking services
on internet?
Template e RLL
Patterns DL g SRDL R x
( =4 FAT L)L ALy
R DL R HD SRLE R D
SRR ] DL ke % FE.x1] *
FE R LL* FE.# 7] L)
SRR R %

Table 3: Strict patterns generated from a question
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from Alg. 1, in line 5-9, if a pattern  in question
with type is found in , we just update the fre-
quency of , else is added to  with only
freq. equals to 1. In line 10, we merge similar
patterns in . two patterns and  are similar iff

g omatchP g p matchP q p ,in which
mat chP is defined in Section 4.4.

Since a large number of patterns are generated,
it is unpractical to evaluate all of them by Markov
logic network. We sort patterns by information gain
and only choose top  “good” patterns in line 11-12
of Alg. 1. A “good” pattern should be discriminative
and of wide coverage. The information gain IG of a

in

pattern is defined as
IG
in which  is the number of question types, is

the probability of a question having type , (or
~ ) is the probability of a question matching(or
not matching) pattern (or T ) is
the probability of a question having type  given
the condition that the question matches(or does not
match) pattern . These probabilities can be approx-
imately calculated by type and pattern frequencies
on training data. From the definition we can see
that information gain is suitable for pattern selec-
tion. The more questions a pattern matches and
the more unevenly the matched questions distribute
among questions types, the higher IG  will be.

4.3 Soft Patterns

Apart from function words, content words are also
important in function-based question classification.
Content words usually contain topic information
which can be a good complement to function words.
Previous research on query classification(Jansen and
Booth, 2010) shows that user intents distribute un-
evenly among topics. Moreover, questions given by
users may be incomplete and contain not function
words. For these questions, we can only predict the
question types from topic information.

Compared with function words, content words
distribute much more sparsely among questions.



When we represent topic information by content
words (or bi-grams), since the training set are small
and less frequent words (or bi-grams) are filtered
to prevent over-fitting, those features would be too
sparse to predict further unseen questions.

To solve this problem, we build soft patterns on
question set. Each question is represented by a
weighted vector of content bi-grams in which the
weight is bi-gram frequency. Cosine similarity is
used to compute the similarity between vectors.
Then we cluster question vectors using a simple
single-pass clustering algorithm(Frakes and Yates,
1992). That is, for each question, we compute its
similarity with each centroid of existing cluster. If
the similarity with nearest cluster is greater than
a minimum similarity threshold , we assign this
question to that cluster, else a new cluster is created
for this question.

Each cluster is defined as a soft pattern. Unlike
strict patterns, a question can match a soft pattern
to some extent. In this paper, the degree of match-
ing is defined as the cosine similarity between ques-
tion and centroid of cluster. Soft patterns are flexible
and could alleviate the sparseness of content words.
Also, soft patterns can be pre-filtered by information
gain described in 4.2 if necessary.

4.4 Implementation

Currently, we model patterns into MLN as follows.
The main query predicate is Type (g, t), which
is true iff question g has type t. For strict pat-
terns, the evidence predicate Mat chP (q, p) is true
iff question g is matched by strict pattern p. The
confidence of MatchP (g, p) is 1 for each pair of
(q,p). For soft patterns, the evidence predicate
MatchC (g, c) is true iff the similarity of question
g and the cluster c is greater than a minimum simi-
larity requirement . If MatchC (g, c) is false, its
confidence is 1, else is the similarity between g and
c.

We represent the relationship between patterns
and types by a group of formulas below.

MatchP (g, +p) Type (g, +t)

The “+p, +t” notation signifies that the MLN con-
tains an instance of this formula for each (pattern,
type) pair. For the sake of efficacy, for each pattern-
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Type (gq,t’)

type pair (p,t), if the proportion of type t in ques-
tions matching p is less than a minimum require-
ment , we remove corresponding formula from
MLN.

Similarly, we incorporate soft patterns by

MatchC (q, +c) Type (g, +t)

Our weight learner use -regularization (Huynh
and Mooney, 2008) to select formulas and prevent
overfitting. A good property of -regularization is
its tendency to force parameters to exact zero by
strongly penalizing small terms (Lee et al., 2006).
After training, we can simply remove the formulas
with zero weights.

Formally, to learn weight for each formula, we
iteratively solve -norm regularized optimization
problem:

where is -norm and parameter controls the
penalization of non-zero weights. We implement the
Orthant-Wise Limited-memory Quasi-Newton algo-
rithm(Andrew and Gao, 2007) to solve this opti-
mization.

Since we do not model relations among questions,
the derived markov network can be broken up
into separated subgraphs by questions and the gradi-
ent of CLL(Eq. 1) can be computed locally on each
subgraph as

(2)

inwhich and are the evidence and query atoms
involving question . Eq. 2 can be computed fast
without approximation.

We initialize formula weights to the same posi-
tive value Iteration started from uniform prior
can always converge to a better local maximum than
gaussian prior in our task.

S Experiments

5.1 Data Preparation

To the best of our knowledge, there is not general
QA system(the system which can potentially answer

Type (q,t”)



all kinds of questions utilizing data from heteroge-
neous sources) released at present. Alteratively, we
test our methodology on cQA data based on obser-
vation that questions on cQA services are of var-
ious length, domain independent and wrote infor-
mally(even with grammar mistakes). General QA
systems will meet these challenges as well.

In our experiments, both training and test data
are from Chinese cQA services Baidu Zhidao and
Sina iAsk. To build training set, we randomly select
5800 frequent-asked questions from Baidu Zhidao.
A question is frequent-asked if it is lexically simi-
lar to at least five other questions. Then we ask 10
native-speakers to annotate these questions accord-
ing to question title and question description. If an
annotator cannot judge type from question title, he
can view the question description. If type can be
judged from the description, the question title will
be replaced by a sentence selected from it. If not,
this question will be labeled as Other.

Each question is annotated by two people. If a
question is labeled different types, another annotator
will judge it and make final decision. If this annota-
tor cannot judge the type, this question will also be
labeled as Other. As a result, disagreements show
up on eighteen percents of questions. After the third
annotator’s judgment, the distribution of each type
is shown in Fig. 1.

To examine the generalization capabilities, the
test data is composed of 700 questions randomly se-
lected from Baidu Zhidao and 700 questions from
Sina iAsk. The annotation process on test data is as
same as the one on training data.

5.2 Methods Compared and Results

We compare four methods listed as follows.

SVM with bi-grams. We extract bi-grams from
questions on training data as features. After filtering
the ones appearing only once, we collect 5700 bi-
grams. LIBSVM(Chang and Lin, 2001)is used as
the multi-class SVM classifier. All parameters are
adjusted to maximize the accuracy on test data. We
denote this method as “SB”’;

MLN with bi-grams. To compare MLN and
SVM, we treat bi-grams as strict patterns. If a ques-
tion contain a bi-gram, it matches the corresponding
pattern. We set , and .
As aresult, 5700 bi-grams are represented by 10485
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formulas. We denote this method as “MB”’;

MLN with strict patterns and bi-grams. We ask
two native-speakers to write strict patterns for each
type. The pattern writers can view training data for
reference and write any Java-style regular expres-
sions. Then we carefully choose 50 most reliable
patterns. To overcome the low coverage, We also
use the method described in Sec. 4.2 to automati-
cally extract strict patterns from training set. We first
select top 3000 patterns by information gain, merge
these patterns with hand-crafted ones and combine
similar patterns. Then we represent these patterns
by formulas and learn the weight of each formula by
MLN. After removing the formula with low weights,
we finally retain 2462 patterns represented by 3879
formulas. To incorporate content information, we
extract bi-grams from questions with function words
removed and remove the ones with frequency lower
than two. With bi-grams added, we get 8173 formu-
las in total. All parameters here are the same as in
“MB”. We denote this method as “MSB”;

MLN with strict patterns and soft patterns. To
incorporate content information, We cluster ques-
tions on training data with similarity threshold

and get 2588 clusters(soft patterns) which are
represented by 3491 formulas. We these soft pat-
terns with strict patterns extracted in “MSB”, which
add up to 7370 formulas. We set and the
other parameters as same as in “MB”. We denote
this method as “MSS”;

We separate test set into easy set and difficult set.
A question is classified into easy set iff it contains
function-words. As a result, the easy set contains
1253 questions. We measure the accuracy of these
four methods on easy data and the whole test data.
The results are shown in Tab 4. From the results we
can see that all methods perform better on easy ques-
tions and MLN outperforms SVM using same bi-
gram features. Although MSS is inferior to MSB on

F. num | Easy data | All data
SB NA 0.724 0.685
MB | 10485 0.722 0.692
MSB | 8173 0.754 0.714
MSS | 7370 0.752 0.717

Table 4: Experimental results on Chinese cQA data



F L S R D N
Prec. | 0.63 | 0.65 | 0.83 | 0.76 | 0.69 | 0.55
Recall | 0.55 | 0.74 | 0.86 | 0.76 | 0.44 | 0.58
0.59 | 0.69 | 0.84 | 0.76 | 0.54 | 0.56

Table 5: Precision, recall and F-score on each type

easy questions, it shows better overall performance
and uses less formulas.

We further investigate the performance on each
type. The precision, recall and  -score of each type
by method MSS are shown in Tab. 5. From the re-
sults we can see that the performance on Solution
and Reason are significantly better than the others.
It is because the strict patterns for this two types are
simple and effective. A handful of patterns could
cover a wide range of questions with high precision.
It is difficult to distinguish Fact from List because
strict patterns for these two types are partly overlap
each other. Sometimes we need content information
to determine whether the answer is unique. Since
List appears more frequently than Fact on training
set, MLN tend to misclassify Fact to List which lead
to low recall of the former and low precision of the
latter. The recall of Definition is very low because
many definition questions on test set are short and
only consists of content words(e.g. a noun phrase).
This shortage could be remedied by building strict
patterns on POStagging sequence.

fraction lines, college entrance exam

G B, wF, Far, kEL L

Fact: 56.4%  List: 33.3%  Solu.: 5.5%
lose weight, summer, fast

WL, EOR, R, dR, 5k,

Reas.: 53.8% Solu.: 42.3%  List: 3.8%
TV series, interesting, recent

AL, PR, A, sk, SO, .

List: 84.0% Fact: 8.0%  Navi.: 2.0%
converter, format, 3gp

i, s, 3gp, mp4, I, ..
Navi.: 75% List: 18.8%  Solu.: 6.2%

Table 6: Selected soft patterns on training data
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5.3 Case Study on Soft Patterns

To give an intuitive illustration of soft patterns, we
show some of them clustered on training data in Tab.
6. For each soft pattern, we list five most frequent
bi-grams and its distribution on each type(only top 3
frequent types are listed).

From the results we can see that soft patterns are
consistent with our ordinary intuitions. For exam-
ple, if user ask a questions about “TV series”, he is
likely to ask for recommendation of recent TV series
and the question have a great chance to be List. If
user ask questions about “lose weight”, he probably
ask something like “How can I lose weight fast?” or
“Why my diet does not work?” . Thus the type is
likely to be Solution or Reason.

6 Conclusion and Future Work

We have proposed a new question taxonomy tai-
lored to general QA on heterogeneous sources.
This taxonomy provide indispensable information
for question distribution and answer summarization.
We build strict patterns and soft patterns to repre-
sent the information in function words and content
words. Also, fuzzy discriminative weight learning
is proposed for unifying strict and soft patterns into
Markov logic network.

Currently, we have not done anything fancy on the
structure of MLN. We just showed that under uni-
form prior and L1 regularization, the performance
of MLN is comparable to SVM. To give full play
to the advantages of MLN, future work will focus
on fast structure learning. Also, since questions on
online communities are classified into categories by
topic, we plan to perform joint question type infer-
ence on function-based taxonomy as well as topic-
based taxonomy by Markov logic. The model will
not only capture the relation between patterns and
types but also the relation between types in different
taxonomy.
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