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Abstract

In state-of-the-art approaches to information
extraction (IE), dependency graphs constitute
the fundamental data structure for syntactic
structuring and subsequent knowledge elicita-
tion from natural language documents. The
top-performing systems in the BioNLP 2009
Shared Task on Event Extraction all shared the
idea to use dependency structures generated
by a variety of parsers — either directly or
in some converted manner — and optionally
modified their output to fit the special needs
of IE. As there are systematic differences be-
tween various dependency representations be-
ing used in this competition, we scrutinize on
different encoding styles for dependency in-
formation and their possible impact on solv-
ing several |IE tasks. After assessing more
or less established dependency representations
such as th&tanfordandCoNLL-Xdependen-
cies, we will then focus on trimming opera-
tions that pave the way to more effective IE.
Our evaluation study covers data from a num-
ber of constituency- and dependency-based
parsers and provides experimental evidence
which dependency representations are partic-
ularly beneficial for the event extraction task.
Based on empirical findings from our study
we were able to achieve the performance of
57.2% F-score on the development data set of
the BioNLP Shared Task 2009.

Introduction

}@uni-jena.de

(both in the newspaper domain such as for ACE
well as in the biological domain such as for BioCre-
ative? or the BioNLP Shared Tadk comparable in
terms of analytical complexity with recent efforts di-
rected at opinion mining (e.g., NTCIRtor TREC
Blog tracksS) or the recognition of textual entail-
ment® The most recenBioNLP 2009 Shared Task
on Event ExtractiorfKim et al., 2009) required, for
a sample of 260 MDLINE abstracts, to determine
all mentioned events — to be chosen from a given
set of nine event types, includirifocalization”,
“Binding” , “Gene Expression; “Transcription”,
“Protein Catabolism”, “Phosphorylation”, “Posi-
tive Regulation’; “Negative Regulation; and (un-
specified)‘Regulation” — and link them appropri-
ately witha priori supplied protein annotations. The
demands on text analytics to deal with the complex-
ity of this Shared Task in terms of relation diversity
and specificity are unmatched by former challenges.
For relation extraction in the biomedical domain
(the focus of our work), a stunning convergence
towards dependency-based syntactic representation
structures is witnessed by the performance results
of the top-performing systems in thH&ioNLP’09

http://papers.ldc.upenn.edu/LREC2004/
ACE.pdf

2http://biocreative.sourceforge.net/

Swww-tsuijii.is.s.u-tokyo.ac.jp/GENIA/
SharedTask/

“http://Iresearch.nii.ac.jp/ntcir/
workshop/OnlineProceedings7/pdf/revise/
01-NTCIR-OV-MOAT-SekiY-revised-20081216.
pdf

Shttp://trec.nist.gov/data/blog08.html

Relation and event extraction are among the most snp.://pascallin.ecs.soton.ac.uk/
demanding semantics-oriented NLP challenge tasksallenges/RTE/

982

Proceedings of the 2010 Conference on Empirical Methods in Natural Language Processing, pages 982-992,
MIT, Massachusetts, USA, 9-11 October 2010. (©)2010 Association for Computational Linguistics



Shared Task on Event Extractién Regarding the has been realized (Miwa et al., 2010)0AYO sys-
fact that dependency representations were alwayasm’s event extraction capabilities are based on the
viewed as a vehicle to represent fundamental semahuRKU system, yet TRKU’s manually crafted rule
tic relationships already at the syntactic level, thisystem for post-processing and the combination of
is not a great surprise. Yet, dependency grammaxtracted trigger-argument relations is replaced by
is not a monolithic, consensually shaped and well machine learning approach in which rich features
defined linguistic theory. Accordingly, associatectollected from classification steps for triggers and
parsers tend to vary in terms of dependency pairinegrguments are re-combined. okyo achieves an
or structuring (which pairs of words join in a depen-overall F-score of 53.29% on the test data, thus out-
dency relation?) and dependency typing (how amgerforming TURKU by 1.34 percentage points.
dependency relations for a particular pair labelled?). The three now top-performing systemspryo,
Depending on the type of dependency theory 6fURKU and JLIELab, all rely on dependency
parser being used, various representations emergephs for solving the event extraction tasks. While
(Miyao et al., 2007). In this paper, we explore theséhe TURKU system exploits the Stanford dependen-
different representations of the dependency grapleges from the McClosky-Charniak parser (Charniak
and try, first, to pinpoint their effects on solving theand Johnson, 2005), and theLleLab system uses
overall event extraction task and, second, to furthehe CoNLL-like dependencies from the GDep parser
enhance the potential of #X, a high-performance (Sagae and Tsuijii, 200P)the TokYo system over-
relation and event extractor developed at tbeig  lays the Shared Task data with two parsing represen-

Lab (Buyko et al., 2009). tations,viz. Enju PAS structure (Miyao and Tsuijii,
2002) and GDep parser dependencies. Obviously,
2 Related Work one might raise the question as to what extent the

. : . performance of these systems depends on the choice
In the biomedical domain, the focus has largely been, : . .

. . . . . -~of the parser and its output representations. Miyao
on binary relations, in particular proteln—protemet al. (2008) already assessed the impact of different
interactions (PPIs).  Accordingly, the biomedi- }

| NLP communitv has develoned vari PPIparsers for the task of biomedical relation extraction
ca community has developed various (PPI). Here we perform a similar study for the task
annotated corpora (e.g., LLL @dellec, 2005),

of event extraction and focus, in particular, on the
AIMED (Bunescu etal., 2005),IBINFER (Pyysalo impact of various dependency representations such

et al., 2007)). PPI extraction does clearly not coune'iS Stanford and CoNLL’X dependencies and addi-

as a solved problem, and a deeper look at its bicgi-Onal trimming procedures

logical and representational intricacies is certainly For the experiments on which we report here, we

worthwhile. The Genia event corpus (Kim et al, erformed experiments with theyuiELab system
2008) and the BioNLP 2009 Shared Task data (Ki ed experiments with the ystem.
ur main goal is to investigate into the crucial role

et al., 2009) contain such detailed annotations o :
of proper representation structures for dependency
PPIs (amongst others).

The BioNLP Shared Task was a first step towardgraphs SO that the performance gap from Shared

. . . . _Task results between the best-performingK¥o
the extraction of specific pathways with precise in-

. . system and theul IELab system be narrowed.
formation about the molecular events involved. In
that task, 42 teams participated and 24 of them sulg— Event Extraction
mitted final results. The winner systemURKuU

(Bjorne et al., 2009), achieved with 51.95% F-scor8.1 Objective

the milestone result in that competition followed byEvent extraction is a complex task that can be sub-

the JLIELab system (Buyko et al., 2009) WhiChdivided into a number of subtasks depending on
peaked at 46.7% F-score. Only recently, an ex-

tension of the TRKU system, the DKYO system, 8The GDep parser has been trained on then@ Tree-
bank pre-official version of the version 1.0 converted with the
"www-tsujii.is.s.u-tokyo.ac.jp/GENIA/ script available fromhttp://w3.msi.vxu.se/ ~ nivre/
SharedTask/results/results-master.html research/Penn2Malt.html
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whether the focus is on the event itself or on the ad Dependency Graph Representations

guments involved: _ , .
Event trigger identification deals with the large In this section, we focus on representation formats

variety of alternative verbalizations of the sam&fdependency graphs. In Section 4.1, we introduce

event type, e.g., whether the event is expressed if§'damental notions underlying dependency pars-
verbal or in a nominalized form £ is expressed N9 and consider established representation formats

as well as the expression of "Aboth refer to the for dependency structures as generated by various
same event typeyiz. Expression(A)). Since the parsers. In Section 4.2, we account for selected trim-

same trigger may stand for more than one event typ®1ing operations for dependency graphs to ease IE.

event trigger ambiguity has to be resolved as well.
Event trigger disambiguation selects the correct
event name from the set of alternative event triggers.
Argument identification is concerned with find- Dependency parsing, in the past years, has increas-
ing all necessary participants in an event, i.e., thi@gly been recognized as an alternative to long-
arguments of the relation. prevailing constituency-based parsing approaches,

Argument ordering assigns each identified par-particularly in semantically-oriented application
ticipant its functional role within the event, mostly Scenarios such as information extraction. Yet even

4.1 Dependency Structures: Representation
Issues

Agent and Patient. under purely methodologically premises, it has
gained wide-spread attention as witnessed by recent
3.2 JULIE Lab System activities performed as part of the “CoNLL Shared

The JLIELab solution can best be characterized a§asks on Multilingual Dependency Parsing” (Buch-
a single-step learning approach for event detectid!z and Marsi, 2006).

as the system does not separate the overall learn-n a nutshell, in dependency graphs of sentences,
ing task into independent event trigger and everitodes represent single words and edges account for
argument learning subtasks.The LLiELab sys- head-modifier relations between single words. De-
tem incorporates manually curated dictionaries angpite this common understanding, concrete syntactic
machine learning (ML) methodologies to sort oufeépresentations often differ markedly from one de-
associated event triggers and arguments on depd¥ndency theory/parser to the other. The differences
dency graph structures. For argument extraction, ti@ll into two main categories: dependency pairing or
JULIELab system uses two ML-based approachestructuring (which pairs of words join in a depen-
a feature-based and a kernel-based one. Givégncy relation?) and dependency typing (how are
that methodological framework, theUieLab team dependency relations for a particular pair labelled?).
scored on 2nd rank among 24 competing teams, with The CoNLL'X dependencies, for example, are
45.8% precision, 47.5% recall and 46.7% F-score ofiefined by 54 relation type$, while the Stanford

all 3,182 events. After the competition, this systenscheme (de Marneffe et al., 2006) incorporates 48
was updated and achieved 57.6% precision, 45.7%pes (so called grammatical relations or Stanford
recall and 51.0% F-score (Buyko et al., 2010) usingependencies). The Link Grammar Parser (Sleator
modified dependency representations from the MSand Temperley, 1991) employs a particularly fine-
parser (McDonald et al., 2005). In this study, wegrained repertoire of dependency relations adding
perform event extraction experiments with various!p to 106 types, whereas the well-knownNvIPAR
dependency representations that allow us to measurarser (Lin, 1998) relies on 59 types. Differences in
their effects on the event extraction task and to independency structure are at least as common as dif-
crease the overallulIELab system performance in ferences in dependency relation typing (see below).

terms of F-score. T , , ,
Computed by using the conversion script on WSJ
9The JLIELab system considers all relevant lexical items aslata ~ (accessible  via http://nip.cs.lth.se/

potential event triggers which might represent an event. Onlgennconverter/ ; see also Johansson and Nugues (2007)

those event triggers that can eventually be connected to ardgior additional information). From the &\IA corpus, using this

ments, finally, represent a true event. script, we could only extract 29 CoNLL dependency relations.
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Figure 1: Example of CoNLL 2008 dependencies, as used in aidlse native dependency parsers.
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Figure 2: Stanford dependenciéasicconversion from Penn Treebank.

In general, dependency graphs can be generated semantics-sensitive applications using depen-
by syntactic parsers in two ways. First, native de-  dency representations, and can be obtained us-
pendency parsers output CONLL'X or Stanford de-  ing the Stanford tool$ from PTB trees. The
pendencies dependent on which representation for- Stanford format is widely used in the biomed-
mat they have been trained hSecond, in a deriva- ical domain (e.g., by Miyao et al. (2008) or
tive dependency mode, the output of constituency- Clegg and Shepherd (2005)).
based parsers, e.g., phrase structure representations,
is subsequently converted either into CONLL'X or There are systematic differences between
Stanford dependencies using Treebank conversiéoNLL'X and Stanford dependencies, e.g., as far
scripts (see below). In the following, we provideas the representation of passive constructions, the
a short description of these two established depeposition of auxiliary and modal verbs, or coordi-
dency graph representations: nation representation is concerned. In particular,

the representation of thgassiveconstruction and

e CoNLLX dependencies (CD). This depen- the role of the auxiliary verb therein may have

dency tree format was used in the CoNLL'Xconsiderable effects for semantics-sensitive tasks.
Shared Tasks on multi-lingual dependencyVhile in SD the subject of the passive construction
parsing (see Figure 1). It has been adopteid represented by a speciakubj dependency
by most native dependency parsers and wasbel, in CD we find the same subject label as for
originally obtained from Penn Treebank (PTB)active constructionSUB(J) . On CoNLL'08 data,
trees using constituent-to-dependency convethe logical subject is marked by tHeGS depen-
sion (Johansson and Nugues, 2007). It differdency edge that connects the passive-indicating
slightly in the number and types of dependenpreposition“by” with the logical subject of the
cies being used from various CoNLL roundssentence.

(e.g., CoNLL'08 provided a dependency type The representation oéctive constructions are
for representing appositions). similar in CD and SD though besides the role of

] ] auxiliary and modal verbs. In the Stanford de-
» Stanford dependencies (SD)This format was pendency representation scheme, rather than taking
proposed by de Marneffe et al. (2006) for

auxiliaries to be the heads in passive or tense con-
we disregard in this study other dependency representgiructions, main verbs are assigned this grammatical

tions such as MNIPAR and LINK GRAMMAR representations.  function (see Figure 2). The CoNLL'X represen-
2For the differences between CoNLL'07 and CoNLL'08 rep-

resentations, cfhttp://nip.cs.lth.se/software/ Bpvailable from nlp.stanford.edu/software/

treebank_converter/ lex-parser.shtml
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Figure 3: Noun phrase representation in Figure 4: Trimming procedureoun phraseon
CoNLL'X dependency trees. CoNLL'X dependency trees.

tation scheme is completely different in that auxil-of noun phrases with action adjectives to make the
iaries — much in common with standard dependenayependency representation even more compact for
theory — are chosen to occupy the role of the gowsemantic interpretation. The original dependency
ernor (see Figure 1). From the perspective of relaepresentation of the noun phrase selects the right-
tion extraction, however, the Stanford scheme is cemost noun as the head of the NP and thus all re-
tainly closer to the desired predicate-argument strucaaining elements are its dependents (see Figure 3).
ture representations than the CoNLL scheme. For the noun phrases containing action adjectives

(mostly verb derivations) this representation does
4.2 Dependency Graph Modifications in Detail not reflect the true semantic relations between the

Linguistic intuition suggests that the closer a deperglements. For example, fiL-10 mediated expres-
dency representation is to the format of the targetegion” it is “IL-10" that mediates the expression.
semantic representation, the more likely will it sup-Therefore, we re-structure the dependency graph by
port the semantic application. This idea is directighanging the head dfiL-10" from “expression”
reflected in the Stanford dependencies which narrot@ “mediated”. Our re-coding heuristics selects,
the distance between nodes in the dependency grafpit. all the noun phrases containing action adjec-
by collapsing procedures (the so-calledllapsed tives ending wittf-ed” , “-ing” , “-ible” suffixes and

mode of phrase structure conversion). An exampith words such asdependent’, “specific”, “like” .
nmod  In the second step, we re-structure the noun phrase

of collapsing is the conversion oéXpression—— ) S
by encoding the adjective as the head of all the nouns

in 2™ cellg to “expression™ ™™, cells’. An e
: Xxp ! : X preceding this adjective in the noun phrase under

tgnspn of gollapsmg is the re-structuring of' Coor'scrutiny (see Figure 4).
dinations with sharing the dependency relations of

conjuncts (the so-callectprocessechode of phrase 5 Experiments and Results

structure conversion). ) ] ) )

According to the Stanford scheme, Buyko et alln this section, we describe the experiments and
(2009) proposed collapsing scenarios’ on CoNLL’)(eSUltS related to event extraction tasks based on
dependency graphs. Their so-callegnming op- alternative dependency graph representations. For
erations treat three syntactic phenomeria, coor- our exp_eriments, we sele_cted the following  top-
dinations ¢oords, auxiliaries/modalsguxiliaries, ~ PeTforming parsers — the first three phrase structure
and prepositionspfepy. For coordinations, they based and thus the origin of derivative dependency
propagate the dependency relation of the first corf'UCtures, the last three fully dependency based for
junct to all the other conjuncts within the coordi-T2akKing native dependency structures available:

nation. For auxiliaries/modals, they prune the aux- C+J, Charniak and Johnson’s reranking parser

iliaries/modals as governors from the dependency (Charniak and Johnson, 2005), with the WSJ-
graph and propagate the dependency relations of ’ '

these nodes to the main verbs. Finally, for preposi-

tions, they collapse a pair of typed dependencies into ¢ M+C, Charniak and Johnson’s reranking parser

a single typed dependency (as illustrated above). (Charniak and Johnson, 2005), with the self-
For the following experiments, we extended the  trained biomedical parsing model from Mc-

trimming procedures and propose the re-structuring  Closky (2010).

trained parsing model.
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e Bikel, Bikel's parser (Bikel, 2004) with the under SVT-TOTAL,; regulatory events are summa-
WSJ-trained parsing model. rized under REG-TOTAL, the overall extraction re-

] sults are listed in ALL-TOTAL (see Table 1).
o GDep(Sagae and Tsujii, 2007), anative depen- o iqusty, the event extraction system trained on

dency parser. various dependency representations indeed produces

e MST (McDonald et al., 2005), another nativelruly different results. The differences in terms of F-
dependency parser. score come up to 2.4 percentage points for the SVT-

TOTAL events (cf. the MALT parser, difference

e MALT (Nivre et al., 2007), yet another nativepetween Sbasic(75.6% F-score) and CoNLL'07

dependency parser. (78.0% F-score)), up to 3.6 points for REG-TOTAL
é%f. the M+C parser, difference between $Epro-

The native dependency parsers were re-trained U ssed(40.9% F-score) and CONLL'O7 (44.5% F-
the GENIA Treebank (Tateisi et al., 2005) conver—score)) and up to 2.5 points for ALL-TOTAL (cf
sions!* These conversions, i.e., Stanfordbasig P P '

CoNLL'07 and CoNLL'08 were produced with the the M+C parser, difference between 8eprocessed

) ) . 2.8% F- NLL'07 (55.3% F- .
currently available conversion scripts. For the Stan(-5 8% F-score) and Co O. (55.3% F-score))
The top three event extraction results on the de-

ford dependency conversion, we used the Stamco(/delo ment data based on different syntactic parsers
parser tool® for CONLL'07 and CoNLL'08 we used P y b

) . N - \
the treebank-to-CoNLL conversion scriptsavail- results are achieved with M+C parser — CONLL07

) : representation (55.3% F-score), MST parser —
able from the CoNLL' X Shared Task organizers. CONLL'08 representation (54.6% F-score) and

The phrase structure based parsers were appllﬁﬁ“‘-r parser — CoNLL'08 representation (53.8%

with already avallab_le models, i.e., the Bikel an score) (see Table 1, ALL-TOTAL). Surprisingly,
C+J parsers as trained on the WSJ corpus, apd, o ~oNLI'08 and CoNLL07 formats clearl
M+C as trained on the &NIA Treebank corpus. y

. .. outperform Stanford representations on all event ex-
For our experiments, we converted the predictio . )
. traction tasks. Stanford dependencies seem to be
results of the phrase structure based parsers in

0 : .
. L useful here only in théasicmode. Thecollapsed
five dependency graph representatiais, Stanford

. andccprocesseanodes produce even worse results
basig Stanford collapsed Stanford ccprocessed

CoNLL'07 and CoNLL'08, using the same scriptsfor the event extractlpn tasks. N

. Our second experiment focused on trimming op-
as for the conversion of the&mIA Treebank. erations on CoNLL'X dependency araphs. Here
The LLIELab event extraction system was re- b y grapns.

trained on the Shared Task data enriched with diffet . performed event extraction after the trimming of

ent outputs of syntactic parsers as described abo the dependency trees as described in Section 4.2 in

. ‘ifferent modes:coords— re-structuring coordina-
The results for the event extraction task are rep e;
0

sented in Table 1. Due to the space limitation lons; preps-— collapsing of prepositionguxiliaries

this paper we provide the summarized results of im- propagating dependency relations of auxiliars and
odals to main verbsjoun phrase- re-structuring

portant event extraction sub-tasks only, i.e., results e . -
: : . noun phrases containing action adjectives. Our sec-
for basic eventsGene ExpressignTranscription

o : . . ond experiment showed that the extraction of se-
Localization Protein Catabolisiare summarized o . .
lected events can profit in particular from the trim-
“For the training of dependency parsers, we used from thering proceduresoordsandauxiliaries, but there is

available Stanford conversion variants only St_antumdlc: The no evidence for a general trimming configuration for
collapsedandccprocessedariants do not provide dependency I t extraction task
trees and are not recommended for training native dependeng?/e overall event extraction task.

parsers. In Table 2 we summarize the best configurations
We used the GNIA Treebank version 1.0, available from we found for the events in focus. It is quite evi-
W"‘l"é‘;"tttsﬁ‘/j/i;ils-z-t‘;‘nt%krléoézwsoﬂware/ dent that the CoNLL'08 and CoNLL'07 dependen-
Iex-parz-er.s%tml ‘ cies modified for auxiliaries and coordinations are
Yhttp://nlp.cs.lth.se/software/treebank__ the best configurations for four events (out of nine).
converter/ For three events no modifications are necessary and
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Binding R P F

CoNLL'07 47.3| 46.8| 47.0
CoNLL'07 auxiliaries, coords 46.8| 48.1| 47.4
CoNLL'07 auxiliaries, coords, noun phrase| 51.2 | 51.0| 51.1

Parser | SD basic | SDcollapsed | SD ccprocessed | CoNLL07 | CoNLL08
SVT-TOTAL
R P F R P F R P F R P F R P F
Bikel 705 755 729| 70.7 745 725 71.6 735 725 694 759 725 69.7 757 72.6
C+J 73.0 774 751 732 773 752 728 772 75.0 735 783 758|73.0 77.9 754
M+C | 764 780 77.2 764 776 77.0 76.4 772 76.8 76.4 79.0 77.7/76.6 793 77.9
GDEP | 77.2 775 77.3| NJA N/A N/A | NJA NA N/A | 725 80.2 76.1 726 77.2 74.8
MALT | 73.1 78.2 75.60 NJA N/A N/A | NNA NA NA | 759 803 78.0| 73.7 78.2 759
MST 76.4 785 77.4 N/JA N/A NA | NA N/A N/A | 748 78.4 76.6/ 76.7 80.8 78.7
REG-TOTAL
R P F R P F R P F R P F R P F
Bikel | 35.3 40.6 37.8| 33.8 40.3 36.8 343 39.6 36.8 339 39.2 36.3 340 410 37.2
C+J 36.2 418 38.8 37.3 418 394 36,5 419 39.0 381 439 40.8| 374 440 404
M+C 39.4 455 423 38.8 453 41.8 385 437 40.9 419 474 445 40.1 47.9 43.7
GDEP | 39.6 42.8 41.6 N/A N/A N/A | NJA N/A N/A | 384 43.7 409 39.8 44.4 420
MALT | 38.8 44.3 41.4 N/A N/A N/A | NJA N/A N/A | 39.0 443 415 39.2 46.4 425
MST | 395 43.6 414 N/A N/A N/A | NJA N/A N/A | 396 456 424 406 458 43.0
ALL-TOTAL
R P F R P F R P F R P F R P F
Bikel 474 515 49.4| 46.3 50.8 485 46.9 50.2 485 44.8 50.7 47.6/ 44.7 51.8 48.0
C+J 49.3 53.8 515 49.6 528 51.2149.0 53.0 50.9 50.3 544 523|495 543 51.8
M+C | 52.3 56.4 54.3 51.8 55.7 53.7 51.3 543 528 53.2 575 553|522 582 55.0
GDEP | 52.7 545 53.6| N/A N/A N/A | NJA N/A N/A | 506 552 528 51.3 550 53.1
MALT | 50.4 54.7 52.4 N/A- N/A N/A | NNA N/A NA | 515 56.0 537 51.2 56.8 53.8
MST 523 548 535 N/A NA NA | NNA N/A NA | 517 564 539 524 56.9 54.6
Table 1: Results on the Shared Task development data fort EBsdraction Task. Approximate Span Match-
ing/Approximate Recursive Matching.
Event Class Best Parser Best Configuration R P F
Gene Expression | MST CoNLL'08, auxiliaries, coords 79.5| 81.8| 80.6
Transcription MALT CoNLL'07, auxiliaries, coords 67.1| 75.3| 71.0
Protein Catabolism | MST CoNLL'08, preps 85.7 ] 100 | 92.3
Phosphorylation MALT CoNLL'08 809|884 | 844
Localization MST CoNLL'08, auxiliaries 81.1| 87.8| 84.3
Binding MST CoNLL'07, auxiliaries, coords, noun phrase51.2 | 51.0 | 51.1
Regulation MALT CoNLL07, auxiliaries, coords 30.8| 49.5| 38.0
Positive Regulation | M+C CoNLL07 43.0| 49.9| 46.1
Negative Regulation M+C CoNLL07 49.5| 45.3| 47.3

Table 2: Best Configurations for Dependency Representaf@mrEvent Extraction Task on the development data.

Table 3: Effects of trimming o€CoNLL dependencies on the Shared Task development daiirfding events. Ap-
proximate Span Matching/Approximate Recursive Matchiflge data was processed by the MST parser.
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Table 4: Results on the Shared Task development data. Ajppeibx Span Matching/Approximate Recursive Match-
ing.

Table 5: Results on the Shared Task test data. Approximate Batching/Approximate Recursive Matching.

JuLIELab JuLIELab TOKYO System
(M+C, CoNLL'08) | Final Configuration
Event Class gold R P F R P F R P F
Gene Expression 356 | 79.2 80.3 79.8 795 818 80.6/ 78.7 79.5 79.1
Transcription 82|59.8 720 653 671 753 71.0 659 71.1 68.4
Protein Catabolism| 21| 76.2 889 82.0 857 100 92.3 952 90.9 93.0
Phosphorylation 47 1 83.0 81.2 821 80.9 884 844851 69.0 76.2
Localization 53| 774 746 759 81.1 878 843 71.7 826 76.8
SVT-TOTAL 559 | 764 79.0 77.7| 782 826 803|773 779 77.6
Binding 248 | 45.6 459 458 51.2 51.0 51.1 50.8 47.6 49.1
EVT-TOTAL 807 | 66.9 68.7 67.8|69.9 725 712 |69.1 681 68.6
Regulation 169 | 325 46.2 38.21 30.8 495 38.0 36.7 46.6 41.1
Positiveregulation 617 | 42.3 49.0 454 43.0 499 46.1 439 519 47.6
Negativeregulation | 196 | 48.5 44.0 46.1 495 453 47.3/ 38.8 439 41.2
REG-TOTAL 982 | 41.9 474 445|422 487 452|417 494 452
ALL-TOTAL 1789 | 53.2 575 55.3|54.7 60.0 57.2|54.1 587 56.3

JuLiELab JuLIELab TOKYO system
(Buyko et al., 2010)| Final Configuration
Event Class gold R P F R P F R P F
Gene Expression 722 | 66.3 79.6 724 670 77.2 71.8 68.7 79.9 73.9
Transcription 137 33.6 61.3 434 350 60.8 444 540 60.7 57.1
Protein Catabolism 14| 71.4 909 80.0 71.4 90.9 80.0 429 75.0 54.6
Phosphorylation 135| 80.0 85.0 824 80.7 845 82.6 84.4 695 76.3
Localization 174 47.7 93.3 63.1 454 90.8 605 47.1 86.3 61.0
SVT-TOTAL 1182 | 614 80.3 69.6| 618 78.2 69.0| 653 76.4 70.4
Binding 347 | 47.3 524 49.7) 47.3 52.2 49.6| 52.2 53.1 52.6
EVT-TOTAL 1529| 58.2 73.1 648|585 717 644|623 705 66.2
Regulation 291 | 24.7 405 30.7 26.8 38.2 315 289 39.8 33.5
Positive Regulation| 983 | 35.8 45.4 40.00 34.8 45.8 39.5/ 38.0 483 42.6
Negative Regulation 379 | 37.2 39.7 38.4 37.5 409 39.1 359 47.2 40.8
REG-TOTAL 1653 | 34.2 43.2 38.2| 340 433 38.0| 359 46.7 40.6
ALL-TOTAL 3182 | 45,7 57.6 51.0| 458 57.2 509| 48.6 59.0 53.3
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only one event profits from trimming of prepositionsthat the diLIELab system extracts in various modes.
(Protein Catabolisj Only theBinding event prof- For the first analysis we took the outputs of the
its significantly from noun phrase modifications (sesystems based on the M+C parsing results. We
Table 3). The increase in F-score for trimming proscrutinized on the Stanfordasic and ccprocessed
cedures is 4.1 percentage pointsBandingevents. false positives (fps) and we compared the occur-
In our final experiment we connected the best corrences of dependency labels in two data sets, namely
figurations for each of the BioNLP’09 events as prethe intersection of false positives from both sys-
sented in Table 2. The overall event extraction reeem modes (sed) and the false positives produced
sults of this final configuration are presented in Taenly by the system with a worse performance (set
bles 4 and 5. We achieved an increase of 1.9 peB, ccprocessednode). About 70% of all fps are
centage points F-score in the overall event extracontained in sef\. Our analysis revealed that some
tion compared to the best-performing single parsatependency labels have a higher occurrence in set
configuration (M+C, CoNLL'07) (see Table 4, ALL- B, e.g.,nsubjpass, prep  _on, prep _with,
TOTAL). The reported results on the developmenprep _in, prep _for, prep _as. Some depen-
data outperform the results of th@Kyo system by dency labels occur only in s& such asagent |,
2.6 percentage points F-score for all basic events iprep _unlike, prep  _upon. It seems that col-
cluding Binding events (see Table 4, EVT-TOTAL) lapsing some prepositions, such ‘agth”, “in”,
and by 0.9 percentage points in the overall event eXfor”, “as”, “on”, “unlike”, “upon” , does not have
traction task (see Table 4, ALL-TOTAL). a positive effect on the extraction of argument struc-
On the test data we achieved an F-score similaures. In a second step, we compared the Stan-
to the current ULIELab system trained on modified ford basicand CoNLL'07 false positive sets. The
CoNLL'07 dependencies from the MST parser (sefps of both systems have an intersection of about
Table 5, ALL-TOTAL)!® The results on the offi- 70%. We also compared the intersection of fps
cial test data reveal that the performance differencéstween two outputs (s&t) and the set of addi-
between various parsers may play a much smalléonal fps of the system with worse results (Stan-
role than the proper choice of dependency represeford basicmode, seB). The dependency labels such
tations!® Our empirical findings that the best per-asabbrev, dep, nsubj, nsubjpass have
formance results could only be achieved by eveng higher occurrence in sBtthan in sefA. This anal-
specific dependency graph configurations reveal thgsis renders evidence that the distinctiometibj
the syntactic representations of different semant@ndnsubjpass does not seem to have been prop-
events vary considerably at the level of dependenayrly learned for event extraction.
graph complexity and that the automatic prediction For the second analysis round we took the out-
of such syntactic structures can vary from one deputs of the MST parsing results. As in the previ-

pendency parser to the other. ous experiments, we compared false positives from
_ ) two mode outputs, here the CoNLL'0O7 mode and
6 Discussion the CoNLL'07 modified forauxiliaries and coor-

The evaluation results from Table 1 show that an indinationsmode. The fps have an intersection of

creased F-score is basically due to a better perfof>70- The dependency labels suchvs, SUBJ,
mance in terms of precision. For example, the M+&OORPandIOBJ occur more frequently in the ad-

evaluation results in the Stanfolhsic mode pro- ditional false positives from the CoNLL'07 mode

vide an increased precision by 2 percentage poin@an in the intersectio_n of false po_sitiv_es from bqth
compared to the Stanfomtprocessedhode. There- system outputs. Obviously, the trimming of auxil-

fore, we focus here on the analysis of false positiveiéry and coordination structures has a direct positive
effect on the argument extraction reducing false pos-

8The current OLIELab system uses event-specific trimmingitive numbers especially with corresponding depen-

procedures on CoNLL'07 dependencies determined on the de- -
velopment data set (see Buyko et al. (2010)). Sency labels in shortest dependency paths.

9Trimmed CoNLL dependencies are used in both system OUr analysis of false positives shows that the dis-
configurations. tinction between active and passive subject labels,
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abbreviation labels, as well as collapsing preposthat the dependency graph representation has a cru-
tions in the Stanford dependencies, could not hawdal impact on the level of achievement of IE task
been properly learned, which consequently leads tequirements. Surprisingly, the CoNLL'X depen-
an increased rate of false positives. The trimmingencies outperform the Stanford dependencies for
of auxiliary structures and the subsequent coordindeur from six parsers. With additionally trimmed
tion collapsing on CoNLL'07 dependencies has inCoNLL'X dependencies we could achieve an F-
deed event-specific positive effects on the event escore of 50.9% on the official test data and an F-
traction. score of 57.2% on the official development data of
The main focus of this work has been on the evakthe BioNLP Shared Task on Event Extraction (see
uation of effects of different dependency graph rep¥able 5, ALL-TOTAL).
resentations on the IE task achievement (here the
task of event extraction). But we also targeted th&cknowledgements
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