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Abstract

In state-of-the-art approaches to information
extraction (IE), dependency graphs constitute
the fundamental data structure for syntactic
structuring and subsequent knowledge elicita-
tion from natural language documents. The
top-performing systems in the BioNLP 2009
Shared Task on Event Extraction all shared the
idea to use dependency structures generated
by a variety of parsers — either directly or
in some converted manner — and optionally
modified their output to fit the special needs
of IE. As there are systematic differences be-
tween various dependency representations be-
ing used in this competition, we scrutinize on
different encoding styles for dependency in-
formation and their possible impact on solv-
ing several IE tasks. After assessing more
or less established dependency representations
such as theStanfordandCoNLL-Xdependen-
cies, we will then focus on trimming opera-
tions that pave the way to more effective IE.
Our evaluation study covers data from a num-
ber of constituency- and dependency-based
parsers and provides experimental evidence
which dependency representations are partic-
ularly beneficial for the event extraction task.
Based on empirical findings from our study
we were able to achieve the performance of
57.2% F-score on the development data set of
the BioNLP Shared Task 2009.

1 Introduction

Relation and event extraction are among the most
demanding semantics-oriented NLP challenge tasks

(both in the newspaper domain such as for ACE1, as
well as in the biological domain such as for BioCre-
ative2 or the BioNLP Shared Task3), comparable in
terms of analytical complexity with recent efforts di-
rected at opinion mining (e.g., NTCIR-74 or TREC
Blog tracks5) or the recognition of textual entail-
ment.6 The most recentBioNLP 2009 Shared Task
on Event Extraction(Kim et al., 2009) required, for
a sample of 260 MEDLINE abstracts, to determine
all mentioned events — to be chosen from a given
set of nine event types, including“Localization” ,
“Binding” , “Gene Expression”, “Transcription” ,
“Protein Catabolism”, “Phosphorylation”, “Posi-
tive Regulation”, “Negative Regulation”, and (un-
specified)“Regulation” — and link them appropri-
ately witha priori supplied protein annotations. The
demands on text analytics to deal with the complex-
ity of this Shared Task in terms of relation diversity
and specificity are unmatched by former challenges.

For relation extraction in the biomedical domain
(the focus of our work), a stunning convergence
towards dependency-based syntactic representation
structures is witnessed by the performance results
of the top-performing systems in theBioNLP’09

1http://papers.ldc.upenn.edu/LREC2004/
ACE.pdf

2http://biocreative.sourceforge.net/
3www-tsujii.is.s.u-tokyo.ac.jp/GENIA/

SharedTask/
4http://research.nii.ac.jp/ntcir/

workshop/OnlineProceedings7/pdf/revise/
01-NTCIR-OV-MOAT-SekiY-revised-20081216.
pdf

5http://trec.nist.gov/data/blog08.html
6http://pascallin.ecs.soton.ac.uk/

Challenges/RTE/
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Shared Task on Event Extraction.7 Regarding the
fact that dependency representations were always
viewed as a vehicle to represent fundamental seman-
tic relationships already at the syntactic level, this
is not a great surprise. Yet, dependency grammar
is not a monolithic, consensually shaped and well-
defined linguistic theory. Accordingly, associated
parsers tend to vary in terms of dependency pairing
or structuring (which pairs of words join in a depen-
dency relation?) and dependency typing (how are
dependency relations for a particular pair labelled?).

Depending on the type of dependency theory or
parser being used, various representations emerge
(Miyao et al., 2007). In this paper, we explore these
different representations of the dependency graphs
and try, first, to pinpoint their effects on solving the
overall event extraction task and, second, to further
enhance the potential of JREX, a high-performance
relation and event extractor developed at the JULIE

Lab (Buyko et al., 2009).

2 Related Work

In the biomedical domain, the focus has largely been
on binary relations, in particular protein-protein
interactions (PPIs). Accordingly, the biomedi-
cal NLP community has developed various PPI-
annotated corpora (e.g., LLL (Ńedellec, 2005),
AIM ED (Bunescu et al., 2005), BIOINFER (Pyysalo
et al., 2007)). PPI extraction does clearly not count
as a solved problem, and a deeper look at its bio-
logical and representational intricacies is certainly
worthwhile. The GENIA event corpus (Kim et al.,
2008) and the BioNLP 2009 Shared Task data (Kim
et al., 2009) contain such detailed annotations of
PPIs (amongst others).

The BioNLP Shared Task was a first step towards
the extraction of specific pathways with precise in-
formation about the molecular events involved. In
that task, 42 teams participated and 24 of them sub-
mitted final results. The winner system, TURKU

(Björne et al., 2009), achieved with 51.95% F-score
the milestone result in that competition followed by
the JULIELab system (Buyko et al., 2009) which
peaked at 46.7% F-score. Only recently, an ex-
tension of the TURKU system, the TOKYO system,

7www-tsujii.is.s.u-tokyo.ac.jp/GENIA/
SharedTask/results/results-master.html

has been realized (Miwa et al., 2010). TOKYO sys-
tem’s event extraction capabilities are based on the
TURKU system, yet TURKU’s manually crafted rule
system for post-processing and the combination of
extracted trigger-argument relations is replaced by
a machine learning approach in which rich features
collected from classification steps for triggers and
arguments are re-combined. TOKYO achieves an
overall F-score of 53.29% on the test data, thus out-
performing TURKU by 1.34 percentage points.

The three now top-performing systems, TOKYO,
TURKU and JULIELab, all rely on dependency
graphs for solving the event extraction tasks. While
the TURKU system exploits the Stanford dependen-
cies from the McClosky-Charniak parser (Charniak
and Johnson, 2005), and the JULIELab system uses
the CoNLL-like dependencies from the GDep parser
(Sagae and Tsujii, 2007),8 the TOKYO system over-
lays the Shared Task data with two parsing represen-
tations,viz. Enju PAS structure (Miyao and Tsujii,
2002) and GDep parser dependencies. Obviously,
one might raise the question as to what extent the
performance of these systems depends on the choice
of the parser and its output representations. Miyao
et al. (2008) already assessed the impact of different
parsers for the task of biomedical relation extraction
(PPI). Here we perform a similar study for the task
of event extraction and focus, in particular, on the
impact of various dependency representations such
as Stanford and CoNLL’X dependencies and addi-
tional trimming procedures.

For the experiments on which we report here, we
performed experiments with the JULIELab system.
Our main goal is to investigate into the crucial role
of proper representation structures for dependency
graphs so that the performance gap from Shared
Task results between the best-performing TOKYO

system and the JULIELab system be narrowed.

3 Event Extraction

3.1 Objective

Event extraction is a complex task that can be sub-
divided into a number of subtasks depending on

8The GDep parser has been trained on the GENIA Tree-
bank pre-official version of the version 1.0 converted with the
script available fromhttp://w3.msi.vxu.se/ ˜ nivre/
research/Penn2Malt.html
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whether the focus is on the event itself or on the ar-
guments involved:

Event trigger identification deals with the large
variety of alternative verbalizations of the same
event type, e.g., whether the event is expressed in a
verbal or in a nominalized form (“A is expressed”
as well as “the expression of A” both refer to the
same event type,viz. Expression(A)). Since the
same trigger may stand for more than one event type,
event trigger ambiguity has to be resolved as well.

Event trigger disambiguation selects the correct
event name from the set of alternative event triggers.

Argument identification is concerned with find-
ing all necessary participants in an event, i.e., the
arguments of the relation.

Argument ordering assigns each identified par-
ticipant its functional role within the event, mostly
Agent andPatient.

3.2 JULIE Lab System

The JULIELab solution can best be characterized as
a single-step learning approach for event detection
as the system does not separate the overall learn-
ing task into independent event trigger and event
argument learning subtasks.9 The JULIELab sys-
tem incorporates manually curated dictionaries and
machine learning (ML) methodologies to sort out
associated event triggers and arguments on depen-
dency graph structures. For argument extraction, the
JULIELab system uses two ML-based approaches,
a feature-based and a kernel-based one. Given
that methodological framework, the JULIELab team
scored on 2nd rank among 24 competing teams, with
45.8% precision, 47.5% recall and 46.7% F-score on
all 3,182 events. After the competition, this system
was updated and achieved 57.6% precision, 45.7%
recall and 51.0% F-score (Buyko et al., 2010) using
modified dependency representations from the MST
parser (McDonald et al., 2005). In this study, we
perform event extraction experiments with various
dependency representations that allow us to measure
their effects on the event extraction task and to in-
crease the overall JULIELab system performance in
terms of F-score.

9The JULIELab system considers all relevant lexical items as
potential event triggers which might represent an event. Only
those event triggers that can eventually be connected to argu-
ments, finally, represent a true event.

4 Dependency Graph Representations

In this section, we focus on representation formats
of dependency graphs. In Section 4.1, we introduce
fundamental notions underlying dependency pars-
ing and consider established representation formats
for dependency structures as generated by various
parsers. In Section 4.2, we account for selected trim-
ming operations for dependency graphs to ease IE.

4.1 Dependency Structures: Representation
Issues

Dependency parsing, in the past years, has increas-
ingly been recognized as an alternative to long-
prevailing constituency-based parsing approaches,
particularly in semantically-oriented application
scenarios such as information extraction. Yet even
under purely methodologically premises, it has
gained wide-spread attention as witnessed by recent
activities performed as part of the “CoNLL Shared
Tasks on Multilingual Dependency Parsing” (Buch-
holz and Marsi, 2006).

In a nutshell, in dependency graphs of sentences,
nodes represent single words and edges account for
head-modifier relations between single words. De-
spite this common understanding, concrete syntactic
representations often differ markedly from one de-
pendency theory/parser to the other. The differences
fall into two main categories: dependency pairing or
structuring (which pairs of words join in a depen-
dency relation?) and dependency typing (how are
dependency relations for a particular pair labelled?).

The CoNLL’X dependencies, for example, are
defined by 54 relation types,10 while the Stanford
scheme (de Marneffe et al., 2006) incorporates 48
types (so called grammatical relations or Stanford
dependencies). The Link Grammar Parser (Sleator
and Temperley, 1991) employs a particularly fine-
grained repertoire of dependency relations adding
up to 106 types, whereas the well-known MINI PAR

parser (Lin, 1998) relies on 59 types. Differences in
dependency structure are at least as common as dif-
ferences in dependency relation typing (see below).

10Computed by using the conversion script on WSJ
data (accessible via http://nlp.cs.lth.se/
pennconverter/ ; see also Johansson and Nugues (2007)
for additional information). From the GENIA corpus, using this
script, we could only extract 29 CoNLL dependency relations.
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Figure 1: Example of CoNLL 2008 dependencies, as used in mostof the native dependency parsers.

Figure 2: Stanford dependencies,basicconversion from Penn Treebank.

In general, dependency graphs can be generated
by syntactic parsers in two ways. First, native de-
pendency parsers output CoNLL’X or Stanford de-
pendencies dependent on which representation for-
mat they have been trained on.11 Second, in a deriva-
tive dependency mode, the output of constituency-
based parsers, e.g., phrase structure representations,
is subsequently converted either into CoNLL’X or
Stanford dependencies using Treebank conversion
scripts (see below). In the following, we provide
a short description of these two established depen-
dency graph representations:

• CoNLL’X dependencies (CD). This depen-
dency tree format was used in the CoNLL’X
Shared Tasks on multi-lingual dependency
parsing (see Figure 1). It has been adopted
by most native dependency parsers and was
originally obtained from Penn Treebank (PTB)
trees using constituent-to-dependency conver-
sion (Johansson and Nugues, 2007). It differs
slightly in the number and types of dependen-
cies being used from various CoNLL rounds
(e.g., CoNLL’08 provided a dependency type
for representing appositions).12

• Stanford dependencies (SD).This format was
proposed by de Marneffe et al. (2006) for

11We disregard in this study other dependency representa-
tions such as MINI PAR and LINK GRAMMAR representations.

12For the differences between CoNLL’07 and CoNLL’08 rep-
resentations, cf.http://nlp.cs.lth.se/software/
treebank_converter/

semantics-sensitive applications using depen-
dency representations, and can be obtained us-
ing the Stanford tools13 from PTB trees. The
Stanford format is widely used in the biomed-
ical domain (e.g., by Miyao et al. (2008) or
Clegg and Shepherd (2005)).

There are systematic differences between
CoNLL’X and Stanford dependencies, e.g., as far
as the representation of passive constructions, the
position of auxiliary and modal verbs, or coordi-
nation representation is concerned. In particular,
the representation of thepassiveconstruction and
the role of the auxiliary verb therein may have
considerable effects for semantics-sensitive tasks.
While in SD the subject of the passive construction
is represented by a specialnsubj dependency
label, in CD we find the same subject label as for
active constructionsSUB(J) . On CoNLL’08 data,
the logical subject is marked by theLGS depen-
dency edge that connects the passive-indicating
preposition “by” with the logical subject of the
sentence.

The representation ofactive constructions are
similar in CD and SD though besides the role of
auxiliary and modal verbs. In the Stanford de-
pendency representation scheme, rather than taking
auxiliaries to be the heads in passive or tense con-
structions, main verbs are assigned this grammatical
function (see Figure 2). The CoNLL’X represen-

13Available from nlp.stanford.edu/software/
lex-parser.shtml
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Figure 3: Noun phrase representation in
CoNLL’X dependency trees.

Figure 4: Trimming procedurenoun phraseon
CoNLL’X dependency trees.

tation scheme is completely different in that auxil-
iaries – much in common with standard dependency
theory – are chosen to occupy the role of the gov-
ernor (see Figure 1). From the perspective of rela-
tion extraction, however, the Stanford scheme is cer-
tainly closer to the desired predicate-argument struc-
ture representations than the CoNLL scheme.

4.2 Dependency Graph Modifications in Detail

Linguistic intuition suggests that the closer a depen-
dency representation is to the format of the targeted
semantic representation, the more likely will it sup-
port the semantic application. This idea is directly
reflected in the Stanford dependencies which narrow
the distance between nodes in the dependency graph
by collapsing procedures (the so-calledcollapsed
mode of phrase structure conversion). An example

of collapsing is the conversion of “expression
nmod
−−−→

in
pmod
−−−→ cells” to “ expression

prep in
−−−−→ cells”. An ex-

tension of collapsing is the re-structuring of coor-
dinations with sharing the dependency relations of
conjuncts (the so-calledccprocessedmode of phrase
structure conversion).

According to the Stanford scheme, Buyko et al.
(2009) proposed collapsing scenarios on CoNLL’X
dependency graphs. Their so-calledtrimming op-
erations treat three syntactic phenomena,viz. coor-
dinations (coords), auxiliaries/modals (auxiliaries),
and prepositions (preps). For coordinations, they
propagate the dependency relation of the first con-
junct to all the other conjuncts within the coordi-
nation. For auxiliaries/modals, they prune the aux-
iliaries/modals as governors from the dependency
graph and propagate the dependency relations of
these nodes to the main verbs. Finally, for preposi-
tions, they collapse a pair of typed dependencies into
a single typed dependency (as illustrated above).

For the following experiments, we extended the
trimming procedures and propose the re-structuring

of noun phrases with action adjectives to make the
dependency representation even more compact for
semantic interpretation. The original dependency
representation of the noun phrase selects the right-
most noun as the head of the NP and thus all re-
maining elements are its dependents (see Figure 3).
For the noun phrases containing action adjectives
(mostly verb derivations) this representation does
not reflect the true semantic relations between the
elements. For example, in“IL-10 mediated expres-
sion” it is “IL-10” that mediates the expression.
Therefore, we re-structure the dependency graph by
changing the head of“IL-10” from “expression”
to “mediated”. Our re-coding heuristics selects,
first, all the noun phrases containing action adjec-
tives ending with“-ed” , “-ing” , “-ible” suffixes and
with words such as“dependent”, “specific” , “like” .
In the second step, we re-structure the noun phrase
by encoding the adjective as the head of all the nouns
preceding this adjective in the noun phrase under
scrutiny (see Figure 4).

5 Experiments and Results

In this section, we describe the experiments and
results related to event extraction tasks based on
alternative dependency graph representations. For
our experiments, we selected the following top-
performing parsers — the first three phrase structure
based and thus the origin of derivative dependency
structures, the last three fully dependency based for
making native dependency structures available:

• C+J, Charniak and Johnson’s reranking parser
(Charniak and Johnson, 2005), with the WSJ-
trained parsing model.

• M+C , Charniak and Johnson’s reranking parser
(Charniak and Johnson, 2005), with the self-
trained biomedical parsing model from Mc-
Closky (2010).
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• Bikel, Bikel’s parser (Bikel, 2004) with the
WSJ-trained parsing model.

• GDep(Sagae and Tsujii, 2007), a native depen-
dency parser.

• MST (McDonald et al., 2005), another native
dependency parser.

• MALT (Nivre et al., 2007), yet another native
dependency parser.

The native dependency parsers were re-trained on
the GENIA Treebank (Tateisi et al., 2005) conver-
sions.14 These conversions,15 i.e., Stanfordbasic,
CoNLL’07 and CoNLL’08 were produced with the
currently available conversion scripts. For the Stan-
ford dependency conversion, we used the Stanford
parser tool,16 for CoNLL’07 and CoNLL’08 we used
the treebank-to-CoNLL conversion scripts17 avail-
able from the CoNLL’X Shared Task organizers.

The phrase structure based parsers were applied
with already available models, i.e., the Bikel and
C+J parsers as trained on the WSJ corpus, and
M+C as trained on the GENIA Treebank corpus.
For our experiments, we converted the prediction
results of the phrase structure based parsers into
five dependency graph representations,viz.Stanford
basic, Stanford collapsed, Stanford ccprocessed,
CoNLL’07 and CoNLL’08, using the same scripts
as for the conversion of the GENIA Treebank.

The JULIELab event extraction system was re-
trained on the Shared Task data enriched with differ-
ent outputs of syntactic parsers as described above.
The results for the event extraction task are repre-
sented in Table 1. Due to the space limitation of
this paper we provide the summarized results of im-
portant event extraction sub-tasks only, i.e., results
for basic events (Gene Expression, Transcription,
Localization, Protein Catabolism) are summarized

14For the training of dependency parsers, we used from the
available Stanford conversion variants only Stanfordbasic. The
collapsedandccprocessedvariants do not provide dependency
trees and are not recommended for training native dependency
parsers.

15We used the GENIA Treebank version 1.0, available from
www-tsujii.is.s.u-tokyo.ac.jp

16http://nlp.stanford.edu/software/
lex-parser.shtml

17http://nlp.cs.lth.se/software/treebank_
converter/

under SVT-TOTAL; regulatory events are summa-
rized under REG-TOTAL; the overall extraction re-
sults are listed in ALL-TOTAL (see Table 1).

Obviously, the event extraction system trained on
various dependency representations indeed produces
truly different results. The differences in terms of F-
score come up to 2.4 percentage points for the SVT-
TOTAL events (cf. the MALT parser, difference
between SDbasic (75.6% F-score) and CoNLL’07
(78.0% F-score)), up to 3.6 points for REG-TOTAL
(cf. the M+C parser, difference between SDccpro-
cessed(40.9% F-score) and CoNLL’07 (44.5% F-
score)) and up to 2.5 points for ALL-TOTAL (cf.
the M+C parser, difference between SDccprocessed
(52.8% F-score) and CoNLL’07 (55.3% F-score)).

The top three event extraction results on the de-
velopment data based on different syntactic parsers
results are achieved with M+C parser – CoNLL’07
representation (55.3% F-score), MST parser –
CoNLL’08 representation (54.6% F-score) and
MALT parser – CoNLL’08 representation (53.8%
F-score) (see Table 1, ALL-TOTAL). Surprisingly,
both the CoNLL’08 and CoNLL’07 formats clearly
outperform Stanford representations on all event ex-
traction tasks. Stanford dependencies seem to be
useful here only in thebasicmode. Thecollapsed
andccprocessedmodes produce even worse results
for the event extraction tasks.

Our second experiment focused on trimming op-
erations on CoNLL’X dependency graphs. Here
we performed event extraction after the trimming of
the dependency trees as described in Section 4.2 in
different modes:coords– re-structuring coordina-
tions;preps– collapsing of prepositions;auxiliaries
– propagating dependency relations of auxiliars and
modals to main verbs;noun phrase– re-structuring
noun phrases containing action adjectives. Our sec-
ond experiment showed that the extraction of se-
lected events can profit in particular from the trim-
ming procedurescoordsandauxiliaries, but there is
no evidence for a general trimming configuration for
the overall event extraction task.

In Table 2 we summarize the best configurations
we found for the events in focus. It is quite evi-
dent that the CoNLL’08 and CoNLL’07 dependen-
cies modified for auxiliaries and coordinations are
the best configurations for four events (out of nine).
For three events no modifications are necessary and
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Parser SD basic SD collapsed SD ccprocessed CoNLL’07 CoNLL’08
SVT-TOTAL

R P F R P F R P F R P F R P F
Bikel 70.5 75.5 72.9 70.7 74.5 72.5 71.6 73.5 72.5 69.4 75.9 72.5 69.7 75.7 72.6
C+J 73.0 77.4 75.1 73.2 77.3 75.2 72.8 77.2 75.0 73.5 78.3 75.8 73.0 77.9 75.4
M+C 76.4 78.0 77.2 76.4 77.6 77.0 76.4 77.2 76.8 76.4 79.0 77.7 76.6 79.3 77.9
GDEP 77.1 77.5 77.3 N/A N/A N/A N/A N/A N/A 72.5 80.2 76.1 72.6 77.2 74.8
MALT 73.1 78.2 75.6 N/A N/A N/A N/A N/A N/A 75.9 80.3 78.0 73.7 78.2 75.9
MST 76.4 78.5 77.4 N/A N/A N/A N/A N/A N/A 74.8 78.4 76.6 76.7 80.8 78.7

REG-TOTAL
R P F R P F R P F R P F R P F

Bikel 35.3 40.6 37.8 33.8 40.3 36.8 34.3 39.6 36.8 33.9 39.2 36.3 34.0 41.0 37.2
C+J 36.2 41.8 38.8 37.3 41.8 39.4 36.5 41.9 39.0 38.1 43.9 40.8 37.4 44.0 40.4
M+C 39.4 45.5 42.3 38.8 45.3 41.8 38.5 43.7 40.9 41.9 47.4 44.5 40.1 47.9 43.7
GDEP 39.6 42.8 41.6 N/A N/A N/A N/A N/A N/A 38.4 43.7 40.9 39.8 44.4 42.0
MALT 38.8 44.3 41.4 N/A N/A N/A N/A N/A N/A 39.0 44.3 41.5 39.2 46.4 42.5
MST 39.5 43.6 41.4 N/A N/A N/A N/A N/A N/A 39.6 45.6 42.4 40.6 45.8 43.0

ALL-TOTAL
R P F R P F R P F R P F R P F

Bikel 47.4 51.5 49.4 46.3 50.8 48.5 46.9 50.2 48.5 44.8 50.7 47.6 44.7 51.8 48.0
C+J 49.3 53.8 51.5 49.6 52.8 51.2 49.0 53.0 50.9 50.3 54.4 52.3 49.5 54.3 51.8
M+C 52.3 56.4 54.3 51.8 55.7 53.7 51.3 54.3 52.8 53.2 57.5 55.3 52.2 58.2 55.0
GDEP 52.7 54.5 53.6 N/A N/A N/A N/A N/A N/A 50.6 55.2 52.8 51.3 55.0 53.1
MALT 50.4 54.7 52.4 N/A N/A N/A N/A N/A N/A 51.5 56.0 53.7 51.2 56.8 53.8
MST 52.3 54.8 53.5 N/A N/A N/A N/A N/A N/A 51.7 56.4 53.9 52.4 56.9 54.6

Table 1: Results on the Shared Task development data for Event Extraction Task. Approximate Span Match-
ing/Approximate Recursive Matching.

Event Class Best Parser Best Configuration R P F
Gene Expression MST CoNLL’08, auxiliaries, coords 79.5 81.8 80.6
Transcription MALT CoNLL’07, auxiliaries, coords 67.1 75.3 71.0
Protein Catabolism MST CoNLL’08, preps 85.7 100 92.3
Phosphorylation MALT CoNLL’08 80.9 88.4 84.4
Localization MST CoNLL’08, auxiliaries 81.1 87.8 84.3
Binding MST CoNLL’07, auxiliaries, coords, noun phrase51.2 51.0 51.1
Regulation MALT CoNLL’07, auxiliaries, coords 30.8 49.5 38.0
Positive Regulation M+C CoNLL’07 43.0 49.9 46.1
Negative Regulation M+C CoNLL’07 49.5 45.3 47.3

Table 2: Best Configurations for Dependency Representations for Event Extraction Task on the development data.

Binding R P F
CoNLL’07 47.3 46.8 47.0
CoNLL’07 auxiliaries, coords 46.8 48.1 47.4
CoNLL’07 auxiliaries, coords, noun phrase 51.2 51.0 51.1

Table 3: Effects of trimming ofCoNLLdependencies on the Shared Task development data forBindingevents. Ap-
proximate Span Matching/Approximate Recursive Matching.The data was processed by the MST parser.
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JULIELab JULIELab TOKYO System
(M+C, CoNLL’08) Final Configuration

Event Class gold R P F R P F R P F
Gene Expression 356 79.2 80.3 79.8 79.5 81.8 80.6 78.7 79.5 79.1
Transcription 82 59.8 72.0 65.3 67.1 75.3 71.0 65.9 71.1 68.4
Protein Catabolism 21 76.2 88.9 82.0 85.7 100 92.3 95.2 90.9 93.0
Phosphorylation 47 83.0 81.2 82.1 80.9 88.4 84.4 85.1 69.0 76.2
Localization 53 77.4 74.6 75.9 81.1 87.8 84.3 71.7 82.6 76.8
SVT-TOTAL 559 76.4 79.0 77.7 78.2 82.6 80.3 77.3 77.9 77.6
Binding 248 45.6 45.9 45.8 51.2 51.0 51.1 50.8 47.6 49.1
EVT-TOTAL 807 66.9 68.7 67.8 69.9 72.5 71.2 69.1 68.1 68.6
Regulation 169 32.5 46.2 38.2 30.8 49.5 38.0 36.7 46.6 41.1
Positiveregulation 617 42.3 49.0 45.4 43.0 49.9 46.1 43.9 51.9 47.6
Negativeregulation 196 48.5 44.0 46.1 49.5 45.3 47.3 38.8 43.9 41.2
REG-TOTAL 982 41.9 47.4 44.5 42.2 48.7 45.2 41.7 49.4 45.2
ALL-TOTAL 1789 53.2 57.5 55.3 54.7 60.0 57.2 54.1 58.7 56.3

Table 4: Results on the Shared Task development data. Approximate Span Matching/Approximate Recursive Match-
ing.

JULIELab JULIELab TOKYO system
(Buyko et al., 2010) Final Configuration

Event Class gold R P F R P F R P F
Gene Expression 722 66.3 79.6 72.4 67.0 77.2 71.8 68.7 79.9 73.9
Transcription 137 33.6 61.3 43.4 35.0 60.8 44.4 54.0 60.7 57.1
Protein Catabolism 14 71.4 90.9 80.0 71.4 90.9 80.0 42.9 75.0 54.6
Phosphorylation 135 80.0 85.0 82.4 80.7 84.5 82.6 84.4 69.5 76.3
Localization 174 47.7 93.3 63.1 45.4 90.8 60.5 47.1 86.3 61.0
SVT-TOTAL 1182 61.4 80.3 69.6 61.8 78.2 69.0 65.3 76.4 70.4
Binding 347 47.3 52.4 49.7 47.3 52.2 49.6 52.2 53.1 52.6
EVT-TOTAL 1529 58.2 73.1 64.8 58.5 71.7 64.4 62.3 70.5 66.2
Regulation 291 24.7 40.5 30.7 26.8 38.2 31.5 28.9 39.8 33.5
Positive Regulation 983 35.8 45.4 40.0 34.8 45.8 39.5 38.0 48.3 42.6
Negative Regulation 379 37.2 39.7 38.4 37.5 40.9 39.1 35.9 47.2 40.8
REG-TOTAL 1653 34.2 43.2 38.2 34.0 43.3 38.0 35.9 46.7 40.6
ALL-TOTAL 3182 45.7 57.6 51.0 45.8 57.2 50.9 48.6 59.0 53.3

Table 5: Results on the Shared Task test data. Approximate Span Matching/Approximate Recursive Matching.
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only one event profits from trimming of prepositions
(Protein Catabolism). Only theBindingevent prof-
its significantly from noun phrase modifications (see
Table 3). The increase in F-score for trimming pro-
cedures is 4.1 percentage points forBindingevents.

In our final experiment we connected the best con-
figurations for each of the BioNLP’09 events as pre-
sented in Table 2. The overall event extraction re-
sults of this final configuration are presented in Ta-
bles 4 and 5. We achieved an increase of 1.9 per-
centage points F-score in the overall event extrac-
tion compared to the best-performing single parser
configuration (M+C, CoNLL’07) (see Table 4, ALL-
TOTAL). The reported results on the development
data outperform the results of the TOKYO system by
2.6 percentage points F-score for all basic events in-
cluding Binding events (see Table 4, EVT-TOTAL)
and by 0.9 percentage points in the overall event ex-
traction task (see Table 4, ALL-TOTAL).

On the test data we achieved an F-score similar
to the current JULIELab system trained on modified
CoNLL’07 dependencies from the MST parser (see
Table 5, ALL-TOTAL).18 The results on the offi-
cial test data reveal that the performance differences
between various parsers may play a much smaller
role than the proper choice of dependency represen-
tations.19 Our empirical findings that the best per-
formance results could only be achieved by event-
specific dependency graph configurations reveal that
the syntactic representations of different semantic
events vary considerably at the level of dependency
graph complexity and that the automatic prediction
of such syntactic structures can vary from one de-
pendency parser to the other.

6 Discussion

The evaluation results from Table 1 show that an in-
creased F-score is basically due to a better perfor-
mance in terms of precision. For example, the M+C
evaluation results in the Stanfordbasic mode pro-
vide an increased precision by 2 percentage points
compared to the Stanfordccprocessedmode. There-
fore, we focus here on the analysis of false positives

18The current JULIELab system uses event-specific trimming
procedures on CoNLL’07 dependencies determined on the de-
velopment data set (see Buyko et al. (2010)).

19Trimmed CoNLL dependencies are used in both system
configurations.

that the JULIELab system extracts in various modes.
For the first analysis we took the outputs of the

systems based on the M+C parsing results. We
scrutinized on the Stanfordbasic and ccprocessed
false positives (fps) and we compared the occur-
rences of dependency labels in two data sets, namely
the intersection of false positives from both sys-
tem modes (setA) and the false positives produced
only by the system with a worse performance (set
B, ccprocessedmode). About 70% of all fps are
contained in setA. Our analysis revealed that some
dependency labels have a higher occurrence in set
B, e.g.,nsubjpass, prep on, prep with,
prep in, prep for, prep as . Some depen-
dency labels occur only in setB such asagent ,
prep unlike, prep upon . It seems that col-
lapsing some prepositions, such as“with”, “in”,
“for”, “as”, “on”, “unlike”, “upon” , does not have
a positive effect on the extraction of argument struc-
tures. In a second step, we compared the Stan-
ford basic and CoNLL’07 false positive sets. The
fps of both systems have an intersection of about
70%. We also compared the intersection of fps
between two outputs (setA) and the set of addi-
tional fps of the system with worse results (Stan-
ford basicmode, setB). The dependency labels such
asabbrev, dep, nsubj, nsubjpass have
a higher occurrence in setB than in setA. This anal-
ysis renders evidence that the distinction ofnsubj
andnsubjpass does not seem to have been prop-
erly learned for event extraction.

For the second analysis round we took the out-
puts of the MST parsing results. As in the previ-
ous experiments, we compared false positives from
two mode outputs, here the CoNLL’07 mode and
the CoNLL’07 modified forauxiliaries and coor-
dinations mode. The fps have an intersection of
75%. The dependency labels such asVC, SUBJ,
COORD, andIOBJ occur more frequently in the ad-
ditional false positives from the CoNLL’07 mode
than in the intersection of false positives from both
system outputs. Obviously, the trimming of auxil-
iary and coordination structures has a direct positive
effect on the argument extraction reducing false pos-
itive numbers especially with corresponding depen-
dency labels in shortest dependency paths.

Our analysis of false positives shows that the dis-
tinction between active and passive subject labels,
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abbreviation labels, as well as collapsing preposi-
tions in the Stanford dependencies, could not have
been properly learned, which consequently leads to
an increased rate of false positives. The trimming
of auxiliary structures and the subsequent coordina-
tion collapsing on CoNLL’07 dependencies has in-
deed event-specific positive effects on the event ex-
traction.

The main focus of this work has been on the eval-
uation of effects of different dependency graph rep-
resentations on the IE task achievement (here the
task of event extraction). But we also targeted the
task-oriented evaluation of top-performing syntactic
parsers. The results of this work indicate that the
GENIA-trained parsers, i.e., M+C parser, the MST,
MALT and GDep, are a reasonable basis for achiev-
ing state-of-the art performance in biomedical event
extraction.

But the choice of the most suitable parser should
also take into account its performance in terms of
parsing time. Cer et al. (2010) and Miyao et al.
(2008) showed in their experiments that native de-
pendency parsers are faster than constituency-based
parsers. When it comes to scaling event extraction
to huge biomedical document collections, such as
MEDLINE, the selection of a parser is mainly in-
fluenced by its run-time performance. MST, MALT
and GDep parsers or the M+C parser with reduced
reranking (Cer et al., 2010) would thus be an appro-
priate choice for large-scale event extraction under
these constraints.20

7 Conclusion

In this paper, we investigated the role different de-
pendency representations may have on the accom-
plishment of the event extraction task as exemplified
by biological events. Different representation for-
mats (mainly, Stanfordvs. CoNLL) were then ex-
perimentally compared employing different parsers
(Bikel, Charniak+Johnson, GDep, MST, MALT),
both constituency based (for the derivative depen-
dency mode) as well as dependency based (for
the native dependency mode), considering different
training scenarios (newspapervs.biology domain).

From our experiments we draw the conclusion

20For large-scale experiments an evaluation of the M+C with
reduced reranking should be provided.

that the dependency graph representation has a cru-
cial impact on the level of achievement of IE task
requirements. Surprisingly, the CoNLL’X depen-
dencies outperform the Stanford dependencies for
four from six parsers. With additionally trimmed
CoNLL’X dependencies we could achieve an F-
score of 50.9% on the official test data and an F-
score of 57.2% on the official development data of
the BioNLP Shared Task on Event Extraction (see
Table 5, ALL-TOTAL).
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