
Proceedings of the 2010 Conference on Empirical Methods in Natural Language Processing, pages 705–713,
MIT, Massachusetts, USA, 9-11 October 2010. c©2010 Association for Computational Linguistics

Uptraining for Accurate Deterministic Question Parsing

Slav Petrov, Pi-Chuan Chang, Michael Ringgaard, Hiyan Alshawi
Google Research

{slav,pichuan,ringgaard,hiyan}@google.com

Abstract

It is well known that parsing accuracies drop
significantly on out-of-domain data. What is
less known is that some parsers suffer more
from domain shifts than others. We show
that dependency parsers have more difficulty
parsing questions than constituency parsers.
In particular, deterministic shift-reduce depen-
dency parsers, which are of highest interest
for practical applications because of their lin-
ear running time, drop to 60% labeled accu-
racy on a question test set. We propose an
uptraining procedure in which a deterministic
parser is trained on the output of a more ac-
curate, but slower, latent variable constituency
parser (converted to dependencies). Uptrain-
ing with 100K unlabeled questions achieves
results comparable to having 2K labeled ques-
tions for training. With 100K unlabeled and
2K labeled questions, uptraining is able to
improve parsing accuracy to 84%, closing
the gap between in-domain and out-of-domain
performance.

1 Introduction

Parsing accuracies on the popular Section 23 of the
Wall Street Journal (WSJ) portion of the Penn Tree-
bank have been steadily improving over the past
decade. At this point, we have many different pars-
ing models that reach and even surpass 90% depen-
dency or constituency accuracy on this test set (Mc-
Donald et al., 2006; Nivre et al., 2007; Charniak and
Johnson, 2005; Petrov et al., 2006; Carreras et al.,
2008; Koo and Collins, 2010). Quite impressively,
models based on deterministic shift-reduce parsing

algorithms are able to rival the other computation-
ally more expensive models (see Nivre (2008) and
references therein for more details). Their linear
running time makes them ideal candidates for large
scale text processing, and our model of choice for
this paper.

Unfortunately, the parsing accuracies of all mod-
els have been reported to drop significantly on out-
of-domain test sets, due to shifts in vocabulary and
grammar usage (Gildea, 2001; McClosky et al.,
2006b; Foster, 2010). In this paper, we focus our
attention on the task of parsing questions. Questions
pose interesting challenges for WSJ-trained parsers
because they are heavily underrepresented in the
training data (there are only 334 questions among
the 39,832 training sentences). At the same time,
questions are of particular interest for user facing
applications like question answering or web search,
which necessitate parsers that can process questions
in a fast and accurate manner.

We start our investigation in Section 3 by train-
ing several state-of-the-art (dependency and con-
stituency) parsers on the standard WSJ training set.
When evaluated on a question corpus, we observe
dramatic accuracy drops exceeding 20% for the de-
terministic shift-reduce parsers. In general, depen-
dency parsers (McDonald et al., 2006; Nivre et al.,
2007), seem to suffer more from this domain change
than constituency parsers (Charniak and Johnson,
2005; Petrov et al., 2006). Overall, the latent vari-
able approach of Petrov et al. (2006) appears to gen-
eralize best to this new domain, losing only about
5%. Unfortunately, the parsers that generalize better
to this new domain have time complexities that are
cubic in the sentence length (or even higher), render-
ing them impractical for web-scale text processing.

705

SBARQ

WHNP

WP

What

SQ

VBZ

does

NP

DT

the

NNP

Peugeot

NN

company

VP

VB

manufacture

.

?

(a)
What does the Peugeot company manufacture ?ROOT

dobj aux det nn p nsubjroot

(b)

Figure 1: Example constituency tree from the QuestionBank (a) converted to labeled Stanford dependencies (b).

We therefore propose anuptraining method, in
which a deterministic shift-reduce parser is trained
on the output of a more accurate, but slower parser
(Section 4). This type of domain adaptation is rem-
iniscent of self-training (McClosky et al., 2006a;
Huang and Harper, 2009) and co-training (Blum and
Mitchell, 1998; Sagae and Lavie, 2006), except that
the goal here is not to further improve the perfor-
mance of the very best model. Instead, our aim is
to train a computationally cheaper model (a linear
time dependency parser) to match the performance
of the best model (a cubic time constituency parser),
resulting in a computationally efficient, yet highly
accurate model.

In practice, we parse a large amount of unlabeled
data from the target domain with the constituency
parser of Petrov et al. (2006) and then train a deter-
ministic dependency parser on this noisy, automat-
ically parsed data. The accuracy of the linear time
parser on a question test set goes up from 60.06%
(LAS) to 76.94% after uptraining, which is compa-
rable to adding 2,000 labeled questions to the train-
ing data. Combining uptraining with 2,000 labeled
questions further improves the accuracy to 84.14%,
fully recovering the drop between in-domain and
out-of-domain accuracy.

We also present a detailed error analysis in Sec-
tion 5, showing that the errors of the WSJ-trained
model are primarily caused by sharp changes in syn-
tactic configurations and only secondarily due to
lexical shifts. Uptraining leads to large improve-
ments across all error metrics and especially on im-
portant dependencies like subjects (nsubj).

2 Experimental Setup

We used the following experimental protocol
throughout the paper.

2.1 Data

Our main training set consists of Sections 02-21 of
the Wall Street Journal portion of the Penn Treebank
(Marcus et al., 1993), with Section 22 serving as de-
velopment set for source domain comparisons. For
our target domain experiments, we evaluate on the
QuestionBank (Judge et al., 2006), which includes
a set of manually annotated questions from a TREC
question answering task. The questions in the Ques-
tionBank are very different from our training data in
terms of grammatical constructions and vocabulary
usage, making this a rather extreme case of domain-
adaptation. We split the 4,000 questions contained
in this corpus in three parts: the first 2,000 ques-
tions are reserved as a small target-domain training
set; the remaining 2,000 questions are split in two
equal parts, the first serving as development set and
the second as our final test set. We report accuracies
on the developments sets throughout this paper, and
test only at the very end on the final test set.

We convert the trees in both treebanks from con-
stituencies to labeled dependencies (see Figure 1)
using the Stanford converter, which produces 46
types of labeled dependencies1 (de Marneffe et al.,
2006). We evaluate on both unlabeled (UAS) and
labeled dependency accuracy (LAS).2

Additionally, we use a set of 2 million ques-
tions collected from Internet search queries as unla-
beled target domain data. All user information was
anonymized and only the search query string was re-
tained. The question sample is selected at random
after passing two filters that select queries that are

1We use the Stanford Lexicalized Parser v1.6.2.
2Because the QuestionBank does not contain function tags,

we decided to strip off the function tags from the WSJ be-
fore conversion. The Stanford conversion only uses the -ADV
and -TMP tags, and removing all function tags from the WSJ
changed less than 0.2% of the labels (primarily tmod labels).

706

Training on Evaluating on WSJ Section 22 Evaluating on QuestionBank
WSJ Sections 02-21 F1 UAS LAS POS F1 UAS LAS POS

Nivre et al. (2007) — 88.42 84.89 95.00 — 74.14 62.81 88.48
McDonald et al. (2006) — 89.47 86.43 95.00 — 80.01 67.00 88.48

Charniak (2000) 90.27 92.33 89.86 96.71 83.01 85.61 73.59 90.49
Charniak and Johnson (2005) 91.92 93.56 91.24 96.69 84.47 87.13 75.94 90.59
Petrov et al. (2006) 90.70 92.91 90.48 96.27 85.52 88.17 79.10 90.57
Petrov (2010) 92.10 93.85 91.60 96.44 86.62 88.77 79.92 91.08

Our shift-reduce parser — 88.24 84.69 95.00 — 72.23 60.06 88.48
Our shift-reduce parser (gold POS) — 90.51 88.53 100.00 — 78.30 68.92 100.00

Table 1: Parsing accuracies for parsers trained on newswiredata and evaluated on newswire and question test sets.

similar in style to the questions in the QuestionBank:
(i) the queries must start with an English function
word that can be used to start a question (what, who
when, how, why, can, does, etc.), and (ii) the queries
have a maximum length of 160 characters.

2.2 Parsers

We use multiple publicly available parsers, as well
as our own implementation of a deterministic shift-
reduce parser in our experiments. The depen-
dency parsers that we compare are the determinis-
tic shift-reduce MaltParser (Nivre et al., 2007) and
the second-order minimum spanning tree algorithm
based MstParser (McDonald et al., 2006). Our shift-
reduce parser is a re-implementation of the Malt-
Parser, using a standard set of features and a lin-
ear kernel SVM for classification. We also train and
evaluate the generative lexicalized parser of Char-
niak (2000) on its own, as well as in combination
with the discriminative reranker of Charniak and
Johnson (2005). Finally, we run the latent variable
parser (a.k.a. BerkeleyParser) of Petrov et al. (2006),
as well as the recent product of latent variable gram-
mars version (Petrov, 2010). To facilitate compar-
isons between constituency and dependency parsers,
we convert the output of the constituency parsers to
labeled dependencies using the same procedure that
is applied to the treebanks. We also report their F1

scores for completeness.
While the constituency parsers used in our experi-

ments view part-of-speech (POS) tagging as an inte-
gral part of parsing, the dependency parsers require
the input to be tagged with a separate POS tagger.
We use the TnT tagger (Brants, 2000) in our experi-

ments, because of its efficiency and ease of use. Tag-
ger and parser are always trained on the same data.

3 Parsing Questions

We consider two domain adaptation scenarios in this
paper. In the first scenario (sometimes abbreviated
as WSJ), we assume that we do not have any labeled
training data from the target domain. In practice, this
will always be the case when the target domain is
unknown or very diverse. The second scenario (ab-
breviated as WSJ+QB) assumes a small amount of
labeled training data from the target domain. While
this might be expensive to obtain, it is certainly fea-
sible for narrow domains (e.g. questions), or when a
high parsing accuracy is really important.

3.1 No Labeled Target Domain Data

We first trained all parsers on the WSJ training set
and evaluated their performance on the two domain
specific evaluation sets (newswire and questions).
As can be seen in the left columns of Table 1, all
parsers perform very well on the WSJ development
set. While there are differences in the accuracies,
all scores fall within a close range. The table also
confirms the commonly known fact (Yamada and
Matsumoto, 2003; McDonald et al., 2005) that con-
stituency parsers are more accurate at producing de-
pendencies than dependency parsers (at least when
the dependencies were produced by a deterministic
transformation of a constituency treebank, as is the
case here).

This picture changes drastically when the per-
formance is measured on the QuestionBank devel-
opment set (right columns in Table 1). As one

707

Evaluating on Training on WSJ + QB Training on QuestionBank
QuestionBank F1 UAS LAS POS F1 UAS LAS POS

Nivre et al. (2007) — 83.54 78.85 91.32 — 79.72 73.44 88.80
McDonald et al. (2006) — 84.95 80.17 91.32 — 82.52 77.20 88.80

Charniak (2000) 89.40 90.30 85.01 94.17 79.70 76.69 69.69 87.84
Petrov et al. (2006) 90.96 90.98 86.90 94.01 86.62 84.09 78.92 87.56
Petrov (2010) 92.81 92.23 88.84 94.48 87.72 85.07 80.08 87.79

Our shift-reduce parser — 83.70 78.27 91.32 — 80.44 74.29 88.80
Our shift-reduce parser (gold POS) — 89.39 86.60 100.00 — 87.31 84.15 100.00

Table 2: Parsing accuracies for parsers trained on newswireand question data and evaluated on a question test set.

might have expected, the accuracies are significantly
lower, however, the drop for some of the parsers
is shocking. Most notably, the deterministic shift-
reduce parsers lose almost 25% (absolute) on la-
beled accuracies, while the latent variable parsers
lose around 12%.3 Note also that even with gold
POS tags, LAS is below 70% for our determinis-
tic shift-reduce parser, suggesting that the drop in
accuracy is primarily due to a syntactic shift rather
than a lexical shift. These low accuracies are espe-
cially disturbing when one considers that the aver-
age question in the evaluation set is only nine words
long and therefore potentially much less ambiguous
than WSJ sentences. We will examine the main error
types more carefully in Section 5.

Overall, the dependency parsers seem to suf-
fer more from the domain change than the con-
stituency parsers. One possible explanation is that
they lack the global constraints that are enforced by
the (context-free) grammars. Even though the Mst-
Parser finds the globally best spanning tree, all con-
straints are local. This means for example, that it
is not possible to require the final parse to contain
a verb (something that can be easily expressed by
a top-level production of the form S→ NP VP in a
context free grammar). This is not a limitation of de-
pendency parsers in general. For example, it would
be easy to enforce such constraints in the Eisner
(1996) algorithm or using Integer Linear Program-
ming approaches (Riedel and Clarke, 2006; Martins
et al., 2009). However, such richer modeling capac-
ity comes with a much higher computational cost.

Looking at the constituency parsers, we observe

3The difference between our shift-reduce parser and the
MaltParser are due to small differences in the feature sets.

that the lexicalized (reranking) parser of Charniak
and Johnson (2005) loses more than the latent vari-
able approach of Petrov et al. (2006). This differ-
ence doesn’t seem to be a difference of generative
vs. discriminative estimation. We suspect that the
latent variable approach is better able to utilize the
little evidence in the training data. Intuitively speak-
ing, some of the latent variables seem to get allo-
cated for modeling the few questions present in the
training data, while the lexicalization contexts are
not able to distinguish between declarative sentences
and questions.

To verify this hypothesis, we conducted two addi-
tional experiments. In the first experiment, we col-
lapsed the question specific phrasal categories SQ
and SBARQ to their declarative sentence equivalents
S and SBAR. When the training and test data are
processed this way, the lexicalized parser loses 1.5%
F1, while the latent variable parser loses only 0.7%.
It is difficult to examine the grammars, but one can
speculate that some of the latent variables were used
to model the question specific constructions and the
model was able to re-learn the distinctions that we
purposefully collapsed. In the second experiment,
we removed all questions from the WSJ training set
and retrained both parsers. This did not make a
significant difference when evaluating on the WSJ
development set, but of course resulted in a large
performance drop when evaluating on the Question-
Bank. The lexicalized parser came out ahead in this
experiment,4 confirming our hypothesis that the la-
tent variable model is better able to pick up the small
amount of relevant evidence that is present in the
WSJ training data (rather than being systematically

4The F1 scores were 52.40% vs. 56.39% respectively.

708

better suited for modeling questions).

3.2 Some Labeled Target Domain Data

In the above experiments, we considered a situation
where we have no labeled training data from the tar-
get domain, as will typically be the case. We now
consider a situation where a small amount of labeled
data (2,000 manually parsed sentences) from the do-
main of interest is available for training.

We experimented with two different ways of uti-
lizing this additional training data. In a first experi-
ment, we trained models on the concatenation of the
WSJ and QuestionBank training sets (we did not at-
tempt to weight the different corpora). As Table 2
shows (left columns), even a modest amount of la-
beled data from the target domain can significantly
boost parsing performance, giving double-digit im-
provements in some cases. While not shown in the
table, the parsing accuracies on the WSJ develop-
ment set where largely unaffected by the additional
training data.

Alternatively, one can also train models exclu-
sively on the QuestionBank data, resulting in ques-
tion specific models. The parsing accuracies of
these domain-specific models are shown in the right
columns of Table 2, and are significantly lower than
those of models trained on the concatenated training
sets. They are often times even lower than the results
of parsers trained exclusively on the WSJ, indicating
that 2,000 sentences are not sufficient to train accu-
rate parsers, even for quite narrow domains.

4 Uptraining for Domain-Adaptation

The results in the previous section suggest that
parsers without global constraints have difficul-
ties dealing with the syntactic differences between
declarative sentences and questions. A possible ex-
planation is that similar word configurations can ap-
pear in both types of sentences, but with very differ-
ent syntactic interpretation. Local models without
global constraints are therefore mislead into dead-
end interpretations from which they cannot recover
(McDonald and Nivre, 2007). Our approach will
therefore be to use a large amount of unlabeled data
to bias the model towards the appropriate distribu-
tion for the target domain. Rather than looking
for feature correspondences between the domains

 70

 75

 80

 85

 90

1M100K10K1K100100

U
A

S

WSJ+QB
WSJ

 60

 65

 70

 75

 80

 85

1M100K10K1K100100

LA
S

Number of unlabeled questions

WSJ+QB
WSJ

Figure 2: Uptraining with large amounts of unlabeled
data gives significant improvements over two different
supervised baselines.

(Blitzer et al., 2006), we propose to use automati-
cally labeled target domain data to learn the target
domain distribution directly.

4.1 Uptraining vs. Self-training

The idea of training parsers on their own output has
been around for as long as there have been statis-
tical parsers, but typically does not work well at
all (Charniak, 1997). Steedman et al. (2003) and
Clark et al. (2003) present co-training procedures
for parsers and taggers respectively, which are ef-
fective when only very little labeled data is avail-
able. McClosky et al. (2006a) were the first to im-
prove a state-of-the-art constituency parsing system
by utilizing unlabeled data for self-training. In sub-
sequent work, they show that the same idea can be
used for domain adaptation if the unlabeled data is
chosen accordingly (McClosky et al., 2006b). Sagae
and Tsujii (2007) co-train two dependency parsers
by adding automatically parsed sentences for which
the parsers agree to the training data. Finally, Suzuki
et al. (2009) present a very effective semi-supervised
approach in which features from multiple generative
models estimated on unlabeled data are combined in
a discriminative system for structured prediction.

All of these approaches have in common that their
ultimate goal is to improve the final performance.
Our work differs in that instead of improving the

709

Uptraining with Using only WSJ data Using WSJ + QB data
different base parsers UAS LAS POS UAS LAS POS

Baseline 72.23 60.06 88.48 83.70 78.27 91.32

Self-training 73.62 61.63 89.60 84.26 79.15 92.09

Uptraining on Petrov et al. (2006) 86.02 76.94 90.75 88.38 84.02 93.63
Uptraining on Petrov (2010) 85.21 76.19 90.74 88.63 84.14 93.53

Table 3: Uptraining substantially improves parsing accuracies, while self-training gives only minor improvements.

performance of the best parser, we want to build
a more efficient parser that comes close to the ac-
curacy of the best parser. To do this, we parse
the unlabeled data with our most accurate parser
and generate noisy, but fairly accurate labels (parse
trees) for the unlabeled data. We refer to the parser
used for producing the automatic labels as the base
parser (unless otherwise noted, we used the latent
variable parser of Petrov et al. (2006) as our base
parser). Because the most accurate base parsers are
constituency parsers, we need to convert the parse
trees to dependencies using the Stanford converter
(see Section 2). The automatically parsed sentences
are appended to the labeled training data, and the
shift-reduce parser (and the part-of-speech tagger)
are trained on this new training set. We did not
increase the weight of the WSJ training data, but
weighted the QuestionBank training data by a fac-
tor of ten in the WSJ+QB experiments.

4.2 Varying amounts of unlabeled data

Figure 2 shows the efficacy of uptraining as a func-
tion of the size of the unlabeled data. Both la-
beled (LAS) and unlabeled accuracies (UAS) im-
prove sharply when automatically parsed sentences
from the target domain are added to the training data,
and level off after 100,000 sentences. Comparing
the end-points of the dashed lines (models having
access only to labeled data from the WSJ) and the
starting points of the solid lines (models that have
access to both WSJ and QuestionBank), one can see
that roughly the same improvements (from 72% to
86% UAS and from 60% to 77% LAS) can be ob-
tained by having access to 2,000 labeled sentences
from the target domain or uptraining with a large
amount of unlabeled data from the target domain.
The benefits seem to be complementary and can be
combined to give the best results. The final accu-

racy of 88.63 / 84.14 (UAS / LAS) on the question
evaluation set is comparable to the in-domain per-
formance on newswire data (88.24 / 84.69).

4.3 Varying the base parser

Table 3 then compares uptraining on the output of
different base parsers to pure self-training. In these
experiments, the same set of 500,000 questions was
parsed by different base parsers. The automatic
parses were then added to the labeled training data
and the parser was retrained. As the results show,
self-training provides only modest improvements of
less than 2%, while uptraining gives double-digit
improvements in some cases. Interestingly, there
seems to be no substantial difference between up-
training on the output of a single latent variable
parser (Petrov et al., 2006) and a product of latent
variable grammars (Petrov, 2010). It appears that
the roughly 1% accuracy difference between the two
base parsers is not important for uptraining.

4.4 POS-less parsing

Our uptraining procedure improves parse quality on
out-of-domain data to the level of in-domain ac-
curacy. However, looking closer at Table 3, one
can see that the POS accuracy is still relatively low
(93.53%), potentially limiting the final accuracy.

To remove this limitation (and also the depen-
dence on a separate POS tagger), we experimented
with word cluster features. As shown in Koo et al.
(2008), word cluster features can be used in con-
junction with POS tags to improve parsing accuracy.
Here, we use them instead of POS tags in order to
further reduce the domain-dependence of our model.
Similar to Koo et al. (2008), we use the Brown clus-
tering algorithm (Brown et al., 1992) to produce a
deterministic hierarchical clustering of our input vo-
cabulary. We then extract features based on vary-

710

UAS LAS POS

Part-of-Speech Tags 88.35 84.05 93.53
Word Cluster Features 87.92 83.73 —

Table 4: Parsing accuracies of uptrained parsers with and
without part-of-speech tags and word cluster features.

ing cluster granularities (6 and 10 bits in our experi-
ments). Table 4 shows that roughly the same level of
accuracy can be achieved with cluster based features
instead of POS tag features. This change makes our
parser completely deterministic and enables us to
process sentences in a single left-to-right pass.

5 Error Analysis

To provide a better understanding of the challenges
involved in parsing questions, we analyzed the er-
rors made by our WSJ-trained shift-reduce parser
and also compared them to the errors that are left
after uptraining.

5.1 POS errors

Many parsing errors can be traced back to POS tag-
ging errors, which are much more frequent on out-
of-domain data than on in-domain data (88.8% on
the question data compared to above 95.0% on WSJ
data). Part of the reason for the lower POS tagging
accuracy is the higher unknown word ratio (7.3% on
the question evaluation set, compared to 3.4% on the
WSJ evaluation set). Another reason is a change in
the lexical distribution.

For example, wh-determiners (WDT) are quite
rare in the WSJ training data (relative frequency
0.45%), but five times more common in the Ques-
tionBank training data (2.49%). In addition to this
frequency difference, 52.43% of the WDTs in the
WSJ are the word “which” and 46.97% are“that”. In
the QuestionBank on the other hand, “what” is by
far the most common WDT word (81.40%), while
“which” and “that” account only for 13.65% and
4.94% respectively. Not surprisingly the most com-
mon POS error involves wh-determiners (typically
the word “what”) being incorrectly labeled as Wh-
pronouns (WP), resulting in head and label errors
like the one shown in Figure 3(a).

To separate out POS tagging errors from parsing
errors, we also ran experiments with correct (gold)

Dep. Label Frequency WSJ Uptrained

nsubj 934 41.02 88.64
amod 556 78.21 86.00
dobj 555 70.10 83.12
attr 471 8.64 93.49
aux 467 77.31 82.56

Table 5: F1 scores for the most frequent labels in the
QuestionBank development set. Uptraining leads to huge
improvements compared to training only on the WSJ.

POS tags. The parsing accuracies of our shift-reduce
parser using gold POS tags are listed in the last rows
of Tables 1 and 2. Even with gold POS tags, the de-
terministic shift-reduce parser falls short of the ac-
curacies of the constituency parsers (with automatic
tags), presumably because the shift-reduce model is
making only local decisions and is lacking the global
constraints provided by the context-free grammar.

5.2 Dependency errors

To find the main error types, we looked at the most
frequent labels in the QuestionBank development
set, and analyzed the ones that benefited the most
from uptraining. Table 5 has the frequency and F-
scores of the dependency types that we are going to
discuss in the following. We also provide examples
which are illustrated in Figure 3.

nsubj: The WSJ-trained model is often producing
parses that are missing a subject (nsubj). Questions
like “What is the oldest profession?” and “When
was Ozzy Osbourne born?” should have “profes-
sion” and “Osbourne” as nsubjs, but in both cases
the WSJ-trained parser did not label any subj (see
Figures 3(b) and 3(c)). Another common error is to
mislabel nsubj. For example, the nsubj of “What are
liver enzymes?” should be enzymes, but the WSJ-
trained parser labels “What” as the nsubj, which
makes sense in a statement but not in a question.

amod: The model is overpredicting “amod”, re-
sulting in low precision figures for this label. An
example is “How many points make up a perfect
fivepin bowling score?”. The Stanford dependency
uses “How” as the head of “many” in noun phrases
like “How many points”, and the relation is a generic
“dep”. But in the WSJ model prediction, “many’s”
head is “points,” and the relation mislabeled as
amod. Since it’s an adjective preceding the noun,

711

What is the oldest profession ?

ROOT

det amod proot attr nsubj

WP VBZ DT JJS NN .ROOT

det amod proot attrdep

WP VBZ DT JJS NN .

What is the oldest profession ?

When was Ozzy Osbourne born ?
ROOT WRB VBZ NNP NNP VBN .

root padvmod aux nn nsubj

When was Ozzy Osbourne born ?
ROOT WRB VBZ NNP NNP NNP .

 root nnnn pcompl nsubj

What films featured the character ?
ROOT WDT NNS VBD DT NN NNP NNP .

Popeye Doyle

nsubj dep det nn nn dobj

What films featured the character ?
ROOT WP NNS VBD DT NN NNP NNP .

Popeye Doyle

 nsubj compl det nn nn root ccomp(a)

(b)

(c)

(d)

How many people did Randy ?
ROOT WRB JJ NNS VBD NNP NNP VB .

Craft kill

 dobj dep aux nn nsubj p

?

.

dep

How many people did Randy
ROOT WRB JJ NNS VBD NNP NNP VB

Craft kill

compl amod ccomp nn nsubj pnsubjroot

Figure 3: Example questions from the QuestionBank development set and their correct parses (left), as well as the
predictions of a model trained on the WSJ (right).

the WSJ model often makes this mistake and there-
fore the precision is much lower when it doesn’t see
more questions in the training data.

dobj: The WSJ model doesn’t predict object ex-
traction well. For example, in “How many people
did Randy Craft kill?” (Figure 3(d)), the direct ob-
ject of kill should be “How many people.” In the
Stanford dependencies, the correct labels for this
noun phrase are “dobj dep dep,” but the WSJ model
predicts “compl amod nsubj.” This is a common
error caused by the different word order in ques-
tions. The uptrained model is much better at han-
dling these type of constructions.

attr: An attr (attributive) is a wh-noun phrase
(WHNP) complement of a copular verb. In the WSJ
training data, only 4,641 out of 950,028 dependen-
cies are attr (0.5%); in the QuestionBank training
data, 1,023 out of 17,069 (6.0%) are attr. As a con-
sequence, the WSJ model cannot predict this label
in questions very well.

aux: “What does the abbreviation AIDS stand
for?” should have “stand” as the main head of the
sentence, and “does” as its aux. However, the WSJ
model labeled “does” as the main head. Similar
patterns occur in many questions, and therefore the
WSJ has a very low recall rate.

In contrast, mostly local labels (that are not re-
lated to question/statement structure differences)
have a consistently high accuracy. For example: det
has an accuracy of 98.86% with the WSJ-trained
model, and 99.24% with the uptrained model.

6 Conclusions

We presented a method for domain adaptation of de-
terministic shift-reduce parsers. We evaluated mul-
tiple state-of-the-art parsers on a question corpus
and showed that parsing accuracies degrade substan-
tially on this out-of-domain task. Most notably, de-
terministic shift-reduce parsers have difficulty deal-
ing with the modified word order and lose more
than 20% in accuracy. We then proposed a simple,
yet very effectiveuptraining method for domain-
adaptation. In a nutshell, we trained a deterministic
shift-reduce parser on the output of a more accurate,
but slower parser. Uptraining with large amounts of
unlabeled data gives similar improvements as hav-
ing access to 2,000 labeled sentences from the target
domain. With 2,000 labeled questions and a large
amount of unlabeled questions, uptraining is able to
close the gap between in-domain and out-of-domain
accuracy.

712

Acknowledgements

We would like to thank Ryan McDonald for run-
ning the MstParser experiments and for many fruit-
ful discussions on this topic. We would also like to
thank Joakim Nivre for help with the MatlParser and
Marie-Catherine de Marneffe for help with the Stan-
ford Dependency Converter.

References

J. Blitzer, R. McDonald, and F. Pereira. 2006. Domain
adaptation with structural correspondence learning. In
EMNLP ’06.

A. Blum and T. Mitchell. 1998. Combining labeled and
unlabeled data with co-training. InCOLT ’98.

T. Brants. 2000. TnT – a statistical part-of-speech tagger.
In ANLP ’00.

P. Brown, V. Della Pietra, P. deSouza, J. Lai, and R. Mer-
cer. 1992. Class-based n-gram models of natural lan-
guage.Computational Linguistics.

X. Carreras, M. Collins, and T. Koo. 2008. TAG, dy-
namic programming, and the perceptron for efficient,
feature-rich parsing. InCoNLL ’08.

E. Charniak and M. Johnson. 2005. Coarse-to-Fine N-
Best Parsing and MaxEnt Discriminative Reranking.
In ACL’05.

E. Charniak. 1997. Statistical parsing with a context-free
grammar and word statistics. InAI ’97.

E. Charniak. 2000. A maximum–entropy–inspired
parser. InNAACL ’00.

S. Clark, J. Curran, and M. Osborne. 2003. Bootstrap-
ping pos-taggers using unlabelled data. InCoNLL ’03.

M.-C. de Marneffe, B. MacCartney, and C. Manning.
2006. Generating typed dependency parses from
phrase structure parses. InLREC ’06.

J. Eisner. 1996. Three new probabilistic models for de-
pendency parsing: An exploration. InCOLING ’96.

J. Foster. 2010. “cba to check the spelling”: Investigat-
ing parser performance on discussion forum posts. In
NAACL ’10.

D. Gildea. 2001. Corpus variation and parser perfor-
mance. InEMNLP ’01.

Z. Huang and M. Harper. 2009. Self-training PCFG
grammars with latent annotations across languages. In
EMNLP ’09.

J. Judge, A. Cahill, and J. v. Genabith. 2006. Question-
bank: creating a corpus of parse-annotated questions.
In ACL ’06.

T. Koo and M. Collins. 2010. Efficient third-order de-
pendency parsers. InACL ’10.

T. Koo, X. Carreras, and M. Collins. 2008. Simple semi-
supervised dependency parsing. InACL ’08.

M. Marcus, B. Santorini, and M. Marcinkiewicz. 1993.
Building a large annotated corpus of English: The
Penn Treebank. InComputational Linguistics.

A.F.T. Martins, N.A. Smith, and E.P. Xing. 2009. Con-
cise integer linear programming formulations for de-
pendency parsing. InACL ’09.

D. McClosky, E. Charniak, and M. Johnson. 2006a. Ef-
fective self-training for parsing. InNAACL ’06.

D. McClosky, E. Charniak, and M. Johnson. 2006b.
Reranking and self-training for parser adaptation. In
ACL ’06.

R. McDonald and J. Nivre. 2007. Characterizing the
errors of data-driven dependency parsing models. In
EMNLP ’07.

R. McDonald, K. Crammer, and F. Pereira. 2005. Online
large-margin training of dependency parsers. InACL
’05.

R. McDonald, K. Lerman, and F. Pereira. 2006. Multi-
lingual dependency analysis with a two-stage discrim-
inative parser. InCoNLL ’06.

J. Nivre, J. Hall, J. Nilsson, A. Chanev, G. Eryigit,
S. Kbler, S. Marinov, and E. Marsi. 2007. Maltparser:
A language-independent system for data-driven de-
pendency parsing. Natural Language Engineering,
13(2).

J. Nivre. 2008. Algorithms for deterministic incremen-
tal dependency parsing.Computational Linguistics,
34(4).

S. Petrov, L. Barrett, R. Thibaux, and D. Klein. 2006.
Learning accurate, compact, and interpretable tree an-
notation. InACL ’06.

S. Petrov. 2010. Products of random latent variable
grammars. InNAACL ’10.

S. Riedel and J. Clarke. 2006. Incremental integer linear
programming for non-projective dependency parsing.
In EMNLP ’06.

K. Sagae and A. Lavie. 2006. Parser combination by
reparsing. InNAACL ’06.

K. Sagae and J. Tsujii. 2007. Dependency parsing and
domain adaptation with lr models and parser ensem-
bles. InCoNLL ’07.

M. Steedman, M. Osborne, A. Sarkar, S. Clark, R. Hwa,
J. Hockenmaier, P. Ruhlen, S. Baker, and J. Crim.
2003. Bootstrapping statistical parsers from small
datasets. InEACL ’03.

J. Suzuki, H. Isozaki, X. Carreras, and M. Collins. 2009.
An empirical study of semi-supervised structured con-
ditional models for dependency parsing. InEMNLP
’09.

H. Yamada and Y. Matsumoto. 2003. Statistical depen-
dency analysis with support vector machines. InIWPT
’03.

713

