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Abstract

In modern machine translation practice, a sta-
tistical phrasal or hierarchical translation sys-
tem usually relies on a huge set of trans-
lation rules extracted from bi-lingual train-
ing data. This approach not only results in
space and efficiency issues, but also suffers
from the sparse data problem. In this paper,
we propose to use factorized grammars, an
idea widely accepted in the field of linguis-
tic grammar construction, to generalize trans-
lation rules, so as to solve these two prob-
lems. We designed a method to take advantage
of the XTAG English Grammar to facilitate
the extraction of factorized rules. We experi-
mented on various setups of low-resource lan-
guage translation, and showed consistent sig-
nificant improvement in BLEU over state-of-
the-art string-to-dependency baseline systems
with 200K words of bi-lingual training data.

1 Introduction

A statistical phrasal (Koehn et al., 2003; Och and
Ney, 2004) or hierarchical (Chiang, 2005; Marcu
et al., 2006) machine translation system usually re-
lies on a very large set of translation rules extracted
from bi-lingual training data with heuristic methods
on word alignment results. According to our own
experience, we obtain about 200GB of rules from
training data of about 50M words on each side. This
immediately becomes an engineering challenge on
space and search efficiency.

A common practice to circumvent this problem
is to filter the rules based on development sets in the
step of rule extraction or before the decoding phrase,
instead of building a real distributed system. How-
ever, this strategy only works for research systems,

for which the segments for translation are always
fixed.

However, do we really need such a large rule set
to represent information from the training data of
much smaller size? Linguists in the grammar con-
struction field already showed us a perfect solution
to a similar problem. The answer is to use a fac-
torized grammar. Linguists decompose lexicalized
linguistic structures into two parts, (unlexicalized)
templates and lexical items. Templates are further
organized into families. Each family is associated
with a set of lexical items which can be used to lex-
icalize all the templates in this family. For example,
the XTAG English Grammar (XTAG-Group, 2001),
a hand-crafted grammar based on the Tree Adjoin-
ing Grammar (TAG) (Joshi and Schabes, 1997) for-
malism, is a grammar of this kind, which employs
factorization with LTAG e-tree templates and lexical
items.

Factorized grammars not only relieve the burden
on space and search, but also alleviate the sparse
data problem, especially for low-resource language
translation with few training data. With a factored
model, we do not need to observe exact “template
– lexical item” occurrences in training. New rules
can be generated from template families and lexical
items either offline or on the fly, explicitly or im-
plicitly. In fact, the factorization approach has been
successfully applied on the morphological level in
previous study on MT (Koehn and Hoang, 2007). In
this work, we will go further to investigate factoriza-
tion of rule structures by exploiting the rich XTAG
English Grammar.

We evaluate the effect of using factorized trans-
lation grammars on various setups of low-resource
language translation, since low-resource MT suffers
greatly on poor generalization capability of trans-
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lation rules. With the help of high-level linguis-
tic knowledge for generalization, factorized gram-
mars provide consistent significant improvement
in BLEU (Papineni et al., 2001) over string-to-
dependency baseline systems with 200K words of
bi-lingual training data.

This work also closes the gap between compact
hand-crafted translation rules and large-scale unor-
ganized automatic rules. This may lead to a more ef-
fective and efficient statistical translation model that
could better leverage generic linguistic knowledge
in MT.

In the rest of this paper, we will first provide a
short description of our baseline system in Section 2.
Then, we will introduce factorized translation gram-
mars in Section 3. We will illustrate the use of the
XTAG English Grammar to facilitate the extraction
of factorized rules in Section 4. Implementation de-
tails are provided in Section 5. Experimental results
are reported in Section 6.

2 A Baseline String-to-Tree Model

As the baseline of our new algorithm, we use a
string-to-dependency system as described in (Shen
et al., 2008). There are several reasons why we take
this model as our baseline. First, it uses syntactic
tree structures on the target side, which makes it easy
to exploit linguistic information. Second, depen-
dency structures are relatively easier to implement,
as compared to phrase structure grammars. Third,
a string-to-dependency system provides state-of-the-
art performance on translation accuracy, so that im-
provement over such a system will be more convinc-
ing.

Here, we provide a brief description of the base-
line string-to-dependency system, for the sake of
completeness. Readers can refer to (Shen et al.,
2008; Shen et al., 2009) for related information.

In the baseline string-to-dependency model, each
translation rule is composed of two parts, source and
target. The source sides is a string rewriting rule,
and the target side is a tree rewriting rule. Both
sides can contain non-terminals, and source and tar-
get non-terminals are one-to-one aligned. Thus, in
the decoding phase, non-terminal replacement for
both sides are synchronized.

Decoding is solved with a generic chart parsing

algorithm. The source side of a translation rule is
used to detect when this rule can be applied. The tar-
get side of the rule provides a hypothesis tree struc-
ture for the matched span. Mono-lingual parsing can
be viewed as a special case of this generic algorithm,
for which the source string is a projection of the tar-
get tree structure.

Figure 1 shows three examples of string-to-
dependency translation rules. For the sake of con-
venience, we use English for both source and target.
Upper-cased words represent source, while lower-
cased words represent target. X is used for non-
terminals for both sides, and non-terminal alignment
is represented with subscripts.

In Figure 1, the top boxes mean the source side,
and the bottom boxes mean the target side. As for
the third rule, FUN Q stands for a function word in
the source language that represents a question.

3 Translation with a Factorized Grammar

We continue with the example rules in Figure 1.
Suppose, we have “... HATE ... FUN Q” in a given
test segment. There is no rule having both HATE
and FUN Q on its source side. Therefore, we have
to translate these two source words separately. For
example, we may use the second rule in Figure 1.
Thus, HATE will be translated into hates, which is
wrong.

Intuitively, we would like to have translation rule
that tell us how to translate X1 HATE X2 FUN Q
as in Figure 2. It is not available directly from the
training data. However, if we obtain the three rules
in Figure 1, we are able to predict this missing rule.
Furthermore, if we know like and hate are in the
same syntactic/semantic class in the source or target
language, we will be very confident on the validity
of this hypothesis rule.

Now, we propose a factorized grammar to solve
this generalization problem. In addition, translation
rules represented with the new formalism will be
more compact.

3.1 Factorized Rules

We decompose a translation rule into two parts,
a pair of lexical items and an unlexicalized tem-
plate. It is similar to the solution in the XTAG En-
glish Grammar (XTAG-Group, 2001), while here we
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X1  LIKE  X2

likes

X1 X2

X1  HATE  X2

hates

X1 X2

X1  LIKE X2  FUN_Q

like

does X1 X2

Figure 1: Three examples of string-to-dependency translation rules.

X1  V  X2

VBZ

X1 X2

X1  V  X2

VBZ

X1 X2

X1  V  X2  FUN_Q

VB

does X1 X2

Figure 3: Templates for rules in Figure 1.

X1  HATE  X2  FUN_Q

hate

does X1 X2

Figure 2: An example of a missing rule.

work on two languages at the same time.
For each rule, we first detect a pair of aligned head

words. Then, we extract the stems of this word pair
as lexical items, and replace them with their POS
tags in the rule. Thus, the original rule becomes an
unlexicalized rule template.

As for the three example rules in Figure 1, we will

extract lexical items (LIKE, like), (HATE, hate) and
(LIKE, like) respectively. We obtain the same lexical
items from the first and the third rules.

The resultant templates are shown in Figure 3.
Here, V represents a verb on the source side, VB
stands for a verb in the base form, and VBZ means
a verb in the third person singular present form as
in the Penn Treebank representation (Marcus et al.,
1994).

In the XTAG English Grammar, tree templates for
transitive verbs are grouped into a family. All transi-
tive verbs are associated with this family. Here, we
assume that the rule templates representing struc-
tural variations of the same word class can also be
organized into a template family. For example, as
shown in Figure 4, templates and lexical items are
associated with families. It should be noted that
a template or a lexical item can be associated with
more than one family.

Another level of indirection like this provides
more generalization capability. As for the missing
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X1  V  X2

VBZ

X1 X2

Family Transitive_3

X1  V  X2  FUN_Q

VB

does X1 X2

X1  V  FUN_Past

VBD

X1

Family Intransitive_2

( LIKE, like ) ( HATE, hate ) ( OPEN, open ) ( HAPPEN, happen )

Figure 4: Templates and lexical items are associated with families.

rule in Figure 2, we can now generate it by replac-
ing the POS tags in the second template of Figure
4 with lexical items (HATE, hate) with their correct
inflections. Both the template and the lexical items
here are associated with the family Transitive 3..

3.2 Statistical Models

Another level of indirection also leads to a desirable
back-off model. We decompose a rule R into to two
parts, its template PR and its lexical items LR. As-
suming they are independent, then we can compute
Pr(R) as

Pr(R) = Pr(PR)Pr(LR), or

Pr(R) =
∑

F Pr(PR|F )Pr(LR|F )Pr(F ), (1)

if they are conditionally independent for each fam-
ily F . In this way, we can have a good estimate for
rules that do not appear in the training data. The
second generative model will also be useful for un-
supervised learning of families and related probabil-
ities.

In this paper, we approximate families by using
target (English) side linguistic knowledge as what
we will explain in Section 4, so this changes the def-
inition of the task. In short, we will be given a list of
families. We will also be given an association table
B(L,F ) for lexical items L and families F , such

that B(L,F ) = true if and only L is associated
with F , but we do not know the distributions.

Let S be the source side of a rule or a rule tem-
plate, T the target side of a rule of a rule template.
We define Prb, the back-off conditional model of
templates, as follows.

Prb(PS |PT , L) =
∑

F :B(L,F ) #(PS , PT , F )∑
F :B(L,F ) #(PT , F )

, (2)

where # stands for the count of events.
Let P and L be the template and lexical items of

R respectively. Let Prt be the MLE model obtained
from the training data. The smoothed probability is
then defined as follows.

Pr(RS |RT ) = (1 − α)Prt(RS |RT )
+αPrb(PS |PT , L), (3)

where α is a parameter. We fix it to 0.1 in later ex-
periments. Conditional probability Pr(RT |RS) is
defined in a similar way.

3.3 Discussion

The factorized models discussed in the previous sec-
tion can greatly alleviate the sparse data problem,
especially for low-resource translation tasks. How-
ever, when the training data is small, it is not easy to
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learn families. Therefore, to use unsupervised learn-
ing with a model like (1) somehow reduces a hard
translation problem to another one of the same diffi-
culty, when the training data is small.

However, in many cases, we do have extra infor-
mation that we can take advantage of. For example,
if the target language has rich resources, although
the source language is a low-density one, we can ex-
ploit the linguistic knowledge on the target side, and
carry it over to bi-lingual structures of the translation
model. The setup of X-to-English translation tasks
is just like this. This will be the topic of the next
section. We leave unsupervised learning of factor-
ized translation grammars for future research.

4 Using A Mono-Lingual Grammar

In this section, we will focus on X-to-English trans-
lation, and explain how to use English resources to
build a factorized translation grammar. Although we
use English as an example, this approach can be ap-
plied to any language pairs that have certain linguis-
tic resources on one side.

As shown in Figure 4, intuitively, the families
are intersection of the word families of the two lan-
guages involved, which means that they are refine-
ment of the English word families. For example,
a sub-set of the English transitive families may be
translated in the same way, so they share the same
set of templates. This is why we named the two fam-
ilies Transitive 3 and Intransitive 2 in Figure 4.

Therefore, we approximate bi-lingual families
with English families first. In future, we can use
them as the initial values for unsupervised learning.

In order to learn English families, we need to take
away the source side information in Figure 4, and
we end up with a template–family–word graph as
shown in Figure 5. We can learn this model on large
mono-lingual data if necessary.

What is very interesting is that there already exists
a hand-crafted solution for this model. This is the
XTAG English Grammar (XTAG-Group, 2001).

The XTAG English Grammar is a large-scale En-
glish grammar based on the TAG formalism ex-
tended with lexicalization and unification-based fea-
ture structures. It consists of morphological, syn-
tactic, and tree databases. The syntactic database
contains the information that we have represented

in Figure 5 and many other useful linguistic annota-
tions, e.g. features.

The XTAG English grammar contains 1,004 tem-
plates, organized in 53 families, and 221 individual
templates. About 30,000 lexical items are associ-
ated with these families and individual templates 1.
In addition, it also has the richest English morpho-
logical lexicon with 317,000 inflected items derived
from 90,000 stems. We use this resource to predict
POS tags and inflections of lexical items.

In our applications, we select all the verb fami-
lies plus one each for nouns, adjectives and adverbs.
We use the families of the English word as the fam-
ilies of bi-lingual lexical items. Therefore, we have
a list of about 20 families and an association table
as described in Section 3.2. Of course, one can use
other linguistic resources if similar family informa-
tion is provided, e.g. VerbNet (Kipper et al., 2006)
or WordNet (Fellbaum, 1998).

5 Implementation

Nowadays, machine translation systems become
more and more complicated. It takes time to write
a decoder from scratch and hook it with various
modules, so it is not the best solution for research
purpose. A common practice is to reduce a new
translation model to an old one, so that we can use
an existing system, and see the effect of the new
model quickly. For example, the tree-based model
proposed in (Carreras and Collins, 2009) used a
phrasal decoder for sub-clause translation, and re-
cently, DeNeefe and Knight (2009) reduced a TAG-
based translation model to a CFG-based model by
applying all possible adjunction operations offline
and stored the results as rules, which were then used
by an existing syntax-based decoder.

Here, we use a similar method. Instead of build-
ing a new decoder that uses factorized grammars,
we reduce factorized rules to baseline string-to-
dependency rules by performing combination of
templates and lexical items in an offline mode. This
is similar to the rule generation method in (DeNeefe
and Knight, 2009). The procedure is as follows.

In the rule extraction phase, we first extract all the
string-to-dependency rules with the baseline system.

1More information about XTAG is available online at
http://www.cis.upenn.edu/˜xtag .
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VBZ

X1 X2

Family Transitive

VB

does X1 X2

VBD

X1

Family Intransitive

like hate open happen

Figure 5: Templates, families, and words in the XTAG English Grammar.

For each extracted rule, we try to split it into various
“template–lexical item” pairs by choosing different
aligned words for delexicalization, which turns rules
in Figure 1 into lexical items and templates in Fig-
ure 3. Events of templates and lexical items are
counted according to the family of the target En-
glish word. If an English word is associated with
more than one family, the count is distributed uni-
formly among these families. In this way, we collect
sufficient statistics for the back-off model in (2).

For each family, we keep the top 200 most fre-
quent templates. Then, we apply them to all the
lexical items in this families, and save the gener-
ated rules. We merge the new rules with the original
one. The conditional probabilities for the rules in the
combined set is smoothed according to (2) and (3).

Obviously, using only the 200 most frequent tem-
plates for each family is just a rough approxima-
tion. An exact implementation of a new decoder for
factorized grammars can make better use of all the
templates. However, the experiments will show that
even an approximation like this can already provide
significant improvement on small training data sets,
i.e. with no more than 2M words.

Since we implement template application in an of-
fline mode, we can use exactly the same decoding
and optimization algorithms as the baseline. The de-
coder is a generic chart parsing algorithm that gen-
erates target dependency trees from source string in-
put. The optimizer is an L-BFGS algorithm that
maximizes expected BLEU scores on n-best hy-

potheses (Devlin, 2009).

6 Experiments on Low-Resource Setups

We tested the performance of using factorized gram-
mars on low-resource MT setups. As what we noted
above, the sparse data problem is a major issue when
there is not enough training data. This is one of the
cases that a factorized grammar would help.

We did not tested on real low-resource languages.
Instead, we mimic the low-resource setup with two
of the most frequently used language pairs, Arabic-
to-English and Chinese-to-English, on newswire
and web genres. Experiments on these setups will
be reported in Section 6.1. Working on a language
which actually has more resources allows us to study
the effect of training data size. This will be reported
in Section 6.2. In Section 6.3, we will show exam-
ples of templates learned from the Arabic-to-English
training data.

6.1 Languages and Genres
The Arabic-to-English training data contains about
200K (target) words randomly selected from an
LDC corpus, LDC2006G05 A2E set, plus an
Arabic-English dictionary with about 89K items.
We build our development sets from GALE P4 sets.
There are one tune set and two test sets for the MT
systems 2. TEST-1 has about 5000 segments and
TEST-2 has about 3000 segments.

2One of the two test sets will later be used to tune an MT
combination system.
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MODEL TUNE TEST-1 TEST-2
BLEU %BL MET BLEU %BL MET BLEU %BL MET

Arabic-to-English newswire
baseline 21.07 12.41 43.77 19.96 11.42 42.79 21.09 11.03 43.74
factorized 21.70 13.17 44.85 20.52 11.70 43.83 21.36 11.77 44.72

Arabic-to-English web
baseline 10.26 5.02 32.78 9.40 4.87 31.26 14.11 7.34 35.93
factorized 10.67 5.34 33.83 9.74 5.20 32.52 14.66 7.69 37.11

Chinese-to-English newswire
baseline 13.17 8.04 44.70 19.62 9.32 48.60 14.53 6.82 45.34
factorized 13.91 8.09 45.03 20.48 9.70 48.61 15.16 7.37 45.31

Chinese-to-English web
baseline 11.52 5.96 42.18 11.44 6.07 41.90 9.83 4.66 39.71
factorized 11.98 6.31 42.84 11.72 5.88 42.55 10.25 5.34 40.34

Table 1: Experimental results on Arabic-to-English / Chinese-to-English newswire and web data. %BL stands for
BLEU scores for documents whose BLEU scores are in the bottom 75% to 90% range of all documents. MET stands
for METEOR scores.

The Chinese-to-English training data contains
about 200K (target) words randomly selected from
LDC2006G05 C2E set, plus a Chinese-English dic-
tionary (LDC2002L27) with about 68K items. The
development data setup is similar to that of Arabic-
to-English experiments.

Chinese-to-English translation is from a morphol-
ogy poor language to a morphology rich language,
while Arabic-to-English translation is in the oppo-
site direction. It will be interesting to see if factor-
ized grammars help on both cases. Furthermore, we
also test on two genres, newswire and web, for both
languages.

Table 1 lists the experimental results of all the four
conditions. The tuning metric is expected BLEU.
We are also interested in the BLEU scores for doc-
uments whose BLEU scores are in the bottom 75%
to 90% range of all documents. We mark it as %BL
in the table. This metric represents how a system
performances on difficult documents. It is important
to certain percentile evaluations. We also measure
METEOR (Banerjee and Lavie, 2005) scores for all
systems.

The system using factorized grammars shows
BLEU improvement in all conditions. We measure
the significance of BLEU improvement with paired
bootstrap resampling as described by (Koehn, 2004).
All the BLEU improvements are over 95% confi-
dence level. The new system also improves %BL

and METEOR in most of the cases.

6.2 Training Data Size

The experiments to be presented in this section
are designed to measure the effect of training data
size. We select Arabic web for this set of experi-
ments. Since the original Arabic-to-English train-
ing data LDC2006G05 is a small one, we switch to
LDC2006E25, which has about 3.5M target words
in total. We randomly select 125K, 250K, 500K, 1M
and 2M sub-sets from the whole data set. A larger
one always includes a smaller one. We still tune on
expected BLEU, and test on BLEU, %BL and ME-
TEOR.

The average BLEU improvement on test sets is
about 0.6 on the 125K set, but it gradually dimin-
ishes. For better observation, we draw the curves of
BLEU improvement along with significance test re-
sults for each training set. As shown in Figure 6 and
7, more improvement is observed with fewer train-
ing data. This fits well with fact that the baseline MT
model suffers more on the sparse data problem with
smaller training data. The reason why the improve-
ment diminishes on the full data set could be that the
rough approximation with 200 most frequent tem-
plates cannot fully take advantage of this paradigm,
which will be discussed in the next section.

622



MODEL SIZE TUNE TEST-1 TEST-2
BLEU %BL MET BLEU %BL MET BLEU %BL MET

Arabic-to-English web
baseline

125K
8.54 2.96 28.87 7.41 2.82 26.95 11.29 5.06 31.37

factorized 8.99 3.44 30.40 7.92 3.57 28.63 12.04 6.06 32.87
baseline

250K
10.18 4.70 32.21 8.94 4.35 30.31 13.71 6.93 35.14

factorized 10.57 4.96 33.22 9.34 4.78 31.51 14.02 7.28 36.25
baseline

500K
12.18 5.84 35.59 10.82 5.77 33.62 16.48 8.30 38.73

factorized 12.40 6.01 36.15 11.14 5.96 34.38 16.76 8.53 39.27
baseline

1M
13.95 7.17 38.49 12.48 7.12 36.56 18.86 10.00 42.18

factorized 14.14 7.41 38.99 12.66 7.34 37.14 19.11 10.29 42.56
baseline

2M
15.74 8.38 41.15 14.18 8.17 39.26 20.96 11.95 45.18

factorized 15.92 8.81 41.51 14.34 8.25 39.68 21.42 12.05 45.51
baseline

3.5M
16.95 9.76 43.03 15.47 9.08 41.28 22.83 13.24 47.05

factorized 17.07 9.99 43.18 15.49 8.77 41.41 22.72 13.10 47.23

Table 2: Experimental results on Arabic web. %BL stands for BLEU scores for documents whose BLEU scores are
in the bottom 75% to 90% range of all documents. MET stands for METEOR scores.
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Figure 6: BLEU Improvement with 95% confidence
range by using factorized grammars on TEST-1.

6.3 Example Templates

Figure 8 lists seven Arabic-to-English templates
randomly selected from the transitive verb family.
TMPL 151 is an interesting one. It helps to alleviate
the pronoun dropping problem in Arabic. However,
we notice that most of the templates in the 200 lists
are rather simple. More sophisticated solutions are
needed to go deep into the list to find out better tem-
plates in future.

It will be interesting to find an automatic or
semi-automatic way to discover source counterparts
of target treelets in the XTAG English Grammar.
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Figure 7: BLEU Improvement with 95% confidence
range by using factorized grammars on TEST-2.

Generic rules like this will be very close to hand-
craft translate rules that people have accumulated for
rule-based MT systems.

7 Conclusions and Future Work

In this paper, we proposed a novel statistical ma-
chine translation model using a factorized structure-
based translation grammar. This model not only al-
leviates the sparse data problem but only relieves the
burden on space and search, both of which are im-
minent issues for the popular phrasal and/or hierar-
chical MT systems.
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V

VB

TMPL_1

X1  V

VBD

X1

TMPL_121

TMPL_31

V  X1

for

VBG

X1

TMPL_151

TMPL_61

V  X1

VBN

by

X1

TMPL_181

TMPL_91

X1  V

VBD

X1

the

V  X1

VBD

he X1

X1  V  X2

VBZ

X1 X2

Figure 8: Randomly selected Arabic-to-English templates from the transitive verb family.

We took low-resource language translation, espe-
cially X-to-English translation tasks, for case study.
We designed a method to exploit family informa-
tion in the XTAG English Grammar to facilitate the
extraction of factorized rules. We tested the new
model on low-resource translation, and the use of
factorized models showed significant improvement
in BLEU on systems with 200K words of bi-lingual
training data of various language pairs and genres.

The factorized translation grammar proposed here
shows an interesting way of using richer syntactic
resources, with high potential for future research.

In future, we will explore various learning meth-
ods for better estimation of families, templates and
lexical items. The target linguistic knowledge that
we used in this paper will provide a nice starting
point for unsupervised learning algorithms.

We will also try to further exploit the factorized
representation with discriminative learning. Fea-
tures defined on templates and families will have
good generalization capability.
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