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Abstract

Minimum Error Rate Training is the algo-
rithm for log-linear model parameter train-
ing most used in state-of-the-art Statistical
Machine Translation systems. In its original
formulation, the algorithm uses N-best lists
output by the decoder to grow theTransla-
tion Pool that shapes the surface on which
the actual optimization is performed. Recent
work has been done to extend the algorithm
to use the entire translation lattice built by
the decoder, instead of N-best lists. We pro-
pose here a third, intermediate way, consist-
ing in growing the translation pool using sam-
ples randomly drawn from the translation lat-
tice. We empirically measure a systematic im-
provement in the BLEU scores compared to
training using N-best lists, without suffering
the increase in computational complexity as-
sociated with operating with the whole lattice.

1 Introduction

Most state-of-the-art Statistical Machine Translation
(SMT) systems are based on a log-linear model of
the conditional probability of generating a certain
translation given a specific source sentence. More
specifically, the conditional probability of a transla-
tion e and a word alignmenta given a source sen-
tencef is modeled as:

∗The work behind this paper was done during an intern-
ship at the Xerox Research Centre Europe. The author was par-
tially supported by NSF through Grant CCF-0643593 and the
AFOSR Young Investigator Research Program.

P (e, a|f) ∝ exp

(

K
∑

k=1

λkhk (e,a,f)

)

(1)

where thehk(e,a,f) are feature functionsprovid-
ing complementary sources of information on the
quality of the produced translation (and alignment).
Once such a model is known: thedecoder(i.e. the
actual translation program), which builds a transla-
tion by searching in the space of all possible transla-
tions the one that maximizes the conditional proba-
bility:

(e∗, a∗) = arg max
e,a

K
∑

k=1

λkhK(e,a,f) (2)

where we have taken into account that the exponen-
tial is monotonic.

The parametersλk determine the relative impor-
tance of the different feature functions in the global
score. Best results are typically obtained by search-
ing in the space of all possible parameter vectorsλ̄

for the one that minimizes the error on a held-out
development dataset for which one or more refer-
ence human translations are available, as measured
by some automatic measure. This procedure is re-
ferred to asMinimum Error Rate Training (MERT).

1.1 Minimum Error Rate Training on N-best
Lists

The most widespread MERT algorithm is the one
described in (Och, 2003). This algorithm starts
by initializing the parameter vector̄λ. For each
source sentence in the development set, the decoder
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is used to initialize a translation pool with a list of N-
best scoring candidate translations according to the
model. Using this pool and the corresponding refer-
ence translations then, an optimization procedure is
run to update the parameter vector to aλ̄′ with re-
duced error. The decoder is then invoked again, the
new output N-best list is merged into the translation
pool, and the procedure is iterated. The algorithm
stops either after a predefined number of iterations
or upon convergence, which is reached when no new
element is added to the translation pool of any sen-
tence, or when the size of the update in the parameter
vector is below a threshold.

The error measure minimized at each iteration is
usually BLEU (Papineni et al., 2002). BLEU essen-
tially measures the precision with which the trans-
lation produced by a system recovers n-grams of
different orders from the available reference trans-
lation(s), used as a gold standard.

The optimization procedure that is run within
each iteration on the growing translation pools is
based on the key observation that BLEU only de-
pends on the single translation receiving the highest
score by the translation model (which would be the
one shown to the receipient) in the translation pool.
This in turn means that, for any given sentence, its
contribution to BLEU changes only when the value
of the parameters change in such a way that the sen-
tence ranking first according to the model switches
from one to another. This situation does not change
when one considers all the sentences in a develop-
ment set instead of just one: while varying theλ̄

vector, the BLEU score changes only when there is
a change at the top of the ranking of the alternatives
for at least one sentence in the set. In other words,
BLEU is piece-wise constant in̄λ. MERT then pro-
ceeds by performing an iterative line search by fix-
ing each time the value of all components ofλ̄ but
one1: for such a free parameter a global optimum
can be identified by enumerating all the points that
cause a change in BLEU. The value of the compo-
nent is then fixed at the middle of an interval with
maximum BLEU, and the procedure is iterated un-
til convergence. Since the error function is highly
irregular, and the iterative line search is not guaran-

1More generally, one can select each time a combination of
coordinates identifying a line in the parameter space, and is not
restricted to a coordinate direction.

teed to converge to a global optimum, the procedure
is repeated many times with different initializations,
and the best convergence point is retained.

The MERT algorithm suffers from the following
problem: it assumes at each iteration that the set
of candidates with a chance to make it to the top
(for some value of the parameter vector) is well
represented in the translation pool. If the transla-
tion pool is formed in the standard way by merg-
ing N-best lists, this assumption is easily violated in
practice. Indeed, the N-best list often contains only
candidates displaying minor differences, and repre-
sents only a very small sample of alternative possi-
ble translations, strongly biased by the current pa-
rameter setting.

Recognizing this shortcoming, Macherey et al.
(2008) extended the MERT algorithm so as to use
the whole set of candidate translations compactly
represented in the search lattice produced by the de-
coder, instead of only a N-best list of candidates
extracted from it. This is achieved via an elegant
but relatively heavy dynamic programming algo-
rithm that propagates sufficient statistics (calleden-
velopes) throughout the whole search graph. The re-
ported theoretical worst-case complexity of this al-
gorithm isO(|V ||E| log |E|), whereV andE are the
vertex set and the edge set of the lattice respectively.

We propose here an alternative method consist-
ing in sampling a list of candidate translations from
the probability distribution induced by the transla-
tion lattice. This simple method produces a list of
candidates more representative of the complete dis-
tribution than an N-best list, side-stepping the in-
tricacies of propagating envelopes throughout the
lattice. Computational complexity increases only
marginally over the N-best list approach, while still
yielding significant improvements in final transla-
tion quality.

1.2 The translation lattice

Finding the optimal translation according to Equa-
tion 1 is NP-complete (Knight, 1999). Most phrase-
based SMT systems resort then to beam-search
heuristic algorithms for solving the problem approx-
imately. In their most widespread version, PBSMT
decoders proceed by progressively extending trans-
lation prefixes by adding one new phrase at a time,
and correspondingly “consuming” portions of the
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source sentence. Each prefix is associated with a
node in a graph, and receives a score according to
the model. Whenever two prefixes having exactly
the same possible extensions are detected, the lower-
scoring one ismergedinto the other, thus creating a
re-entrancy in the directed graph, which has then the
characteristics of alattice (Figure 1). Edges in the
lattice are labelled with the phrase-pair that was used
to perform the corresponding extension, the source
word positions that were covered in doing the ex-
tension, and the corresponding increment in model
score.

0
F

I have a
J’ai une
(1,2,3)
−12.24

bleue
(4)
...

blue

voiture
(5)
...

car

J’ai une bleue
I have a blue

(1,2,3,4)
...

2 3

1

a blue car
une voiture bleue
(3,4,5)
...

I have
J’ai
(1,2)
...

Figure 1: A lattice showing some possible translations of
the English sentence:I have a blue car. The state with
ID 0 is the start state and the one withF is the final state.

2 Related Work

Since its introduction, (Och, 2003) there has been
various suggestions for optimizing the MERT cri-
terion. Zens et al. (2007) use the MERT criterion
to optimize the N-best lists using the Downhill
Simplex Algorithm (Press, 2007). But the Down-
hill Simplex Algorithm loses its robustness as the
dimension goes up by more than 10 (Macherey
et al., 2008). Deterministic Annealing was sug-
gested by Smith and Eisner (2006) where the au-
thors propose to minimize theexpected lossor
risk. They define the expectation using a proba-
bility distribution over hypotheses that they gradu-
ally anneal to focus on the 1-best hypothesis. Dif-
ferent search strategies were investigated by Cer
et al. (2008). Work has been done to investigate a
perceptron-like online margin training for statisit-
ical machine translation (Watanabe et al., 2007).

Building on this paper, the most recent work to
our knowledge has been done by Chiang et al.
(2008). They explore the use of the Margin Infused
Relaxed Algorithm (MIRA) (Crammer and Singer,
2003; Crammer et al., 2006) algorithm instead of
MERT. Macherey et al. (2008) propose a new varia-
tion of MERT where the algorithm is tuned to work
on the whole phrase lattice instead of N-best list
only. The new algorithm constructs the error surface
of all translations that are encoded in the phrase lat-
tice. They report significant convergence improve-
ments and BLEU score gains over N-best MERT
when trained on NIST 2008 translation tasks. More
recently, this algorithm was extended to work with
hypergraphs encoding a huge number of translations
produced by MT systems based on Synchronous
Context Free Grammars (Kumar et al., 2009). All
the methods cited here work on either N-best lists or
from whole translation lattices built by the decoder.
To our knowledge, none of them proposes sampling
translations from the lattice.

3 Sampling candidate translations from
the lattice

In this section we first start by providing an intu-
ition of why we believe it is a good idea to sample
from the translation lattice, and then describe in de-
tail how we do it.

3.1 An intuitive explanation

The limited scope of n-best lists rules out many al-
ternative translations that would receive the highest
score for some values of the parameter vector. The
complete set of translations that can be produced us-
ing a fixed phrase table (also calledreachabletrans-
lations) for a given source sentence can be repre-
sented as a set of vectors in the space spanned by
the feature functions (Fig. 2). Not all such transla-
tions stand a chance to receive the highest score for
any value of the parameter vector, though. Indeed, if
translationsh, h’andh” are such thathk ≤ h′

k ≤ h′′

k

for all featurek, then there is no value of̄λ that
will give to h’ a score higher than bothh andh” .
The candidates that would rank first for some value
of the λ̄ parameter vector are those on the convex
envelope of the overall candidate set. We know of
no effective way to generate this convex envelope in
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polynomial time. The set of candidates represented
by the decoder lattice is a subset (enclosed in the
larger dashed polygon in the figure) of this set. This
subset is biased to contain translations ranking high
according to the values of the parameter vector (the
direction labelled withλ) used to produce it, because
of the pruning strategies that guide the construction
of the translation lattice. Both the N-best list and
our proposed random sample are further subsets of
the set of translations encoded in the lattice. The N-
best list is very biased towards translations that score
high with the current choice of parameters: its con-
vex envelope (the smaller dashed polygon) is very
different from the one of the complete set of trans-
lations, and also from that of the translations in the
lattice. The convex envelope of a random sample
from the translation lattice (the dotted polygon in the
figure), will generally be somewhat closer to the en-
velope of the whole lattice itself.

The curves in the figure indicate regions of con-
stant loss (e.g. iso-BLEU score, much more irregu-
larly shaped in reality than in the drawing). For this
sentence, then, the optimal choice of the parameters
would be aroundλ∗. Performing an optimization
step based on the random sample envelope would
result in a more marked update (λ′

sample) in the di-

rection of the best parameter vector than if an N-best
list is used (λ′

N-best).
Notice that Figure 2 portraits a situation with only

two features, for obvious reasons. In practice the
number of features will be substantially larger, with
values between five and twenty being common prac-
tice. In real cases, then, a substantially larger frac-
tion of reachable translations will tend to lie on the
convex envelope of the set, and not inside the convex
hull.

3.2 The sampling procedure

We propose to modify the standard MERT algorithm
and sample N candidates from the translation lattice
according to the probability distribution over paths
induced by the model, given the current setting of
the λ̄ parameters, instead of using an N-best list.
The sampling procedes from the root node of the
lattice, corresponding to an empty translation can-
didate covering no words of the source, by chosing
step by step the next edge to follow. The probability

reference

λ’
λ’

λ’

h1

h2

λ

λ∗

best in lattice

best in random sample

best in N−best list

best reachable

N−best
sample

lattice

Figure 2: Envelope of the set of reachable translations
where the model has two feature functionsh1 and h2.
The envelope of the lattice is the outer dashed polygon,
while the envelope of the N-best list is the inner one. Us-
ing the whole lattice as translation pool will result in a
more marked update towards the optimal parameters. The
random sample from the lattice is enclosed by the dotted
line. If we use it, we can intuitively expect updates to-
wards the optimum of intermediate effectiveness between
those of the N-best list method and those of the lattice
method.

distribution for each possible follow-up is the poste-
rior probability of following the edge given the path
prefix derived from the lattice: it is obtained via a
preliminary backward sweep.

Since feature functions are incremental over the
edges by design, the non-normalized probability of
a path is given by:

P (e1, . . . , em) = e
Pm

i=1
σ(ei) (3)

where

σ(ei) =
K

∑

k=1

λkhk(ei) (4)

is thescoreof edgeei. With a small abuse of no-
tation we will also denote it asσ(nj,k), where it is
intended thatei goes from nodenj to nodenk. Let’s
denote withσ(ni) the score of nodeni, i.e. the loga-
rithm of the cumulative unnormalized probability of
all the paths in the lattice that go from nodeni to a
final node. The unnormalized probability of select-
ing nodenj starting fromni can then be expressed
recursively as follows:
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S(nj |ni) ≈ e(σ(nj)+σ(ni,j)) (5)

The scores required to compute this sampling
probabilities can be obtained by a simple backward
pass in the lattice. LetPi be the set of successors
of ni. So the total unnormalized log-probability of
reaching a final state (i.e. with a complete transla-
tion) fromni is given by the equation below.

σ(ni) = log(
∑

nj∈Pi

e(σ(nj)+σ(ni,j))) (6)

where we setσ(ni) = 0 if Pi = ∅, that is if ni

is a final node. At the end of the backward sweep,
σ(n0) contains the unnormalized cumulative prob-
ability of all paths, i.e. the partition function. No-
tice that this normalising constant cancels out when
computing local sampling probabilities for traversed
nodes in the lattice.

Once we know the transition probability (Eq. 5)
for each node, we sample by starting in the root node
of the lattice and at each step randomly selecting
among its successors, until we end in the final node.
The whole sampling procedure is repeated as many
times as the number of samples sought. After col-
lecting samples for each sentence, the whole list is
used to grow the translation pool.

Notice that when using this sampling method it is
no longer possible to use the stability of the trans-
lation pool as a stopping criterion. The MERT al-
gorithm must thus be run either for a fixed number
of iterations, or until the norm of the update to the
parameter vector goes below a threshold.

3.3 Time Complexity Analysis

For each line search in the inner loop of the MERT
algorithm, all methods considered here need to com-
pute the projection of the convex envelope that can
be scanned by leaving all components unchanged
but one2. If we use either N-best lists or random
samples to form the translation pool, andM is the
size of the translation pool, then computing the en-
velope can be done in timeO(M log M) using the
SweepLinealgorithm reproduced as Algorithm 1 in
(Macherey et al., 2008). As shown in the same ar-
ticle, the lattice method for computing the envelope

2In general, moving along a 1-dimensional subspace of the
parameter space.

is O(|V ||E| log |E|), whereV is the vertex set of the
lattice, andE is its edge set. In standard decoders
there is a maximum limitD to the allowed distor-
tion, and lattice vertices are organized inJ priority
queues3 of size at mosta, whereJ is the length of
the source sentence anda is a parameter of the de-
coder set by the user. Also, there is a limitK to
the maximum number of source words spanned by
a phrase, and only up toc alternative translations
for a same source phrase are kept in the phrase ta-
ble. Under these standard conditions, the number
of outgoing edgesE′ from each lattice vertex can
be bounded by a constant. A way to see this is by
considering that if an hypothesis is extended with a
phrase, then the extended hypothesis must end up in
a stack at mostK stacks to the right of the original
one. There are onlyaK places in these stacks, so it
must be|E′| ≤ aK.
Since the number of edges leaving each node is
bounded by a constant, it is|E| = Θ(|V |), and the
lattice method isO(|V |2 log(|V |)). The maximum
number of vertices in the lattice is limited by the
capacity of the stacks:|V | ≤ aJ . This eventually
leads to a complexity ofO(J2 log J) for the inner
loop of the lattice method.

It is interesting to observe that the complexity is
driven by the length of the source sentence in the
case of the lattice method, and by the size of the
translation pool in the case of both the N-best list
method and the random sampling method. The lat-
ter two methods are asymptotically more effective as
long as the size of the sample/N-best list grows sub-
quadratically in the length of the sentence. In most
of our experiments we keep the size of the sample
constant, independent of the length of the sentence,
but other choices can be considered. Since the num-
ber of reachable translations grows with the length
of the source sentence, length-independent samples
explore a smaller fraction of the reachable space.
Generating samples (or n-best lists) of size increas-
ing with the length of the source sentence could thus
lead to more homogeneous sampling, and possibly a
better use of CPU time.

We have so far compared methods in term of the
complexity of the innermost loop: the search for a
global optimum along a line in the parameter space.

3Traditionally referred to asstacks.
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This is indeed the most important analysis, since
the line search is repeated many times. In order to
complete the analysis, we also compare the differ-
ent methods in terms of the operations that need be
performed as part of the outer iteration, that is upon
redecoding the development set with a new parame-
ter vector.

The N-best list method requires simply construct-
ing an N-best list from the lattice. This can be done
in time linear in the sizeJ of the sentence and inN
with a backward sweep in the lattice.

The sampling method requires samplingN times
the lattice according to the probability distribution
induced by the weights on its edges. We use a
dynamic programming approach for computing the
posterior probabilities of traversing edges. In this
phase we visit each edge of the lattice exactly once,
hence this phase is linear in the number of edges
in the lattice, hence under the standard assumptions
above in the lengthJ of the sentence. Once posterior
probabilities are computed for the lattice, we need
to sampleN paths from it, each of which is com-
posed of at mostJ edges4. Under standard assump-
tions, randomly selecting the next edge to follow at
each lattice node can be done in constant time, so
the whole sampling is alsoO(NJ), like extracting
the N-best list.

No operation at all is required by the lattice
method in the outer loop, since the whole lattice is
passed over for envelope propagation to the inner
loop.

4 Experimental Results

Experiments were conducted on the Europarl corpus
with the split used for the WMT-08 shared task (Eu-
roparl training and test condition) for the language
pairs English-French (En-Fr), English-Spanish (En-
Es) and English-German (En-De), each in both di-
rections. Training corpora contain between 1.2 and
1.3 million sentence pairs each, development and
test datasets are of size 2,000. Detailed token and
type statistics can be found in Callison-Burch et al.
(2008). The Moses decoder (Koehn et al., 2007)
was used for generating lattices and n-best lists. The
maximum number of decoding iterations was set to
twelve. Since Moses was run with its lexicalised dis-

4We assume all phrase pairs cover at least one source word.
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Figure 3: Learning curves (BLEU on the development
set) for different tested conditions for English to French
(top) and French to English (bottom).

tortion model, there were 14 features. Moses L1-
normalises the parameter vector: parameter scaling
only marginally affects n-best list construction (via
threshold pruning during decoding), while it sub-
stantially impacts sampling.

For each of the six configurations, we compared
the BLEU score on the test data when optimizing
feature weights with MERT using n-best and ran-
dom samples of size 100 and 200. In all cases we
used 20 random restarts for MERT. Results are pre-
sented in Table 1. We also ran non systematic ex-
periments on some of the configurations with larger
samples and n-best lists, with results changing very
little from the respective 200 cases: we do not report
them here.

Learning curves (BLEU on the development set)
are shown in Figure 3. Learning curves for the other
tested language pairs follow a similar pattern.
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5 Analysis of results

All differences of the test scores between optimiz-
ing the parameters using nbest-200 lists and from
randomly sampled lists of size 200 were found to
be statisitically significant at 0.05 level at least. We
used Approximate Randomization Test (Riezler and
Maxwell, 2005) for the purpose, random sampling
being done 1000 times.

S-T NB-100 RS-100 NB-200 RS-200
En-Fr 32.47 31.36 32.32 32.76
Fr-En 32.43 31.77 32.46 32.91
En-Es 29.21 28.98 29.65 30.19
Es-En 30.97 30.41 31.22 31.66
En-De 20.36 19.92 20.55 20.93
De-En 27.48 26.98 27.30 27.62

Table 1: Test set BLEU Scores for six different “Source-
Target” Pairs

Somewhat surprisingly, while random sampling
with sample size of 200 yields overall the best re-
sults, random sampling with size 100 give system-
atically worse results than n-best lists of the same
size. We conjectured that n-best lists and random
samples could have complementary advantages. In-
deed, it seems intuitive that a good translation pool
should be sufficiently varied, as argued in Section
3.1. However it should also stand high chances to
contain the best reachable translation, or translations
close to the best. It might thus be that 100-best lists
are unable to provide diversity, and random samples
of size 100 to guarantee sufficient quality.

In order to test this conjecture we repeated our
experiments, but at each iteration we used the union
of a 100 random sample and a 100 n-best list. Re-
sults for this experiments are in Table 2. The cor-
responding results with random samples of size 200
are also repeated to ease comparison. Depending on
the language pair, improvements over random sam-
pling range from 0.17 (En-Es) to 0.44 (Fr-En) BLEU
points. Improvements over 200-best lists range from
0.68 (De-En) to 0.89 (Fr-En) BLEU points. These
results indicate quite clearly that N-best lists and
random samples contribute complementary infor-
mation to the translation pool: indeed, in most cases
there is very little or no overlap between the two.

Convergence curves show that RS-200, NB-100

Source-Target Mixed 100 + 100 RS-200
En-Fr 33.17 32.76
Fr-En 33.35 32.91
En-Es 30.37 30.19
Es-En 32.04 31.66
En-De 21.31 20.93
De-En 27.98 27.62

Table 2: Test set BLEU Scores for the same ’‘Source-
Target” pairs using a mixed strategy combining a 100 N-
best list and a random sample of size 100 after each round
of decoding.

and M-200 (i.e. the hybrid combination) systemati-
cally converge to higher BLEU scores, on the devel-
opment set and on their respective translation pools,
than RS-100 and NB-200. Notice however that it is
misleading to compare scores across different trans-
lation pools, especially if these have substantially
different sizes. On the one hand adding more candi-
dates increases the chances of adding one with high
contribution to the corpus BLEU, and can thus in-
crease the achievable value of the objective function.
On the other hand, adding more candidates reduces
the freedom MERT has to find parameter values se-
lecting high-BLEU candidates for all sentences. To
see this, consider the extreme case when the transla-
tion pools are all of size one and are provided by an
oracle that gives the highest-BLEU reachable trans-
lation for each sentence: the objective surface is un-
informatively flat, all values of the parameters are
equally good, and the BLEU score on the devset is
the highest achievable one. If now we add to each
translation pool the second-best BLEU-scoring can-
didate, BLEU will be maximized in a half-space for
each sentence in the development set: MERT will try
to selectλ in the intersection of all the half-spaces, if
this is not empty, but will have to settle for a lower-
scoring compromise otherwise. The larger the trans-
lation pools, the more difficult it becomes for MERT
to “make all sentences happy”. A special case of this
is when adding more candidates extends the convex
envelopes in such a way that the best candidates fall
in the interior of the convex hull. It is difficult to
tell which of the two opposing effects (the one that
tends to increase the value of the objective function
or the one that tends to depress it) is stronger in any
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given case, but from the convergence curves it would
seem that the first prevails in the case of random
samples, whereas the second wins in the case of n-
best lists. In the case of random samples going from
size 100 to 200 systematically leads to higher BLEU
score on the devsets, as more high-BLEU candidates
are drawn. In the case of n-best lists, conversely,
this leads to lower BLEU scores, as lower-BLEU (in
average) candidates are added to translation pools
providing a sharper representation of the BLEU sur-
face and growing MERT out of the “delusion” that a
given high BLEU score is actually achieveable.

In the light of this discussion, it is interesting
to observe that the value achieved by the objective
function on the development set is only a weak pre-
dictor of performance on the test set, e.g. M-200
never converges to values above those of NB-100,
but is systematically superior on the test data.

In Macherey et al. (2008) the authors observe a
dip in the value of the objective function at the first
iteration when training using n-best lists. We did
not observe this behaviour in our experiments. A
possible explanation for this resides in the larger size
of the n-best lists we use (100 or 200, compared to
50 in the cited work) and in the smaller number of
dimensions (14 instead of 20-30).

We hinted in Section 3.3 that it would seem rea-
sonable to use samples/nbest-list of size increasing
with the length of the source sentence, so as to sam-
ple reachable translations with a more uniform den-
sity across development sentences. We tested this
idea on the French to English condition, making
samples size depend linearly on the length of the
sentence, and in such a way that the average sam-
ple size is either 100 or 200. For average sample
size 100 we obtained a BLEU of 31.55 (compared
to 31.77 with the constant-size 100 random sample)
and for average size 200 31.84 (32.46 in the cor-
responding constant-size condition). While partial,
these results are not particularly encouraging w.r.t.
using variable size samples.

Finally, in order to assess the stability of the pro-
posed training procedure across variations in devel-
opment datasets, we experimented with extracting
five distinct devsets of size 2,000 each for the French
to English RS-200 condition, keeping the test set
fixed: the maximum difference we observed was of
0.33 BLEU points.

6 Conclusions

We introduced a novel variant to the well-known
MERT method for performing parameter estimation
in Statistical Machine Translation systems based on
log-linear models. This method, of straightforward
implementation, is based on sampling candidates
from the posterior distribution as approximated by
an existing translation lattice in order to progres-
sively expand thetranslation poolthat shapes the
optimization surface. This method compares favor-
ably against existing methods on different accounts.
Compared to the standard method by which N-best
lists are used to grow the translation pool, it yields
empirically better results as shown in our experi-
ments, without significant penalties in terms of com-
putational complexity. These results are in agree-
ment with the intuition that the sampling method
introduces more variety in the translation pool, and
thus allows to perform more effective parameter up-
dates towards the optimum. A hybrid strategy, con-
sisting in combining N-best lists and random sam-
ples, brings about further significant improvements,
indicating that both quality and variety are desire-
able in the translation pool that defines the optimiza-
tion surface. A possible direction to investigate in
the future consists in generalizing this hybrid strat-
egy and combining random samples where the prob-
ability distribution induced on the lattice by the cur-
rent parameters is scaled by a further temperature
parameterβ:

P ′(e, a|f) ∝ P (e, a|f)β (7)

where forβ = 1 the random samples used in this pa-
per are obtained, forβ tending to infinite the distri-
bution becomes peaked around the single best path,
thus producing samples similar to N-best lists, and
samples from other real values of the temperature
can be combined.

Compared to the method using the whole lat-
tice, the proposed approaches have a substantially
lower computational complexity under very broad
and common assumptions, and yet yield transla-
tion quality improvements of comparable magnitude
over the baseline N-best list method.

While the method presented in this paper oper-
ates on the translation lattices generated by Phrase-
Based SMT decoders, the extension to translation
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forests generated by hierarchical decoders (Chiang,
2007) seems straightforward. In that case, the back-
ward sweep for propagating unnormalized posterior
probabilities is replaced by a bottom-up sweep, and
the sampling now concerns (binary) trees instead of
paths, but the rest of the procedure is substantially
unchanged. We conjecture however that the exten-
sion to translation forests would be less competitive
compared to working with the whole packed forest
(as in (Kumar et al., 2009)) than lattice sampling is
compared to working with the whole lattice. The
reason we believe this is that hierarchical models
lead to much more spurious ambiguity than phrase-
based models, so that both the N-best method and
the sampling method explore a smaller portion of the
candidate space compared to the compact represen-
tation of all the candidate translations in a beam.
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