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Abstract

A word in one language can be translated to
zero, one, or several words in other languages.
Using word fertility features has been shown
to be useful in building word alignment mod-
els for statistical machine translation. We built
a fertility hidden Markov model by adding fer-
tility to the hidden Markov model. This model
not only achieves lower alignment error rate
than the hidden Markov model, but also runs
faster. It is similar in some ways to IBM
Model 4, but is much easier to understand. We
use Gibbs sampling for parameter estimation,
which is more principled than the neighbor-
hood method used in IBM Model 4.

1 Introduction

IBM models and the hidden Markov model (HMM)
for word alignment are the most influential statistical
word alignment models (Brown et al., 1993; Vogel et
al., 1996; Och and Ney, 2003). There are three kinds
of important information for word alignment mod-
els: lexicality, locality andfertility. IBM Model 1
uses only lexical information; IBM Model 2 and the
hidden Markov model take advantage of both lexi-
cal and locality information; IBM Models 4 and 5
use all three kinds of information, and they remain
the state of the art despite the fact that they were de-
veloped almost two decades ago.

Recent experiments on large datasets have shown
that the performance of the hidden Markov model is
very close to IBM Model 4. Nevertheless, we be-
lieve that IBM Model 4 is essentially a better model
because it exploits the fertility of words in the tar-

get language. However, IBM Model 4 is so com-
plex that most researches use the GIZA++ software
package (Och and Ney, 2003), and IBM Model 4 it-
self is treated as a black box. The complexity in IBM
Model 4 makes it hard to understand and to improve.
Our goal is to build a model that includes lexicality,
locality, and fertility; and, at the same time, to make
it easy to understand. We also want it to be accurate
and computationally efficient.

There have been many years of research on word
alignment. Our work is different from others in
essential ways. Most other researchers take either
the HMM alignments (Liang et al., 2006) or IBM
Model 4 alignments (Cherry and Lin, 2003) as in-
put and perform post-processing, whereas our model
is a potential replacement for the HMM and IBM
Model 4. Directly modeling fertility makes our
model fundamentally different from others. Most
models have limited ability to model fertility. Liang
et al. (2006) learn the alignment in both translation
directions jointly, essentially pushing the fertility to-
wards 1. ITG models (Wu, 1997) assume the fer-
tility to be either zero or one. It can model phrases,
but the phrase has to be contiguous. There have been
works that try to simulate fertility using the hidden
Markov model (Toutanova et al., 2002; Deng and
Byrne, 2005), but we prefer to model fertility di-
rectly.

Our model is a coherent generative model that
combines the HMM and IBM Model 4. It is easier to
understand than IBM Model 4 (see Section 3). Our
model also removes several undesired properties in
IBM Model 4. We use Gibbs sampling instead of a
heuristic-based neighborhood method for parameter
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estimation. Our distortion parameters are similar to
IBM Model 2 and the HMM, while IBM Model 4
uses inverse distortion (Brown et al., 1993). Our
model assumes that fertility follows a Poisson distri-
bution, while IBM Model 4 assumes a multinomial
distribution, and has to learn a much larger number
of parameters, which makes it slower and less reli-
able. Our model is much faster than IBM Model 4.
In fact, we will show that it is also faster than the
HMM, and has lower alignment error rate than the
HMM.

Parameter estimation for word alignment models
that model fertility is more difficult than for mod-
els without fertility. Brown et al. (1993) and Och
and Ney (2003) first compute the Viterbi alignments
for simpler models, then consider only some neigh-
bors of the Viterbi alignments for modeling fertil-
ity. If the optimal alignment is not in those neigh-
bors, this method will not be able find the opti-
mal alignment. We use the Markov Chain Monte
Carlo (MCMC) method for training and decoding,
which has nice probabilistic guarantees. DeNero et
al. (2008) applied the Markov Chain Monte Carlo
method to word alignment for machine translation;
they do not model word fertility.

2 Statistical Word Alignment Models

2.1 Alignment and Fertility

Given a source sentencefJ
1 = f1, f2, . . . , fJ and a

target sentenceeI
1 = e1, e2, . . . , eI , we define the

alignments between the two sentences as a subset of
the Cartesian product of the word positions. Fol-
lowing Brown et al. (1993), we assume that each
source word is aligned to exactly one target word.
We denote asaJ

1 = a1, a2, . . . , aJ the alignments
betweenfJ

1 andeI
1. When a wordfj is not aligned

with any worde, aj is 0. For convenience, we add
an empty wordǫ to the target sentence at position0
(i.e., e0 = ǫ). However, as we will see, we have
to add more than one empty word for the HMM.
In order to compute the “jump probability” in the
HMM model, we need to know the position of the
aligned target word for the previous source word. If
the previous source word aligns to an empty word,
we could use the position of the empty word to indi-
cate the nearest previous source word that does not
align to an empty word. For this reason, we use a

total of I + 1 empty words for the HMM model1.
Moore (2004) also suggested adding multiple empty
words to the target sentence for IBM Model 1. After
we addI+1 empty words to the target sentence, the
alignment is a mapping from source to target word
positions:

a : j → i, i = aj

wherej = 1, 2, . . . , J and i = 1, 2, . . . , 2I + 1.
Words from positionI + 1 to 2I + 1 in the target
sentence are all empty words.

We allow each source word to align with exactly
one target word, but each target word may align with
multiple source words.

The fertility φi of a wordei at positioni is defined
as the number of aligned source words:

φi =
J

∑

j=1

δ(aj , i)

whereδ is the Kronecker delta function:

δ(x, y) =

{

1 if x = y

0 otherwise

In particular, the fertility of all empty words in
the target sentence is

∑2I+1
i=I+1 φi. We defineφǫ ≡

∑2I+1
i=I+1 φi. For a bilingual sentence paire2I+1

1 and

f
J
1 , we have

∑I
i=1 φi + φǫ = J .

The inverted alignments for positioni in the tar-
get sentence are a setBi, such that each element in
Bi is aligned withi, and all alignments ofi are in
Bi. Inverted alignments are explicitly used in IBM
Models 3, 4 and 5, but not in our model, which is
one reason that our model is easier to understand.

2.2 IBM Model 1 and HMM

IBM Model 1 and the HMM are both generative
models, and both start by defining the probabil-
ity of alignments and source sentence given the
target sentence:P (aJ

1 , fJ
1 |e

2I+1
1 ); the data likeli-

hood can be computed by summing over alignments:

1If fj−1 does not align with an empty word andfj aligns
with an empty word, we want to record the position of the target
word thatfj−1 aligns with. There areI + 1 possibilities:fj is
the first word in the source sentence, orfj−1 aligns with one of
the target word.
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P (fJ
1 |e

2I+1
1 ) =

∑

aJ
1

P (aJ
1 , fJ

1 |e
2I+1
1 ). The align-

mentsaJ
1 are the hidden variables. The expectation

maximization algorithm is used to learn the parame-
ters such that the data likelihood is maximized.

Without loss of generality,P (aJ
1 , fJ

1 |e
2I+1
1 ) can

be decomposed intolength probabilities, distor-
tion probabilities (also called alignment probabil-
ities), andlexical probabilities (also called transla-
tion probabilities):

P (aJ
1 , fJ

1 |e
2I+1
1 )

= P (J |e2I+1
1 )

J
∏

j=1

P (aj , fj |f
j−1
1 , a

j−1
1 , e2I+1

1 )

= P (J |e2I+1
1 )

J
∏

j=1

(

P (aj |f
j−1
1 , a

j−1
1 , e2I+1

1 ) ×

P (fj |f
j−1
1 , a

j
1, e

2I+1
1 )

)

where P (J |e2I+1
1 ) is a length probability,

P (aj |f
j−1
1 , a

j−1
1 , e2I+1

1 ) is a distortion prob-
ability and P (fj |f

j−1
1 , a

j
1, e

2I+1
1 ) is a lexical

probability.
IBM Model 1 assumes a uniform distortion prob-

ability, a length probability that depends only on the
length of the target sentence, and a lexical probabil-
ity that depends only on the aligned target word:

P (aJ
1 , fJ

1 |e
2I+1
1 ) =

P (J |I)

(2I + 1)J

J
∏

j=1

P (fj |eaj
)

The hidden Markov model assumes a length prob-
ability that depends only on the length of the target
sentence, a distortion probability that depends only
on the previous alignment and the length of the tar-
get sentence, and a lexical probability that depends
only on the aligned target word:

P (aJ
1 , fJ

1 |e
2I+1
1 ) =

P (J |I)

J
∏

j=1

P (aj |aj−1, I)P (fj |eaj
)

In order to make the HMM work correctly, we en-
force the following constraints (Och and Ney, 2003):

P (i + I + 1|i′, I) = p0δ(i, i
′)

P (i + I + 1|i′ + I + 1, I) = p0δ(i, i
′)

P (i|i′ + I + 1, I) = P (i|i′, I)

where the first two equations imply that the proba-
bility of jumping to an empty word is either0 or p0,
and the third equation implies that the probability of
jumping from a non-empty word is the same as the
probability of jumping from the corespondent empty
word.

The absolute position in the HMM is not impor-
tant, because we re-parametrize the distortion prob-
ability in terms of the distance between adjacent
alignment points (Vogel et al., 1996; Och and Ney,
2003):

P (i|i′, I) =
c(i− i′)

∑

i′′ c(i
′′ − i′)

wherec( ) is the count of jumps of a given distance.
In IBM Model 1, the word order does not mat-

ter. The HMM is more likely to align a source
word to a target word that is adjacent to the previ-
ous aligned target word, which is more suitable than
IBM Model 1 because adjacent words tend to form
phrases.

For these two models, in theory, the fertility for
a target word can be as large as the length of the
source sentence. In practice, the fertility for a target
word in IBM Model 1 is not very big except for rare
target words, which can become a garbage collector,
and align to many source words (Brown et al., 1993;
Och and Ney, 2003; Moore, 2004). The HMM is
less likely to have this garbage collector problem be-
cause of the alignment probability constraint. How-
ever, fertility is an inherent cross-language property
and these two models cannot assign consistent fer-
tility to words. This is our motivation for adding fer-
tility to these two models, and we expect that the re-
sulting models will perform better than the baseline
models. Because the HMM performs much better
than IBM Model 1, we expect that the fertility hid-
den Markov model will perform much better than
the fertility IBM Model 1. Throughout the paper,
“our model” refers to the fertility hidden Markov
model.

Due to space constraints, we are unable to pro-
vide details for IBM Models 3, 4 and 5; see Brown
et al. (1993) and Och and Ney (2003). But we want
to point out that the locality property modeled in the
HMM is missing in IBM Model 3, and is modeled
invertedly in IBM Model 4. IBM Model 5 removes
deficiency (Brown et al., 1993; Och and Ney, 2003)

598



from IBM Model 4, but it is computationally very
expensive due to the larger number of parameters
than IBM Model 4, and IBM Model 5 often provides
no improvement on alignment accuracy.

3 Fertility Hidden Markov Model

Our fertility IBM Model 1 and fertility HMM
are both generative models and start by defin-
ing the probability of fertilities (for each
non-empty target word and all empty words),
alignments, and the source sentence given
the target sentence: P (φI

1, φǫ,a
J
1 , fJ

1 |e
2I+1
1 );

the data likelihood can be computed by
summing over fertilities and alignments:
P (fJ

1 |e
2I+1
1 ) =

∑

φI
1
,φǫ,a

J
1

P (φI
1, φǫ,a

J
1 , fJ

1 |e
2I+1
1 ).

The fertility for a non-empty wordei is a random
variableφi, and we assumeφi follows a Poisson dis-
tribution Poisson(φi;λ(ei)). The sum of the fer-
tilities of all the empty words (φǫ) grows with the
length of the target sentence. Therefore, we assume
thatφǫ follows a Poisson distribution with parameter
Iλ(ǫ).

Now P (φI
1, φǫ,a

J
1 , fJ

1 |e
2I+1
1 ) can be decomposed

in the following way:

P (φI
1, φǫ,a

J
1 , fJ

1 |e
2I+1
1 )

= P (φI
1|e

2I+1
1 )P (φǫ|φ

I
1, e

2I+1
1 )×

J
∏

j=1

P (aj , fj |f
j−1
1 , a

j−1
1 , e2I+1

1 , φI
1, φǫ)

=
I

∏

i=1

λ(ei)
φie−λ(ei)

φi!
×

(Iλ(ǫ))φǫ e−Iλ(ǫ)

φǫ!
×

J
∏

j=1

(

P (aj |f
j−1
1 , a

j−1
1 , e2I+1

1 , φI
1, φǫ) ×

P (fj |f
j−1
1 , a

j
1, e

2I+1
1 , φI

1, φǫ)
)

Superficially, we only try to model the length
probability more accurately. However, we also en-
force the fertility for the same target word across the
corpus to be consistent. The expected fertility for a
non-empty wordei is λ(ei), and the expected fertil-
ity for all empty words isIλ(ǫ). Any fertility value
has a non-zero probability, but fertility values that

are further away from the mean have low probabil-
ity. IBM Models 3, 4, and 5 use a multinomial distri-
bution for fertility, which has a much larger number
of parameters to learn. Our model has only one pa-
rameter for each target word, which can be learned
more reliably.

In the fertility IBM Model 1, we assume that
the distortion probability is uniform, and the lexical
probability depends only on the aligned target word:

P (φI
1, φǫ,a

J
1 , fJ

1 |e
2I+1
1 )

=
I

∏

i=1

λ(ei)
φie−λ(ei)

φi!
×

(Iλ(ǫ))φǫ e−(Iλ(ǫ))

φǫ!
×

1

(2I + 1)J

J
∏

j=1

P (fj |eaj
) (1)

In the fertility HMM, we assume that the distor-
tion probability depends only on the previous align-
ment and the length of the target sentence, and that
the lexical probability depends only on the aligned
target word:

P (φI
1, φǫ,a

J
1 , fJ

1 |e
2I+1
1 )

=
I

∏

i=1

λ(ei)
φie−λ(ei)

φi!
×

(Iλ(ǫ))φǫ e−(Iλ(ǫ))

φǫ!
×

J
∏

j=1

P (aj |aj−1, I)P (fj |eaj
) (2)

When we computeP (fJ
1 |e

2I+1
1 ), we only sum

over fertilities that agree with the alignments:

P (fJ
1 |e

2I+1
1 ) =

∑

aJ
1

P (aJ
1 , fJ

1 |e
2I+1
1 )
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where

P (aJ
1 , fJ

1 |e
2I+1
1 )

=
∑

φI
1
,φǫ

P (φI
1, φǫ,a

J
1 , fJ

1 |e
2I+1
1 )

≈ P (φI
1, φǫ,a

J
1 , fJ

1 |e
2I+1
1 )×

I
∏

i=1

δ





J
∑

j=1

δ(aj , i), φi



×

δ





2I+1
∑

i=I+1

J
∑

j=1

δ(aj , i), φǫ



 (3)

In the last two lines of Equation 3,φǫ and each
φi are not free variables, but are determined by
the alignments. Because we only sum over fer-
tilities that are consistent with the alignments, we
have

∑

fJ
1

P (fJ
1 |e

2I+1
1 ) < 1, and our model is de-

ficient, similar to IBM Models 3 and 4 (Brown et
al., 1993). We can remove the deficiency for fertil-
ity IBM Model 1 by assuming a different distortion
probability: the distortion probability is0 if fertility
is not consistent with alignments, and uniform oth-
erwise. The total number of consistent fertility and
alignments is J !

φǫ!
∏J

j=1
φi!

. Replacing 1
(2I+1)J

with

φǫ!
∏J

j=1
φi!

J ! , we have:

P (φI
1, φǫ,a

J
1 , fJ

1 |e
2I+1
1 )

=
I

∏

i=1

λ(ei)
φie−λ(ei) ×

(Iλ(ǫ))φǫ e−(Iλ(ǫ)) ×

1

J !

J
∏

j=1

P (fj |eaj
)

In our experiments, we did not find a noticeable
change in terms of alignment accuracy by removing
the deficiency.

4 Expectation Maximization Algorithm

We estimate the parameters by maximizing
P (fJ

1 |e
2I+1
1 ) using the expectation maximization

(EM) algorithm (Dempster et al., 1977). The

auxiliary function is:

L(P (f |e), P (a|a′), λ(e), ξ1(e), ξ2(a
′))

=
∑

aJ
1

P̃ (aJ
1 |e

2I+1
1 , fJ

1 ) logP (aJ
1 , fJ

1 |e
2I+1
1 )

−
∑

e

ξ1(e)(
∑

f

P (f |e)− 1)

−
∑

a′

ξ2(a
′)(

∑

a

P (a|a′)− 1)

BecauseP (aJ
1 , fJ

1 |e
2I+1
1 ) is in the exponential

family, we get a closed form for the parameters from
expected counts:

P (f |e) =

∑

s c(f |e; f (s), e(s))
∑

f

∑

s c(f |e; f (s), e(s))
(4)

P (a|a′) =

∑

s c(a|a′; f (s), e(s))
∑

a

∑

s c(a|a′; f (s), e(s))
(5)

λ(e) =

∑

s c(φ|e; f (s), e(s))
∑

s c(k|e; f (s), e(s))
(6)

wheres is the number of bilingual sentences, and

c(f |e; fJ
1 , e2I+1

1 ) =
∑

aJ
1

P̃ (aJ
1 |f

J
1 , e2I+1

1 )×

∑

j

δ(fj , f)δ(ei, e)

c(a|a′; fJ
1 , e2I+1

1 ) =
∑

aJ
1

P̃ (aJ
1 |f

J
1 , e2I+1

1 )×

∑

j

δ(aj , a)δ(aj−1, a
′)

c(φ|e; fJ
1 , e2I+1

1 ) =
∑

aJ
1

P̃ (aJ
1 |f

J
1 , e2I+1

1 )×

∑

i

φiδ(ei, e)

c(k|e; fJ
1 , e2I+1

1 ) =
∑

i

k(ei)δ(ei, e)

These equations are for the fertility hidden
Markov model. For the fertility IBM Model 1, we
do not need to estimate the distortion probability.

5 Gibbs Sampling for Fertility HMM

Although we can estimate the parameters by using
the EM algorithm, in order to compute the expected

600



counts, we have to sum over all possible alignments
a

J
1 , which is, unfortunately, exponential. We devel-

oped a Gibbs sampling algorithm (Geman and Ge-
man, 1984) to compute the expected counts.

For each target sentencee2I+1
1 and source sen-

tence fJ
1 , we initialize the alignmentaj for each

source wordfj using the Viterbi alignments from
IBM Model 1. During the training stage, we try all
2I + 1 possible alignments foraj but fix all other
alignments.2 We choose alignmentaj with probabil-
ity P (aj |a1, · · · aj−1, aj+1 · · · aJ , fJ

1 , e2I+1
1 ), which

can be computed in the following way:

P (aj |a1, · · · , aj−1, aj+1, · · · , aJ , fJ
1 , e2I+1

1 )

=
P (aJ

1 , fJ
1 |e

2I+1
1 )

∑

aj
P (aJ

1 , fJ
1 |e

2I+1
1 )

(7)

For each alignment variableaj , we chooset sam-
ples. We scan through the corpus many times until
we are satisfied with the parameters we learned us-
ing Equations 4, 5, and 6. This Gibbs sampling
method updates parameters constantly, so it is an
“online learning” algorithm. However, this sampling
method needs a large amount of communication be-
tween machines in order to keep the parameters up
to date if we compute the expected counts in parallel.
Instead, we do “batch learning”: we fix the parame-
ters, scan through the entire corpus and compute ex-
pected counts in parallel (E-step); then combine all
the counts together and update the parameters (M-
step). This is analogous to what IBM models and
the HMM do in the EM algorithms. The algorithm
for the E-step on one machine (all machines are in-
dependent) is in Algorithm 1.

For the fertility hidden Markov model, updating
P (aJ

1 , fJ
1 |e

2I+1
1 ) whenever we change the alignment

aj can be done in constant time, so the complexity
of choosingt samples for allaj (j = 1, 2, . . . , J) is
O(tIJ). This is the same complexity as the HMM
if t is O(I), and it has lower complexity ift is a
constant. Surprisingly, we can achieve better results
than the HMM by computing as few as 1 sample
for each alignment, so the fertility hidden Markov
model is much faster than the HMM. Even when
choosing t such that our model is 5 times faster than
the HMM, we achieve better results.

2For fertility IBM Model 1, we only need to computeI + 1

values becausee2I+1

I+1
are identical empty words.

Algorithm 1: One iteration of E-step: draw
t samples for eachaj for each sentence pair
(fJ

1 , e2I+1
1 ) in the corpus

for (fJ
1 , e2I+1

1 ) in the corpus do
Initialize a

J
1 with IBM Model 1;

for t do
for j do

for i do
aj = i;
ComputeP (aJ

1 , fJ
1 |e

2I+1
1 );

end
Draw a sample foraj using
Equation 7;
Update counts;

end
end

end

We also consider initializing the alignments using
the HMM Viterbi algorithm in the E-step. In this
case, the fertility hidden Markov model is not faster
than the HMM. Fortunately, initializing using IBM
Model 1 Viterbi does not decrease the accuracy in
any noticeable way, and reduces the complexity of
the Gibbs sampling algorithm.

In the testing stage, the sampling algorithm is the
same as above except that we keep the alignments
a

J
1 that maximizeP (aJ

1 , fJ
1 |e

2I+1
1 ). We need more

samples in the testing stage because it is unlikely
to get to the optimal alignments by sampling a few
times for each alignment. On the contrary, in the
above training stage, although the samples are not
accurate enough to represent the distribution defined
by Equation 7 for each alignmentaj , it is accurate
enough for computing the expected counts, which
are defined at the corpus level. Interestingly, we
found that throwing away the fertility and using the
HMM Viterbi decoding achieves same results as the
sampling approach (we can ignore the difference be-
cause it is tiny), but is faster. Therefore, we use
Gibbs sampling for learning and the HMM Viterbi
decoder for testing.

Gibbs sampling for the fertility IBM Model 1 is
similar but simpler. We omit the details here.
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Alignment Model P R AER

en→ cn

IBM1 49.6 55.3 47.8
IBM1F 55.4 57.1 43.8
HMM 62.6 59.5 39.0

HMMF-1 65.4 59.1 37.9
HMMF-5 66.8 60.8 36.2
HMMF-30 67.8 62.3 34.9

IBM4 66.8 64.1 34.5

cn→ en

IBM1 52.6 53.7 46.9
IBM1F 55.9 56.4 43.9
HMM 66.1 62.1 35.9

HMMF-1 68.6 60.2 35.7
HMMF-5 71.1 62.2 33.5
HMMF-30 71.1 62.7 33.2

IBM4 69.3 68.5 31.1

Table 1: AER results. IBM1F refers to the fertility IBM1 and HMMF refers to the fertility HMM. We chooset = 1,
5, and30 for the fertility HMM.
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Figure 1: AER comparison (en→cn)
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Figure 3: Training time comparison. The training time for each model is calculated from scratch. For example, the
training time of IBM Model 4 includes the training time of IBMModel 1, the HMM, and IBM Model 3.
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6 Experiments

We evaluated our model by computing the word
alignment and machine translation quality. We use
the alignment error rate (AER) as the word align-
ment evaluation criterion. LetA be the alignments
output by word alignment system,P be a set of pos-
sible alignments, andS be a set of sure alignments
both labeled by human beings.S is a subset ofP .

Precision, recall, and AER are defined as follows:

recall =
|A ∩ S|

|S|

precision =
|A ∩ P |

|A|

AER(S, P, A) = 1−
|A ∩ S|+ |A ∩ P |

|A|+ |S|

AER is an extension to F-score. Lower AER is bet-
ter.

We evaluate our fertility models on a Chinese-
English corpus. The Chinese-English data taken
from FBIS newswire data, and has 380K sentence
pairs, and we use the first 100K sentence pairs as
our training data. We used hand-aligned data as ref-
erence. The Chinese-English data has 491 sentence
pairs.

We initialize IBM Model 1 and the fertility IBM
Model 1 with a uniform distribution. We smooth
all parameters (λ(e) andP (f |e)) by adding a small
value (10−8), so they never become too small. We
run both models for 5 iterations. AER results are
computed using the IBM Model 1 Viterbi align-
ments, and the Viterbi alignments obtained from the
Gibbs sampling algorithm.

We initialize the HMM and the fertility HMM
with the parameters learned in the 5th iteration of
IBM Model 1. We smooth all parameters (λ(e),
P (a|a′) andP (f |e)) by adding a small value (10−8).
We run both models for 5 iterations. AER results are
computed using traditional HMM Viterbi decoding
for both models.

It is always difficult to determine how many sam-
ples are enough for sampling algorithms. However,
both fertility models achieve better results than their
baseline models using a small amount of samples.
For the fertility IBM Model 1, we sample 10 times
for eachaj , and restart 3 times in the training stage;

we sample 100 times and restart 12 times in the test-
ing stage. For the fertility HMM, we sample 30
times for eachaj with no restarting in the training
stage; no sampling in the testing stage because we
use traditional HMM Viterbi decoding for testing.
More samples give no further improvement.

Initially, the fertility IBM Model 1 and fertility
HMM did not perform well. If a target worde
only appeared a few times in the training corpus, our
model cannot reliably estimate the parameterλ(e).
Hence, smoothing is needed. One may try to solve
it by forcing all these words to share a same pa-
rameterλ(einfrequent). Unfortunately, this does not
solve the problem because all infrequent words tend
to have larger fertility than they should. We solve
the problem in the following way: estimate the pa-
rameterλ(enon empty) for all non-empty words, all
infrequent words share this parameter. We consider
words that appear less than 10 times as infrequent
words.

Table 1, Figure 1, and Figure 2 shows the AER
results for different models. We can see that the fer-
tility IBM Model 1 consistently outperforms IBM
Model 1, and the fertility HMM consistently outper-
forms the HMM.

The fertility HMM not only has lower AER than
the HMM, it also runs faster than the HMM. Fig-
ure 3 show the training time for different models.
In fact, with just 1 sample for each alignment, our
model archives lower AER than the HMM, and runs
more than 5 times faster than the HMM. It is pos-
sible to use sampling instead of dynamic program-
ming in the HMM to reduce the training time with
no decrease in AER (often an increase). We con-
clude that the fertility HMM not only has better AER
results, but also runs faster than the hidden Markov
model.

We also evaluate our model by computing the
machine translation BLEU score (Papineni et al.,
2002) using the Moses system (Koehn et al., 2007).
The training data is the same as the above word
alignment evaluation bitexts, with alignments for
each model symmetrized using the grow-diag-final
heuristic. Our test is 633 sentences of up to length
50, with four references. Results are shown in Ta-
ble 2; we see that better word alignment results do
not lead to better translations.
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Model BLEU
HMM 19.55

HMMF-30 19.26
IBM4 18.77

Table 2: BLEU results

7 Conclusion

We developed a fertility hidden Markov model
that runs faster and has lower AER than the
HMM. Our model is thus much faster than IBM
Model 4. Our model is also easier to understand
than IBM Model 4. The Markov Chain Monte Carlo
method used in our model is more principled than
the heuristic-based neighborhood method in IBM
Model 4. While better word alignment results do not
necessarily correspond to better translation quality,
our translation results are comparable in translation
quality to both the HMM and IBM Model 4.
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