
Proceedings of the 2010 Conference on Empirical Methods in Natural Language Processing, pages 524–533,
MIT, Massachusetts, USA, 9-11 October 2010. c©2010 Association for Computational Linguistics

Automatic Analysis of Rhythmic Poetry
with Applications to Generation and Translation

Erica Greene
Haverford College
370 Lancaster Ave.

Haverford, PA 19041
ericagreene@gmail.com

Tugba Bodrumlu
Dept. of Computer Science
Univ. of Southern California

Los Angeles, CA 90089
bodrumlu@cs.usc.edu

Kevin Knight
Information Sciences Institute
Univ. of Southern California

4676 Admiralty Way
Marina del Rey, CA 90292

knight@isi.edu

Abstract

We employ statistical methods to analyze,
generate, and translate rhythmic poetry. We
first apply unsupervised learning to reveal
word-stress patterns in a corpus of raw poetry.
We then use these word-stress patterns, in ad-
dition to rhyme and discourse models, to gen-
erate English love poetry. Finally, we trans-
late Italian poetry into English, choosing tar-
get realizations that conform to desired rhyth-
mic patterns.

1 Introduction

When it comes to generating creative language (po-
ems, stories, jokes, etc), people have massive advan-
tages over machines:

• people can construct grammatical, sensible ut-
terances,

• people have a wide range of topics to talk
about, and

• people experience joy and heart-break.

On the other hand, machines have some minor ad-
vantages:

• a machine can easily come up with a five-
syllable word that starts withp and rhymes
with early, and

• a machine can analyze very large online text
repositories of human works and maintain
these in memory.

In this paper we concentrate on statistical methods
applied to the analysis, generation, and translation
of poetry. By analysis, we mean extracting patterns

from existing online poetry corpora. We use these
patterns to generate new poems and translate exist-
ing poems. When translating, we render target text
in a rhythmic scheme determined by the user.

Poetry generation has received research attention
in the past (Manurung et al., 2000; Gervas, 2001;
Diaz-Agudo et al., 2002; Manurung, 2003; Wong
and Chun, 2008; Tosa et al., 2008; Jiang and Zhou,
2008; Netzer et al., 2009), including the use of
statistical methods, although there is a long way
to go. One difficulty has been the evaluation of
machine-generated poetry—this continues to be a
difficulty in the present paper. Less research effort
has been spent on poetry analysis and poetry trans-
lation, which we tackle here.

2 Terms

Meter refers to the rhythmic beat of poetic text when
read aloud. Iambic is a common meter that sounds
like da-DUM da-DUM da-DUM, etc. Eachda-
DUM is called a foot. Anapest meter sounds like
da-da-DUM da-da-DUM da-da-DUM, etc.

Trimeter refers to a line with three feet, pentame-
ter to a line with five feet, etc. Examples include:

• a VE-ry NAS-ty CUT (iambic trimeter)

• shall I com-PARE thee TO a SUM-mer’s
DAY? (iambic pentameter)

• twas the NIGHT before CHRIST-mas and
ALL through the HOUSE (anapest tetrame-
ter)

Classical English sonnets are poems most often
composed of 14 lines of iambic pentameter.

524

3 Analysis

We focus on English rhythmic poetry. We define
the following analysis task:given poetic lines in
a known meter (such as sonnets written in iambic
pentameter), assign a syllable-stress pattern to each
word in each line. Making such decisions is part of
the larger task of reading poetry aloud. Later in the
paper, we will employ the concrete statistical tables
from analysis to the problems of poetry generation
and translation.

We create a test set consisting of 70 lines from
Shakespeare’s sonnets, which are written in iambic
pentameter. Here is an input line annotated with
gold output.
shall i compare thee to a summers day
| | /\ | | | /\ |
S S* S S* S S* S S* S S*

S refers to an unstressed syllable, and S* refers to
a stressed syllable. One of the authors created gold-
standard output by listening to Internet recordings
of the 70 lines and marking words according to the
speaker’s stress. The task evaluation consists ofper-
word accuracy (how many words are assigned the
correct stress pattern) andper-line accuracy (how
many lines have all words analyzed perfectly).

This would seem simple enough, if we are armed
with something like the CMU pronunciation dictio-
nary: we look up syllable-stress patterns for each
word token and lay these down on top of the se-
quence S S* S S* S S* S S* S S*. However, there
are difficulties:

• The test data contains many words that are un-
known to the CMU dictionary.

• Even when all words are known, many lines
do not seem to contain 10 syllables. Some
lines contain eleven words.

• Spoken recordings include stress reversals,
such as poin-TING instead of POIN-ting.

• Archaic pronunciations abound, such as
PROV-ed (two syllables) instead of PROVED
(one syllable).

• In usage, syllables are often subtracted (PRIS-
ner instead of PRIS-o-ner), added (SOV-e-
reign instead of SOV-reign), or merged.

• Some one-syllable words are mostly stressed,
and others mostly unstressed, but the dictio-

e→ P(m|e) → m

Figure 1: Finite-state transducer (FST) for mapping se-
quences of English words (e) onto sequences of S* and S
symbols (m), representing stressed and unstressed sylla-
bles.

nary provides no guidance. When we gener-
ate rhythmic text, it is important to use one-
syllable words properly. For example, we
would be happy for an iambic generator to
outputbig thoughts are not quite here, but not
quite big thoughts are not here.

Therefore, we take a different tack and apply un-
supervised learning to acquire word-stress patterns
directly from raw poetry, without relying on a dic-
tionary. This method easily ports to other languages,
where dictionaries may not exist and where mor-
phology is a severe complication. It may also be
used for dead languages.

For raw data, we start with all Shakespeare son-
nets (17,134 word tokens). Because our learning is
unsupervised, we do not mind including our 70-line
test set in this data (open testing).

Figures 1 and 2 show a finite-state transducer
(FST) that converts sequences of English words to
sequences of S* and S symbols. The FST’s transi-
tions initially map each English word onto all out-
put sub-sequences of lengths 1 to 4 (i.e., S, S*, S-S,
S-S*, S*-S, S*-S*, S-S-S, . . .) plus the sequences
S-S*-S-S*-S and S*-S-S*-S-S*. Initial probabilities
are set to 1/32. The FST’s main loop allows it to
process a sequence of word tokens. If the same word
appears twice in a sequence, then it may receive two
different pronunciations, since the mapping is prob-
abilistic. However, a token’s syllable/stress pattern
is chosen independently of other tokens in the se-
quence; we look at relaxing this assumption later.

We next use finite-state EM training1 to train the
machine on input/output sequences such as these:
from fairest creatures we desire increase
S S* S S* S S* S S* S S*

but thou contracted to thine own bright eyes
S S* S S* S S* S S* S S*

1All operations in this paper are carried out with the generic
finite-state toolkit Carmel (Graehl, 1997). For example, the
train-cascade command uses EM to learn probabilities in an ar-
bitrary FST cascade from end-to-end input/output string pairs.

525

Figure 2: An efficient FST implementing P(m|e). This machine maps sequences of English words onto sequences of
S* and S symbols, representing stressed and unstressed syllables. Initially every vocabulary word has 32 transitions,
each with probability 1/32. After EM training, far fewer transitions remain.

526

Figure 3: An FST that accepts any of four input meters
and deterministically normalizes its input to strict iambic
pentameter. We call this FSTnorm.

e→ P(m|e) → m→ norm → m

Figure 4: FST cascade that encodes a loose interpretation
of iambic pentameter. Thenorm FST accepts any of four
near-iambic-pentameter sequences and normalizes them
into strict iambic pentameter.

Note that the output sequences are all the same,
representing our belief that each line should be read
as iambic pentameter.2 After we train the FST,
we can use Viterbi decoding to recover the highest-
probability alignments, e.g.:
from fairest creatures we desire increase
| | /| \ | /\ /\
S S* S S* S S* S S* S S*

but thou contracted to thine own bright eyes
| | /| \ | | | | |
S S* S S* S S* S S* S S*

Note that the first example contains an error—the
wordsfairest andcreatures should each be read with
two syllables. There are many such errors. We next
improve the system in two ways: more data and bet-
ter modeling.

First, we augment the Shakespeare sonnets with
data from the websitesonnets.org, increasing the
number of word tokens from 17,134 to 235,463. The
sonnets.org data is noisier, because it contains some
non-iambic-pentameter poetry, but overall we find
that alignments improve, e.g.:
from fairest creatures we desire increase
| /\ /\ | /\ /\
S S* S S* S S* S S* S S*

Second, we loosen our model. When we listen to
recordings, we discover that not all lines are read S
S* S S* S S* S S* S S*. Indeed, some lines in our
data contain eleven words—these are unexplainable
by the EM training system. We also observe that

2We can augment the data with lines of poetry written in
meters other than iambic pentameter, so long as we supply the
desired output pattern for each input line.

Training Training Test token Test line
data tokens accuracy accuracy
Shakespeare 17,134 82.3% 55.7%
sonnets.org 235,463 94.2% 81.4%

Figure 5: Analysis task accuracy.

poets often use the wordmother (S* S) at the begin-
nings and ends of lines, where it theoretically should
not appear.

Two well-known variations explain these facts.
One is optionalinversion of the first foot (S S*
→ S* S). Second is the optional addition of an
eleventh unstressed syllable (thefeminine ending).
These variations yield four possible syllable-stress
sequences:

S S* S S* S S* S S* S S*
S* S S S* S S* S S* S S*
S S* S S* S S* S S* S S* S
S* S S S* S S* S S* S S* S

We want to offer EM the freedom to analyze lines
into any of these four variations. We therefore con-
struct a second FST (Figure 3),norm, which maps
all four sequences onto the canonical pattern S S*
S S* S S* S S* S S*. We then arrange both FSTs
in a cascade (Figure 4), and we train the whole
cascade on the same input/output sequences as be-
fore. Becausenorm has no trainable parameters, we
wind up training only the lexical mapping parame-
ters. Viterbi decoding through the two-step cascade
now reveals EM’s proposed internal meter analysis
as well as token mappings, e.g.:

to be or not to be that is the question
| | | | | | | | | /\
S S* S S* S S* S S* S S* S
| | | | | | | | | |
S S* S S* S S* S S* S S*

Figure 5 shows accuracy results on the 70-line test
corpus mentioned at the beginning of this section.
Over 94% of word tokens are assigned a syllable-
stress pattern that matches the pattern transcribed
from audio. Over 81% of whole lines are also
scanned correctly. The upper limit for whole-line
scanning under our constraints is 88.6%, because
11.4% of gold outputs do not match any of the four
patterns we allow.

We further obtain a probabilistic table of word
mappings that we can use for generation and trans-

527

P(S* S S* | altitude) = 1.00

P(S* S | creatures) = 1.00

P(S* S | pointed) = 0.95
P(S S* | pointed) = 0.05

P(S* S | prisoner) = 0.74
P(S* S S* | prisoner) = 0.26

P(S* S | mother) = 0.95
P(S* | mother) = 0.03
P(S S* | mother) = 0.02

Figure 6: Sample learned mappings between words and
syllable-stress patterns.

word P(S* | word) P(S| word)
a 0.04 0.96
the 0.06 0.94
their 0.09 0.91
mens 0.10 0.90
thy 0.10 0.90
be 0.48 0.52
me 0.49 0.51
quick 0.50 0.50
split 0.50 0.50
just 0.51 0.49
food 0.90 0.10
near 0.90 0.10
raised 0.91 0.09
dog 0.93 0.07
thought 0.95 0.05

Figure 7: Sample mappings for one-syllable words.

lation tasks. Figure 6 shows a portion of this table.
Note that P(S S*| mother) has a very small proba-
bility of 0.02. We would incorrectly learn a much
higher value if we did not loosen the iambic pen-
tameter model, as manymother tokens occur line-
initial and line-final.

Figure 7 shows which one-syllable words are
more often stressed (or unstressed) in iambic pen-
tameter poetry. Function words and possessives tend
to be unstressed, while content words tend to be
stressed, though many words are used both ways.
This useful information is not available in typical
pronunciation dictionaries.

Alignment errors still occur, especially in noisy

P(m) → m→ P(e|m) → e→ P(e) → e

Figure 8: Finite-state cascade for poetry generation.

portions of the data that are not actually written in
iambic pentameter, but also in clean portions, e.g.:

the perfect ceremony of loves rite
| /\ /|\ | | /\
S S* S S* S S* S S* S S*

The wordceremony only occurs this once in the
data, so it is willing to accept any stress pattern.
While rite is correctly analyzed elsewhere as a one-
syllable word,loves prefers S*, and this overwhelms
the one-syllable preference forrite. We can blame
our tokenizer for this, as it conflatesloves andlove’s,
despite the fact that these words have different stress
probabilities.

4 Generation

Figure 8 shows our concept of generation as a cas-
cade of weighted FSTs.

P(m) is a user-supplied model of desired
meters—normally it deterministically generates a
single string of S* and S symbols. (The user also
supplies a rhyme scheme—see below).

P(e|m) is the reverse of Section 3’s P(m|e), be-
ing a model of word selection. Its generative story
is: (1) probabilistically selectn tokens (n = 1 to 5)
from the input, (2) probabilistically select a wordw
that realizes thatn-token sequence, and (3) recurse
until the input is consumed. Instead of asking how
a given word is likely to be pronounced (e.g., S or
S*), we now ask how a given stress-pattern (e.g., S
or S*) is likely to be realized. This model is trained
with the same method described in Section 3 and is
augmented with the CMU pronunciation dictionary.

Finally, P(e) is a word-trigram model built from a
10,000-line corpus of 105 English love poems.

We select the first line of our poem from the FST
cascade’s 100,000-best list, or by hand. To gener-
ate each subsequent line, we modify the cascade and
run it again. The first modification is to incorporate
a discourse model. From our poetry corpus, we esti-
mate a word’s unigram probability given the words
on the previous line, via IBM Model 1 (Brown et
al., 1993). We modify P(e) by interpolating in these
probabilities. Second, we check if any previous line

528

The women of the night
Again and all the way
Like a mouse in the white
Not the heart of the day.

- - -
Of the bed to trust me
Around her twists the string
But i will not tell thee
Fire changes everything.

- - -
A son of the right hand confines
His uncle could have broken in
Towards the high bank and the pines
Upon the eyes and i have been

- - -
Into one of her hundred year old
Or the house in a house in a cold
The first time she met him
Like a mouse in the dim
For me to the moon and when i told

- - -
Into one of them some years before
His own man or the house in a more
The moon and when the day
Into one of the way
With the breath from the first time

she swore

Figure 9: Sample poems generated with a weighted FST
cascade.

w1, w2, ...wn needs to be rhymed with, according to
the user-supplied scheme. If so, we build an addi-
tional FST that accepts only strings whose final word
rhymes withwn. This is a reasonable approach,
though it will not, for example, rhyme...tar me with
...army. We say two non-identical words rhyme if
their phoneme strings share a common suffix that in-
cludes the last stressed vowel.

Figure 9 shows several poems that we automati-
cally generate with this scheme.

5 Translation

Automatically generated poetry can sound good
when read aloud, but it often has a “nonsense” feel to
it. According to (Gervas, 2010), creative-language
researchers interested in realization and surface lan-
guage statistics (“how to say”) have tended to grav-
itate to poetry generation, while researchers inter-
ested in characters, goals, and story-line (“what to
say”) have tended to gravitate to prose story genera-
tion.

Translation provides one way to tie things to-

i → P(e|i) → e→ P(m|e) → m → P(m) → m

Figure 10: Finite-state cascade for poetry translation.

gether. The source language provides the input
(“what to say”), and the target language can be
shaped to desired specifications (“how to say”). For
example, we may want to translate Italian sonnets
into fluent English iambic pentameter. This is cer-
tainly a difficult task for people, and one which is
generally assumed to be impossible for computers.

Here we investigate translating Dante’sDivine
Comedy (DC) from Italian into English by machine.
The poem begins:

nel mezzo del cammin di nostra vita
mi ritrovai per una selva oscura
che la via diritta era smarrita.

DC is a long sequence of such three-line stan-
zas (tercets). The meter in Italian is hendecasyl-
labic, which has ten syllables and ensures three
beats. Dante’s Italian rhyme scheme is:ABA, BCB,
CDC, etc, meaning that lines 2, 4, and 6 rhyme with
each other; lines 5, 7, and 9 rhyme with each other,
and so forth. There is also internal rhyme (e.g.,
diritta/smarrita).

Because DC has been translated many times
into English, we have examples of good outputs.
Some translations target iambic pentameter, but even
the most respected translations give up on rhyme,
since English is much harder to rhyme than Italian.
Longfellow’s translation begins:

midway upon the journey of our life
i found myself within a forest dark
for the straightforward pathway had

been lost.

We arrange the translation problem as a cascade
of WFSTs, as shown in Figure 10. We call our Ital-
ian input i. In lieu of the first WFST, we use the
statistical phrase-based machine translation (PBMT)
system Moses (Koehn et al., 2007), which generates
a target-language lattice with paths scored by P(e|i).
We send this lattice through the same P(m|e) device
we trained in Section 3. Finally, we filter the result-
ing syllable sequences with a strict, single-path, de-
terministic iambic pentameter acceptor, P(m).3 Our

3It is also possible to use a looser iambic P(m) model, as
described in Section 3.

529

Parallel Italian/English Data
Collection Word count (English)
DC-train 400,670
Il Fiore 25,995
Detto Damare 2,483
Egloghe 3,120
Misc. 557
Europarl 32,780,960

English Language Model Data
Collection Word count (English)
DC-train 400,670
poemhunter.com 686,714
poetry.eserver.org
poetrymountain.com
poetryarchive.org 58,739
everypoet.com 574,322
sonnets.org 166,465
Europarl 32,780,960

Tune and Blind Test Data (4 reference)
Collection Word count (Italian)
DC-tune 7,674
DC-test 2,861

Figure 11: Data for Italian/English statistical translation.

finite-state toolkit’s top-k paths represent the trans-
lations with the highest product of scores P(e|i) ·
P(m|e) · P(m).

In general, the P(e|i) and P(m|e) models fight
each other in ranking candidate outputs. In exper-
iments, we find that the P(e|i) preference is some-
times so strong that the P(m|e) model is pushed
into using a low-probability word-to-stress mapping.
This creates output lines that do not scan easily. We
solve this problem by assigning a higher weight to
the P(m|e) model.4

Figure 11 shows the data we used to train the
PBMT system. The vast majority of parallel Ital-
ian/English poetry is DC itself, for which we have
four English translations. We break DC up into DC-
train, DC-tune, and DC-test. We augment our target
language model with English poetry collected from
many sources. We also add Europarl data, which

4We set this weight manually to 3.0, i.e., we raise all prob-
abilities in the P(m|e) model to the power of 3.0. Setting the
weight too high results in lines that scan very well, but whose
translation quality is low.

Original:

nel mezzo del cammin di nostra vita
mi ritrovai per una selva oscura
che la via diritta era smarrita.
Phrase-based translation (PBMT):

midway in the journey of our life
i found myself within a forest dark
for the straight way was lost.
PBMT + meter model:

midway upon the journey of our life
i found myself within a forest dark
for the straightforward pathway had been lost.

Figure 12: Automatic translation of lines from Dante’s
Divine Comedy. In this test-on-train scenario, the ma-
chine reproduces lines from human translations it has
seen.

is out of domain, but which reduces the unknown
word-token rate in DC-test from 9% to 6%, and the
unknown word-type rate from 22% to 13%.

We first experiment in a test-on-train scenario,
where we translate parts of DC that are in our train-
ing set. This is a normal scenario in human poetry
translation, where people have access to previous
translations.

Figure 12 shows how we translate the first lines
of DC, first using only PBMT, then using the full
system. When we use the full system, we not only
get an output string, but also the system’s intended
scan, e.g.:

midway upon the journey of our life
/\ /\ | /\ | | |

S S* S S* S S* S S* S S*

The machine’s translation here is the same as
Longfellow’s, which is in the training data. In other
cases, we observe the machine combining existing
translations, e.g.:
i: bedi la bestia per cu io mi volsi
I5: behold the beast that made me turn aside

H1: BEHOLD THE BEAST for which i have turned back
H2: you see the beast THAT MADE ME TURN ASIDE
H3: see the beast that forced me to turn back
H4: look at the beast that drove me to turn back

I5 refs to the machine’s iambic pentameter transla-

530

tion, while H1-4 refer to human translations. The
machine also creates new translations:
i: diro‘ de laltre cose chi vho scorte
I5: i shall explain the other things i saw

H1: speak will i of the other things i saw there
H2: ill also tell THE OTHER THINGS I SAW
H3: i will recount the other things i saw
H4: i here will tell the other things i saw

We can further change the target meter to any-
thing we desire. To obtain iambic tetrameter (4-beat)
translations, we delete the last two transitions of the
P(m) model. We then get:
I4: in our life the journey way

i found myself deep on dark wood
that lost straightforward pathway had.

ah how to say the what is hard
this forest savage rough and stern
the very thought renews the fear.

Translations and scans are uneven, but we have
significant flexibility. We can even request transla-
tions that avoid the English letter A, by adding a fil-
ter to the end of the FST cascade, obtaining:
I5: in midst upon the journey of our life

i found myself within the wood obscure
<fail>

To steer clear of the adjectivedark in the second
line, the system switches fromforest to wood, so
obtain a proper scan. The third line fails because
all paths through the translation lattice contain an A
somewhere.

Translating blind-test data proves to be more dif-
ficult. We hold out Canto XXXI of DC’s Paradiso
section for testing. Figure 13 shows a portion of
the translation results. The MT system handles un-
known Italian words by passing them through to the
output. The P(m|e) meter model cannot process
those words, accounting for the I5 failure rate.

Here, we get a first look at statistical MT trans-
lating poetry into rhythmic structures—as with all
MT, there are successes and problems, and certainly
more to do.

6 Future Work

We plan to release all our of data in useful, processed
form. Below we list directions for future research.
In general, we see many interesting paths to pursue.

Analysis. Proper use of one-syllable words re-
mains tricky. Lines coming out of generation

Original:

in forma dunque di candida rosa
mi si mostrava la milizia santa
che nel suo sangue cristo fece sposa

ma laltra che volando vede e canta
la gloria di colui che la nnamora
e la bonta‘ che la fece cotanta
Human translation:

in fashion then as of a snow white rose
displayed itself to me the saintly host
whom christ in his own blood had made his bride

but the other host that flying sees and sings
the glory of him who doth enamour it
and the goodness that created it so noble
Phrase-based translation (PBMT):

in the form so rose candida
i now was shown the militia holy
that in his blood christ did bride

but the other that flying sees and sings
the glory of him that the nnamora
and the goodness that the made cotanta
PBMT + meter model:

<fail>
i now was shown the holy soldiery
that in his blood he married jesus christ

but flying sees and sings the other which
<fail>
<fail>

Figure 13: Automatic translation of blind-test data from
Dante’sDivine Comedy.

531

and translation do not always scan naturally when
read aloud by a person. We trace such errors to
the fact that our lexical probabilities are context-
independent. For example, we have:

P(S | off) = 0.39
P(S* | off) = 0.61

When we look at Viterbi alignments from the
analysis task, we see that whenoff is preceded by
the wordfar, the probabilities reverse dramatically:

P(S | off, after far) = 0.95
P(S* | off, after far) = 0.05

Similarly, the probability of stressingat is 40%
in general, but this increases to 91% when the next
word is the. Developing a model with context-
dependent probabilities may be useful not only for
improving generation and translation, but also for
improving poetry analysis itself, as measured by an-
laysis task accuracy.

Other potential improvements include the use of
prior knowledge, for example, taking word length
and spelling into account, and exploiting incomplete
pronunciation dictionary information.

Generation. Evaluation is a big open problem for
automatic poetry generation—even evaluating hu-
man poetry is difficult. Previous suggestions for au-
tomatic generation include acceptance for publica-
tion in some established venue, or passing the Tur-
ing test, i.e., confounding judges attempts to distin-
guish machine poetry from human poetry. The Tur-
ing test is currently difficult to pass with medium-
sized Western poetry.

Translation. The advantage of translation over
generation is that the source text provides a coherent
sequence of propositions and images, allowing the
machine to focus on “how to say” instead of “what
to say.” However, translation output lattices offer
limited material to work with, and as we dig deeper
into those lattices, we encounter increasingly disflu-
ent ways to string together renderings of the source
substrings.

An appealing future direction is to combine trans-
lation and generation. Rather than translating
the source text, a program may instead use the
source text for inspiration. Such a hybrid trans-
lation/generation program would not be bound to
translate every word, but rather it could more freely
combine lexical material from its translation tables

with other grammatical and lexical resources. In-
terestingly, human translators sometimes work this
way when they translate poetry—many excellent
works have been produced by people with very little
knowledge of the source language.

Paraphrasing. Recently, e→f translation tables
have been composed with f→e tables, to make
e→e tables that can paraphrase English into English
(Bannard and Callison-Burch, 2005). This makes it
possible to consider statistical translation of English
prose into English poetry.

Acknowledgments

This work was partially supported by NSF grant IIS-
0904684.

References

C. Bannard and C. Callison-Burch. 2005. Paraphrasing
with bilingual parallel corpora. InProc. ACL.

P. Brown, V. Della Pietra, S. Della Pietra, and R. Mercer.
1993. The mathematics of statistical machine trans-
lation: Parameter estimation.Computational linguis-
tics, 19(2).

B. Diaz-Agudo, P. Gervas, and P. A. Gonzalez-Calero.
2002. Poetry generation in COLIBRI. InProc. EC-
CBR.

P. Gervas. 2001. An expert system for the composition of
formal Spanish poetry.Journal of Knowledge-Based
Systems, 14:200–1.

P. Gervas. 2010. Engineering linguistic creativity: Bird
flight and jet planes. Invited talk, CALC-10.

J. Graehl. 1997. Carmel finite-state toolkit.
http://www.isi.edu/licensed-sw/carmel.

L. Jiang and M. Zhou. 2008. Generating Chinese cou-
plets using a statistical MT approach. InProc. COL-
ING.

P. Koehn, H. Hoang, A. Birch, C. Callison-Burch,
M. Federico, N. Bertoldi, B. Cowan, W. Shen,
C. Moran, R. Zens, C. Dyer, O. Bojar, A. Constantin,
and E. Herbst. 2007. Moses: open source toolkit for
statistical machine translation. InProc. ACL.

H. Manurung, G. Ritchie, and H. Thompson. 2000. To-
wards a computational model of poetry generation. In
Proc. AISB’00 Symposium on Creative and Cultural
Aspects and Applications of AI and Cognitive Science.

H. Manurung. 2003. An evolutionary algorithm ap-
proach to poetry generation. Ph.D. thesis, University
of Edinburgh.

Y. Netzer, D. Gabay, Y. Goldberg, and M. Elhadad. 2009.
Gaiku : Generating Haiku with word associations

532

norms. InProc. NAACL Workshop on Computational
Approaches to Linguistic Creativity.

N. Tosa, H. Obara, and M. Minoh. 2008. Hitch Haiku:
An interactive supporting system for composing Haiku
poem. InProc. International Conference on Enter-
tainment Computing.

M. T. Wong and A. H. W. Chun. 2008. Automatic Haiku
generation using VSM. InProc. ACACOS.

533

