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Abstract

This paper studies the problem of mining en-
tity translation, specifically, mining English
and Chinese name pairs. Existing efforts
can be categorized into (a) a transliteration-
based approach leveraging phonetic similar-
ity and (b) a corpus-based approach exploiting
bilingual co-occurrences, each of which suf-
fers from inaccuracy and scarcity respectively.
In clear contrast, we use unleveraged re-
sources of monolingual entity co-occurrences,
crawled from entity search engines, repre-
sented as two entity-relationship graphs ex-
tracted from two language corpora respec-
tively. Our problem is then abstracted as find-
ing correct mappings across two graphs. To
achieve this goal, we propose a holistic ap-
proach, of exploiting both transliteration sim-
ilarity and monolingual co-occurrences. This
approach, building upon monolingual corpora,
complements existing corpus-based work, re-
quiring scarce resources of parallel or compa-
rable corpus, while significantly boosting the
accuracy of transliteration-based work. We
validate our proposed system using real-life
datasets.

1 Introduction

Entity translation aims at mapping the entity names
(e.g., people, locations, and organizations) in source
language into their corresponding names in target
language. While high quality entity translation is es-
sential in cross-lingual information access and trans-

∗This work was done when the first two authors visited Mi-
crosoft Research Asia.

lation, it is non-trivial to achieve, due to the chal-
lenge that entity translation, though typically bear-
ing pronunciation similarity, can also be arbitrary,
e.g., Jackie Chan and Ä� (pronounced Cheng
Long). Existing efforts to address these challenges
can be categorized into transliteration- and corpus-
based approaches. Transliteration-based approaches
(Wan and Verspoor, 1998; Knight and Graehl, 1998)
identify translations based on pronunciation similar-
ity, while corpus-based approaches mine bilingual
co-occurrences of translation pairs obtained from
parallel (Kupiec, 1993; Feng et al., 2004) or compa-
rable (Fung and Yee, 1998) corpora, or alternatively
mined from bilingual sentences (Lin et al., 2008;
Jiang et al., 2009). These two approaches have com-
plementary strength– transliteration-based similar-
ity can be computed for any name pair but cannot
mine translations of little (or none) phonetic simi-
larity. Corpus-based similarity can support arbitrary
translations, but require highly scarce resources of
bilingual co-occurrences, obtained from parallel or
comparable bilingual corpora.

In this paper, we propose a holistic approach,
leveraging both transliteration- and corpus-based
similarity. Our key contribution is to replace the
use of scarce resources of bilingual co-occurrences
with the use of untapped and significantly larger
resources of monolingual co-occurrences for trans-
lation. In particular, we extract monolingual co-
occurrences of entities from English and Chinese
Web corpora, which are readily available from en-
tity search engines such as PeopleEntityCube1, de-
ployed by Microsoft Research Asia. Such engine

1http://people.entitycube.com

430



automatically extracts people names from text and
their co-occurrences to retrieve related entities based
on co-occurrences. To illustrate, Figure 1(a) demon-
strates the query result for “Bill Gates,” retrieving
and visualizing the “entity-relationship graph” of re-
lated people names that frequently co-occur with
Bill in English corpus. Similarly, entity-relationship
graphs can be built over other language corpora, as
Figure 1(b) demonstrates the corresponding results
for the same query, from Renlifang2 on Chinese Web
corpus. From this point on, for the sake of simplic-
ity, we refer to English and Chinese graphs, simply
as Ge and Gc respectively. Though we illustrate with
English-Chinese pairs in the paper, our method can
be easily adapted to other language pairs.

In particular, we propose a novel approach of ab-
stracting entity translation as a graph matching prob-
lem of two graphs Ge and Gc in Figures 1(a) and (b).
Specifically, the similarity between two nodes ve

and vc in Ge and Gc is initialized as their transliter-
ation similarity, which is iteratively refined based on
relational similarity obtained from monolingual co-
occurrences. To illustrate this, an English news ar-
ticle mentioning “Bill Gates” and “Melinda Gates”
evidences a relationship between the two entities,
which can be quantified from their co-occurrences
in the entire English Web corpus. Similarly, we
can mine Chinese news articles to obtain the re-
lationships between “��·��” and “�ôH·�
�”. Once these two bilingual graphs of people and
their relationships are harvested, entity translation
can leverage these parallel relationships to further
evidence the mapping between translation pairs, as
Figure 1(c) illustrates.

To highlight the advantage of our proposed ap-
proach, we compare our results with commercial
machine translators (1) Engkoo3 developed in Mi-
crosoft Research Asia and (2) Google Translator4.
In particular, Figure 2 reports the precision for two
groups– “heads” that belong to top-100 popular peo-
ple (determined by the number of hits), among ran-
domly sampled 304 people names5 from six graph
pairs of size 1,000 each, and the remaining “tails”.
Commercial translators such as Google, leveraging

2http://renlifang.msra.cn
3http://www.engkoo.com
4http://translate.google.com
5See Section 4 for the sampling process.
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Figure 2: Comparison for Head and Tail datasets

bilingual co-occurrences that are scarce for tails,
show significantly lower precision for tails. Mean-
while, our work, depending solely on monolin-
gual co-occurrences, shows high precision, for both
heads and tails.

Our focus is to boost translation accuracy for
long tails with non-trivial Web occurrences in each
monolingual corpus, but not with much bilingual co-
occurrences, e.g., researchers publishing actively in
two languages but not famous enough to be featured
in multi-lingual Wikipedia entries or news articles.
As existing translators are already highly accurate
for popular heads, this focus well addresses the re-
maining challenges for entity translation.

To summarize, we believe that this paper has the
following contributions:

• We abstract entity translation problem as
a graph mapping between entity-relationship
graphs in two languages.

• We develop an effective matching algo-
rithm leveraging both pronunciation and co-
occurrence similarity. This holistic approach
complements existing approaches and en-
hances the translation coverage and accuracy.

• We validate the effectiveness of our approach
using various real-life datasets.

The rest of this paper is organized as follows. Sec-
tion 2 reviews existing work. Section 3 then devel-
ops our framework. Section 4 reports experimental
results and Section 5 concludes our work.
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(a) English PeopleEntityCube Ge (b) Chinese Renlifang Gc

(c) Abstracting translation as graph mapping

Figure 1: Illustration of entity-relationship graphs

2 Related Work

In this section, we first survey related efforts, cate-
gorized into transliteration-based and corpus-based
approaches. Our approach leveraging both is com-
plementary to these efforts.

2.1 Transliteration-based Approaches
Many name translations are loosely based on
phonetic similarity, which naturally inspires
transliteration-based translation of finding the
translation with the closest pronunciation similarity,
using either rule-based (Wan and Verspoor, 1998) or
statistical (Knight and Graehl, 1998; Li et al., 2004)

approaches. However, people are free to designate
arbitrary bilingual names of little (or none) pho-
netic similarity, for which the transliteration-based
approach is not effective.

2.2 Corpus-based Approaches

Corpus-based approach can mine arbitrary transla-
tion pairs, by mining bilingual co-occurrences from
parallel and comparable bilingual corpora. Using
parallel corpora (Kupiec, 1993; Feng et al., 2004),
e.g., bilingual Wikipedia entries on the same per-
son, renders high accuracy but suffers from high
scarcity. To alleviate such scarcity, (Fung and Yee,
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1998; Shao and Ng, 2004) explore a more vast re-
source of comparable corpora, which share no par-
allel document- or sentence-alignments as in paral-
lel corpora but describe similar contents in two lan-
guages, e.g., news articles on the same event. Al-
ternatively, (Lin et al., 2008) extracts bilingual co-
occurrences from bilingual sentences, such as an-
notating terms with their corresponding translations
in English inside parentheses. Similarly, (Jiang et
al., 2009) identifies potential translation pairs from
bilingual sentences using lexical pattern analysis.

2.3 Holistic Approaches

The complementary strength of the above two ap-
proaches naturally calls for a holistic approach,
such as recent work combining transliteration-
and corpus-based similarity mining bilingual co-
occurrences using general search engines. Specifi-
cally, (Al-Onaizan and Knight, 2002) uses translit-
eration to generate candidates and then web corpora
to identify translations. Later, (Jiang et al., 2007)
enhances to use transliteration to guide web mining.

Our work is also a holistic approach, but leverag-
ing significantly larger corpora, specifically by ex-
ploiting monolingual co-occurrences. Such expan-
sion enables to translate “long-tail” people entities
with non-trivial Web occurrences in each monolin-
gual corpus, but not much bilingual co-occurrences.
Specifically, we initialize name pair similarity using
transliteration-based approach, and iteratively rein-
forces base similarity using relational similarity.

3 Our Framework

Given two graphs Ge = (Ve, Ee) and Gc = (Vc, Ec)
harvested from English and Chinese corpora respec-
tively, our goal is to find translation pairs, or a set S
of matching node pairs such that S ⊆ Ve × Vc. Let
R be a |Ve|-by-|Vc| matrix where each Rij denotes
the similarity between two nodes i ∈ Ve and j ∈ Vc.

Overall, with the matrix R, our approach consists
of the following three steps, as we will discuss in the
following three sections respectively:

1. Initialization: computing base translation sim-
ilarities Rij between two entity nodes using
transliteration similarity

2. Reinforcement model: reinforcing the trans-

lation similarities Rij by exploiting the mono-
lingual co-occurrences

3. Matching extraction: extracting the matching
pairs from the final translation similarities Rij

3.1 Initialization with Transliteration

We initialize the translation similarity Rij as the
transliteration similarity. This section explains how
to get the transliteration similarity between English
and Chinese names using an unsupervised approach.

Formally, let an English name Ne =
(e1, e2, · · · , en) and a Chinese name Nc =
(c1, c2, · · · , cm) be given, where ei is an English
word and Ne is a sequence of the words, and ci

is a Chinese character and Nc is a sequence of
the characters. Our goal is to compute a score
indicating the similarity between the pronunciations
of the two names.

We first convert Nc into its Pinyin representation
PYc = (s1, s2, · · · , sm), where si is the Pinyin rep-
resentation of ci. Pinyin is the romanization rep-
resentation of pronunciation of Chinese character.
For example, the Pinyin representation of Ne =
(“Barack”, “Obama”) is PYc =(“ba”, “la”, “ke”,
“ao”, “ba”, “ma”). The Pinyin representations of
Chinese characters can be easily obtained from Chi-
nese character pronunciation dictionary. In our ex-
periments, we use an in-house dictionary, which
contains pronunciations of 20, 774 Chinese charac-
ters. For the Chinese characters having multiple pro-
nunciations, we only use the most popular one.

Calculation of transliteration similarity between
Ne and Nc is now transformed to calculation of pro-
nunciation similarity between Ne and PYc. Because
letters in Chinese Pinyins and English strings are
pronounced similarly, we can further approximate
pronunciation similarity between Ne and PYc us-
ing their spelling similarity. In this paper, we use
Edit Distance (ED) to measure the spelling similar-
ity. Moreover, since words in Ne are transliterated
into characters in PYc independently, it is more ac-
curate to compute the ED between Ne and PYc, i.e.,
EDname(Ne, PYc), as the sum of the EDs of all
component transliteration pairs, i.e., every ei in Ne

and its corresponding transliteration (si) in PYc. In
other words, we need to first align all sj’s in PYc

with corresponding ei in Ne based on whether they
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are translations of each other. Then based on the
alignment, we can calculate EDname(Ne, PYc) us-
ing the following formula.

EDname(Ne, PYc) =
∑

i

ED(ei, esi) (1)

where esi is a string generated by concatenating all
si’s that are aligned to ei and ED(ei, esi) is the
Edit Distance between ei and esi, i.e., the mini-
mum number of edit operations (including inser-
tion, deletion and substitution) needed to transform
ei into esi. Because an English word usually con-
sists of multiple syllables but every Chinese charac-
ter consists of only one syllable, when aligning ei’s
with sj’s, we add the constraint that each ei is al-
lowed to be aligned with 0 to 4 si’s but each si can
only be aligned with 0 to 1 ei. To get the align-
ment between PYc and Ne which has the minimal
EDname(Ne, PYc), we use a Dynamic Program-
ming based algorithm as defined in the following
formula:

EDname(N
1,i
e , PY 1,j

c ) = min(

EDname(N
1,i−1
e , PY 1,j

c ) + Len(ei),

EDname(N
1,i
e , PY 1,j−1

c ) + Len(sj),

EDname(N
1,i−1
e , PY 1,j−1

c ) + ED(ei, sj),

EDname(N
1,i−1
e , PY 1,j−2

c ) + ED(ei, PY j−1,j
c ),

EDname(N
1,i−1
e , PY 1,j−3

c ) + ED(ei, PY j−2,j
c ),

EDname(N
1,i−1
e , PY 1,j−4

c ) + ED(ei, PY j−3,j
c ))

where, given a sequence X = (x1, x2, · · ·)
such that xi is a word, X i,j is the subsequence
(xi, xi+1, · · · , xj) of X and Len(X) is the number
of letters except spaces in the sequence X . For in-
stance, the minimal Edit Distance between the En-
glish name “Barack Obama” and the Chinese Pinyin
representation “ba la ke ao ba ma” is 4, as the
best alignment is: “Barack” ↔ “ba la ke” (ED: 3),
“Obama”↔ “ao ba ma” (ED: 1). Finally the translit-
eration similarity between Nc and Ne is calculated
using the following formula.

Simtl(Nc, Ne) = 1− EDname(Ne, PYc)

Len(PYc) + Len(Ne)
(2)

For example, Simtl(“Barack Obama”, “®n
.·£®j”) is 1− 4

11+12 = 0.826.

3.2 Reinforcement Model
From the initial similarity, we model our problem as
an iterative approach that iteratively reinforces the
similarity Rij of the nodes i and j from the matching
similarities of their neighbor nodes u and v.

The basic intuition is built on exploiting the sim-
ilarity between monolingual co-occurrences of two
different languages. In particular, we assume two
entities with strong relationship co-occur frequently
in both corpora. In order to express this intuition, we
formally define an iterative reinforcement model as
follows. Let Rt

ij denote the similarity of nodes i and
j at t-th iteration:

Rt+1
ij = λ

∑
(u,v)k∈Bt(i,j,θ)

Rt
uv

2k
+ (1− λ)R0

ij (3)

The model is expressed as a linear combination
of (a) the relational similarity

∑
Rt

uv/2k and (b)
transliteration similarity R0

ij . (λ is the coefficient
for interpolating two similarities.)

In the relational similarity, Bt(i, j, θ) is an or-
dered set of the best matching pairs between neigh-
bor nodes of i and ones of j such that ∀(u, v)k ∈
Bt(i, j, θ), Rt

uv ≥ θ, where (u, v)k is the match-
ing pair with k-th highest similarity score. We con-
sider (u, v) with similarity over some threshold θ,
or Rt

uv ≥ θ, as a matching pair. In this neighbor
matching process, if many-to-many matches exist,
we select only one with the greatest matching score.
Figure 3 describes such matching process more for-
mally. N(i) and N(j) are the sets of neighbor nodes
of i and j, respectively, and H is a priority queue
sorting pairs in the decreasing order of similarity
scores.

Meanwhile, note that, in order to express that
the confidence for matching (i, j) progressively con-
verges as the number of matched neighbors in-
creases, we empirically use decaying coefficient
1/2k for Rt

uv, because
∑∞

k=1 1/2k = 1.

3.3 Matching Extraction
After the convergence of the above model, we get
the |Ve|-by-|Vc| similarity matrix R∞. From this
matrix, we extract one-to-one matches maximizing
the overall similarity.

More formally, this problem can be stated as
the maximum weighted bipartite matching (West,
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Bt(i, j, θ)← {}
∀u ∈ N(i),∀v ∈ N(j) : H.push(u, v; Rt

uv)
while H is not empty do

(u, v; s)← H.pop()
if s < θ then

break
end if
if neither u nor v are matched yet then

Bt(i, j, θ)← Bt(i, j, θ) ∪ {(u, v)}
end if

end while
return Bt(i, j, θ)

Figure 3: How to get the ordered set Bt(i, j, θ)

2000)– Given two groups of entities Ve and Vc from
the two graphs Ge and Gc, we can build a weighted
bipartite graph is G = (V, E), where V = Ve ∪ Vc

and E is a set of edges (u, v) with weight R∞
uv. To

filter out null alignment, we construct only the edges
with weight R∞

uv ≥ δ. From this bipartite graph,
the maximum weighted bipartite matching problem
finds a set of pairwise non-adjacent edges S ⊆ E
such that

∑
(u,v)∈S R∞

uv is the maximum. Well-
known algorithms include Hungarian algorithm with
time complexity of O(|V |2 log |V |+ |V ||E|) (West,
2000).

In this paper, to speed up processing, we consider
a greedy alternative with the following steps– (1)
choose the pair with the highest similarity score, (2)
remove the corresponding row and column from the
matrix, and (3) repeat (1) and (2) until their match-
ing scores are over a specific threshold δ.

4 Experiments

This section reports our experimental results to eval-
uate our proposed approach. First, we report our ex-
perimental setting in Section 4.1. Second, we vali-
date the effectiveness and the scalability of our ap-
proach over a real-life dataset in Section 4.2.

4.1 Experimental Settings

This section describes (1) how we collect the En-
glish and Chinese EntityCube datasets, (2) how to
build ground-truth test datasets for evaluating our
framework, and (3) how to set up three parameters
λ, θ, and δ.

First, we crawled Ge = (Ve, Ee) and Gc =
(Vc, Ec) from English and Chinese EntityCubes.
Specifically, we built a graph pairs (Ge, Gc) expand-
ing from a “seed pair” of nodes se ∈ Ve and sc ∈ Vc

until the number of nodes for each graph becomes
1,0006. More specifically, when we build a graph
Ge by expanding from se, we use a queue Q. We
first initialize Q by pushing the seed node se. We
then iteratively pop a node ve from Q, save ve into
Ve, and push its neighbor nodes in decreasing order
of co-occurrence scores with ve. Similarly, we can
get Gc from a counterpart seed node vc. By using
this procedure, we built six graph pairs from six dif-
ferent seed pairs. In particular, the six seed nodes
are English names and its corresponding Chinese
names representing a wide range of occupation do-
mains (e.g., ‘Barack Obama,’ ‘Bill Gates,’ ‘Britney
Spears,’ ‘Bruno Senna,’ ‘Chris Paul,’ and ‘Eminem’)
as Table 1 depicts. Meanwhile, though we demon-
strate the effectiveness of the proposed method for
mining name translations in Chinese and English
languages, the method can be easily adapted to other
language pairs.

Table 1: Summary for graphs and test datasets obtained
from each seed pair

i |Ve|, |Vc| |Ti| English Name Chinese Name
1 1,000 51 Barack Obama ®n.·£®j
2 1,000 52 Bill Gates ��·��
3 1,000 40 Britney Spears Y}�·����
4 1,000 53 Bruno Senna Y0L·¬�
5 1,000 51 Chris Paul .°�·â[
6 1,000 57 Eminem �²�ð

Second, we manually searched for about 50
“ground-truth” matched translations for each graph
pair to build test datasets Ti, by randomly selecting
nodes within two hops7 from the seed pair (se, sc),
since nodes outside two hops may include nodes
whose neighbors are not fully crawled. More specif-
ically, due to our crawling process expanding to add
neighbors from the seed, the nodes close to the seed
have all the neighbors they would have in the full
graph, while those far from the node may not. In or-
der to pick the nodes that well represent the actual

6Note, this is just a default setting, which we later increase
for scalability evaluation in Figure 6.

7Note that the numbers of nodes within two hops in Ge and
Gc are 327 and 399 on average respectively.
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neighbors, we built test datasets among those within
two hops. However, this crawling is used for the
evaluation sake only, and thus does not suggest the
bias in our proposed framework. Table 1 describes
the size of such test dataset for each graph pair.

Lastly, we set up the three parameters λ, θ, and
δ using 6-fold cross validation with 6 test datasets
Ti’s of the graphs. More specifically, for each
dataset Ti, we decide λi and θi such that average
MRR for the other 5 test datasets is maximized.
(About MRR, see more details of Equation (4) in
Section 4.2.) We then decide δi such that average
F1-score is maximized. Figure 4 shows the average
MRR for λi and θi with default values θ = 0.66
and λ = 0.2. Based on these results, we set λi with
values {0.2, 0.15, 0.2, 0.15, 0.2, 0.15} that optimize
MRR in datasets T1, . . . T6, and similarly θi with
{0.67, 0.65, 0.67, 0.67, 0.65, 0.67}. We also set δi

with values {0.63, 0.63, 0.61, 0.61, 0.61, 0.61} opti-
mizing F1-score with the same default values λ =
0.2 and θ = 0.66. We can observe the variances
of optimal parameter setting values are low, which
suggests the robustness of our framework.

4.2 Experimental Results
This section reports our experimental results using
the evaluation datasets explained in previous sec-
tion. For each graph pair, we evaluated the ef-
fectiveness of (1) reinforcement model using MRR
measure in Section 4.2.1 and (2) overall framework
using precision, recall, and F1 measures in Sec-
tion 4.2.2. We also validated (3) scalability of our
framework over larger scale of graphs (with up to
five thousand nodes) in Section 4.2.3. (In all experi-
mental results, Bold numbers indicate the best per-
formance for each metric.)

4.2.1 Effectiveness of reinforcement model
We evaluated the reinforcement model over

MRR (Voorhees, 2001), the average of the recipro-
cal ranks of the query results as the following for-
mula:

MRR =
1

|Q|
∑
q∈Q

1

rankq
(4)

Each q is a ground-truth matched pair (u, v) such
that u ∈ Ve and v ∈ Vc, and rankq is the rank of the
similarity score of Ruv among all Ruk’s such that
k ∈ Vc. Q is a set of such queries. By comparing

MRRs for two matrices R0 and R∞, we can validate
the effectiveness of the reinforcement model.

• Baseline matrix (R0): using only the translit-
eration similarity score, i.e., without reinforce-
ment

• Reinforced matrix (R∞): using the reinforced
similarity score obtained from Equation (3)

Table 2: MRR of baseline and reinforced matrices

Set
MRR

Baseline R0 Reinforced R∞

T1 0.6964 0.8377
T2 0.6213 0.7581
T3 0.7095 0.7989
T4 0.8159 0.8378
T5 0.6984 0.8158
T6 0.5982 0.8011

Average 0.6900 0.8082

We empirically observed that the iterative model
converges within 5 iterations. In all experiments, we
used 5 iterations for the reinforcement.

Table 2 summarizes our experimental results. As
these figures show, MRR scores significantly in-
crease after applying our reinforcement model ex-
cept for the set T4 (on average from 69% to 81%),
which indirectly shows the effectiveness of our rein-
forcement model.

4.2.2 Effectiveness of overall framework
Based on the reinforced matrix, we evaluated

the effectiveness of our overall matching framework
using the following three measures–(1) precision:
how accurately the method returns matching pairs,
(2) recall: how many the method returns correct
matching pairs, and (3) F1-score: the harmonic
mean of precision and recall. We compared our ap-
proach with a baseline, mapping two graphs with
only transliteration similarity.

• Baseline: in matching extraction, using R0 as
the similarity matrix by bypassing the rein-
forcement step

• Ours: using R∞, the similarity matrix con-
verged by Equation (3)
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Figure 4: Parameter setup for λ, θ, and δ

In addition, we compared ours with the machine
translators of Engkoo and Google. Table 3 summa-
rizes our experimental results.

As this table shows, our approach results in the
highest precision (about 80% on average) without
compromising the best recall of Google, i.e., 61%
of Google vs. 63% of ours. Overall, our approach
outperforms others in all three measures.

Meanwhile, in order to validate the translation ac-
curacy over popular head and long-tail, as discussed
in Section 1, we separated the test data into two
groups and analyzed the effectiveness separately.
Figure 5 plots the number of hits returned for the
names from Google search engine. According to the
distribution, we separate the test data into top-100
popular people with the highest hits and the remain-
ing, denoted head and tail, respectively.
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Table 4 shows the effectiveness with both
datasets, respectively. As difference of the effective-
ness between tail and head (denoted diff ) with re-
spect to three measures shows, our approach shows
stably high precision, for both heads and tails.

4.2.3 Scalability
To validate the scalability of our approach, we

evaluated the effectiveness of our approach over the
number of nodes in two graphs. We built larger six
graph pairs (Ge, Gc) by expanding them from the
seed pairs further until the number of nodes reaches
5,000. Figure 6 shows the number of matched trans-
lations according to such increase. Overall, the num-
ber of matched pairs linearly increases as the num-
ber of nodes increases, which suggests scalability.
The ratio of node overlap in two graphs is about be-
tween 7% and 9% of total node size.
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Figure 6: Matched translations over |Ve| and |Vc|

5 Conclusion

This paper abstracted name translation problem as a
matching problem of two entity-relationship graphs.
This novel approach complements existing name
translation work, by not requiring rare resources
of parallel or comparable corpus yet outperforming
the state-of-the-art. More specifically, we combine
bilingual phonetic similarity and monolingual Web
co-occurrence similarity, to compute a holistic no-
tion of entity similarity. To achieve this goal, we de-
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Table 3: Precision, Recall, and F1-score of Baseline, Engkoo, Google, and Ours over test sets Ti

Set Precision Recall F1-score
Engkoo Google Baseline Ours Engkoo Google Baseline Ours Engkoo Google Baseline Ours

T1 0.5263 0.4510 0.5263 0.8974 0.3922 0.4510 0.1961 0.6863 0.4494 0.4510 0.2857 0.7778
T2 0.7551 0.75 0.7143 0.8056 0.7115 0.75 0.2885 0.5577 0.7327 0.75 0.4110 0.6591
T3 0.5833 0.7925 0.5556 0.7949 0.5283 0.7925 0.1887 0.5849 0.5545 0.7925 0.2817 0.6739
T4 0.5 0.45 0.7368 0.7353 0.425 0.45 0.35 0.625 0.4595 0.45 0.4746 0.6757
T5 0.6111 0.3137 0.5 0.7234 0.4314 0.3137 0.1765 0.6667 0.5057 0.3137 0.2609 0.6939
T6 0.5636 0.8947 0.6 0.8605 0.5438 0.8947 0.1053 0.6491 0.5536 0.8947 0.1791 0.74

AVG 0.5899 0.6086 0.6055 0.8028 0.5054 0.6086 0.2175 0.6283 0.5426 0.6086 0.3155 0.7034

Table 4: Precision, Recall, and F1-score of Engkoo, Google, and Ours with head and tail datasets

Method
Precision Recall F1-score

head tail diff head tail diff head tail diff
Engkoo 0.6082 0.5854 0.0229 0.59 0.4706 0.1194 0.5990 0.5217 0.0772
Google 0.75 0.5588 0.1912 0.75 0.5588 0.1912 0.75 0.5588 0.1912

Ours 0.8462 0.7812 0.0649 0.66 0.6127 0.0473 0.7416 0.6868 0.0548

veloped a graph alignment algorithm that iteratively
reinforces the matching similarity exploiting rela-
tional similarity and then extracts correct matches.
Our evaluation results empirically validated the ac-
curacy of our algorithm over real-life datasets, and
showed the effectiveness on our proposed perspec-
tive.
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