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Abstract \ intheory  in practice
phrase-based exponential quadratic
Syntax-based translation models shouid tree-to-stringT polynomial linear

principle be efficient with polynomially-sized
search space, but in practice they are often  Table 1: [main result] Time complexity of our incremen-
embarassingly slow, partly due to the cost  tal tree-to-string decoding compared with phrase-based.

of language model integration. In this paper  |n practice means “approximate search with beams.”
we borrow from phrase-based decoding the

idea to generate a translationcrementally
left-to-right, and show that for tree-to-string longer thand. This has been the standard prac-
models, with a clever encoding of deriva- —jo0'\yith phrase-based models (Koehn et al., 2007),

tion history, this method runs in average- hich fails t i . tant | dist
case polynomial-time in theory, and linear- which Tails to capture important fong-distance re-

time with beam search in practice (whereas ~ orderings like SVO-to-SOV.
phrase-based decoding is exponential-time in Syntax-based models, on the other hand, use
theory and quadratic-time in practice). Exper-  syntactic information to restrict reorderings to
iments show that, with comparable translation 5 computationally-tractable and linguistically-
quality, our tree-to-string system (in Python) iy aied subset, for example those generated by
can run more than 30 times faster than the ;
phrase-based system Moses (in C++). syr?chronous context-free grammars (Wu, 199?,
Chiang, 2007). In theory the advantage seems quite
obvious: we can now express global reorderings
(like SVO-to-VSO) in polynomial-time (as opposed
Most efforts in statistical machine translation so faf0 €xponential in phrase-based). But unfortunately,
are variants of either phrase-based or syntax-bastts polynomial complexity is super-linear (being
models. From a theoretical point of view, phrasegenerally cubic-time or worse), which is slow in
based models are neither expressive nor efficierdfactice. Furthermore, language model integration
they typically allow arbitrary permutations and re-Pecomes more expensive here since the decoder now
sort to language models to decide the best order. s to maintain target-language boundary words at
theory, this process can be reduced to the Travelifpth ends of a subtranslation (Huang and Chiang,
Salesman Problem and thus requires an exponentigl07), whereas a phrase-based decoder only needs
time algorithm (Knight, 1999). In practice, the de-t0 do this at one end since the translation is always
coder has to employ beam search to make it tractaggowing left-to-right. As a result, syntax-based
(Koehn, 2004) However, even beam search runs mOdels are often embarassingly slower than their
quadratic-time in general (see Sec. 2), unless a smafirase-based counterparts, preventing them from
distortion limit (say,d=5) further restricts the possi- becoming widely useful.
ble set of reorderings to those local ones by ruling Can we combine the merits of both approaches?
out any long-distance reorderings that have a “jumgiVhile other authors have explored the possibilities

1 Introduction

273

Proceedings of the 2010 Conference on Empirical Methods in Natural Language Processing, pages 273-283,
MIT, Massachusetts, USA, 9-11 October 2010. (©)2010 Association for Computational Linguistics



of enhancing phrase-based decoding with synta® Background: Phrase-based Decoding
aware reordering (Galley and Manning, 2008), W?/Ve will use the following running example from

are more interested in the other direction, i.e., can, . . .
hinese to English to explain both phrase-based and
syntax-based models learn from phrase-based de-

coding, so that they still model global reordering, bu§yntax-based decoding throughout this paper:
in an efficient (preferably linear-time) fashion? o BusH | yi» Stalong; juxing, le 5 huitang
Watanabe et al. (2006) is an early attempt in  Bush with Sharon hold  -ed meeting
this direction: they design a phrase-based-style de- ‘Bush held talks with Sharon’
coder for the hierarchical phrase-based model (Ch'é—
ang, 2007). However, this algorithm even with the™”
beam search still runs in quadratic-time in pracPhrase-based decoders generate partial target-
tice. Furthermore, their approach requires grammégnguage outputs in left-to-right order in the form
transformation that converts the original gramma@f hypothesegKoehn, 2004). Each hypothesis has
into an equivalent binary-branching Greibach Nora coverage vectorcapturing the source-language
mal Form, which is not always feasible in practice. Words translated so far, and can be extended into a
We take a fresh look on this problem and turn oulonger hypothesis by a phrase-pair translating an un-
focus to one particular syntax-based paradigm, tre€overed segment. This process can be formalized as
to-string translation (Liu et al., 2006; Huang et al.2 deductive system. For example, the following de-
2006), since this is the simplest and fastest amorf§!Ction step grows a hypothesis by the phrase-pair
syntax-based approaches. We develop an incremedl Stalong with Sharon covering Chinese span

tal dynamic programming algorithm and make thé1-3l:
following contributions: (o__eeeg) : (w, "Bush held talks)
(eee3eee) : (v’ “Bush held talks with Sharon” (1)

» we show that, unlike previous work, our in- _ o
cremental decoding algorithm runs in averageWhere e in the coverage vector indicates the source

case polynomial-time in theory for tree-to- word at this position is “covered” and wheteand

string models, and the beam search version rufé = w-c+d are the weights of the two hypotheses,

in linear-time in practice (see Table 1); respectiv_ely, With;_ being the cost of the phrase-pair,
and d being thedistortion cost To computed we

g_lso need to maintain the ending position of the last
hrase (thg andg in the coverage vector).

To add a bigram model, we split eaehLM item
bove into a series ofLM items; each+LM item
as the form(v,% ) wherea is the last word of the
ypothesis. Thus &LM version of (1) might be:

1 Basic Dynamic Programming Algorithm

* large-scale experiments on a tree-to-string sy
tem confirm that, with comparable translatio
quality, our incremental decoder (in Python)
can run more than 30 times faster than th
phrase-based system Moses (in C++) (Koeh
etal., 2007);

(o__ooeg,@IKS) . (1 “Bush held talks)

« furthermore, on the same tree-to-string systeny, Sharo ; .
. L : “Bush held talks with Sharon)”
incremental decoding is slightly faster than thrg.“g.“’ JHCE Y

standard cube pruning method at the same levgglhere the score of the resulting_M item
of translation quality;

w' = w + ¢+ d — log Py, (with | talk)

* this is also the first linear-time incremental dey o includes aombination costlue to the bigrams
coder that performs global reordering. formed when applying the phrase-pair. The com-
plexity of this dynamic programming algorithm for
We will first briefly review phrase-based decodyg-gram decoding i£)(2"n?|V|9~1) wheren is the
ing in this section, which inspires our incrementakentence length and’| is the English vocabulary
algorithm in the next section. size (Huang and Chiang, 2007).
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(a) Busti [yu Stalong]: [juxing le hutan],

R U |l 1-best parser
vl I el PR R B B (b) pa
:: :::: _eee_ - Iy —_—
3 oo___ eoe___ eooe_ N@l VP<®2
| /\
! ? ’ ! ’ Busti  PPe2! vpez2
Figure 1: Beam search in phrase-based decoding expands — = — 7
the hypotheses in the current bin (#2) into longer ones. P NP®!2 W As NP3
I I I I I
VP yu Shalong juxing le huitan
T ol
PP VP c a2
| | | Bust ﬁ VP
. v . —7 —
yu juxing le P NP%212 W AS NPO223
Figure 2: Tree-to-string rule; for reordering. I I ! | .
yu Shalong_ juxing le  huitan
2.2 Beam Search in Practice ro |} rg | /\/\\\

To make the exponential algorithm practical, beartd) Bush  held Np@z.z.?, with ﬁp@zm
search is the standard approximate search method [ [
(Koehn, 2004). Here we grouplLM items inton huitan Shalong
bins, with each binB; hosting at mosb items that

cover exactly; Chinese words (see Figure 1). The ra rs ¢
complexity become® (n2b) because there are ato-(€) Bush [held talks]  [with  Sharon]
tal of O(nb) items in all bins, and to expand each

|tem we need to sgan the WhOIe coverggg vep tolgigure 3: An example derivation of tree-to-string trans-
which costsO(n). This quadratic complexity is still |aion (much simplified from Mi et al. (2008)). Shaded

too slow in practice and we often set a snth#itor-  regions denote parts of the tree that matches the rule.
tion limit of dy,ax (Say, 5) so that no jumps longer

than d,.x are allowed. This method reduces the _

complexity t0O (nbdmax) but fails to capture long- quence of translation steps) that converts source

distance reorderings (Galley and Manning, 2008). (ree’ into a target-language string.
Figure 3 shows how this process works. The Chi-

3 Incremental Decoding for Tree-to-String  nese sentence (a) is first parsed into tree (b), which
Translation will be converted into an English string in 5 steps.

o _ _ _ _ First, at the root node, we apply rute preserving
We will first briefly review tree-to-string translation o top-level word-order

paradigm and then develop an incremental decoding

algorithm for it inspired by phrase-based decoding(,,) IP (z1:NP 22:VP) — 21 22
3.1 Tree-to-string Translation which results in two unfinished subtrees, NRand

A typical tree-to-string system (Liu et al., 2006;VP®? in (c). Here X®" denotes a tree node of la-
Huang et al., 2006) performs translation in twdel X at tree address (Shieber et al., 1995). (The
steps: parsing and decoding. A parser first parses thwot node has addressand the first child of node
source language input into a 1-best tiBeand the has address.1, etc.) Then rule-, grabs theBush
decoder then searches for the bastivation(a se- subtree and transliterate it into the English word
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in theory in practice 3.2 Incremental Decoding

phrase*  O(2"n* - [V]9™1) O(n*b) Can we borrow the idea of phrase-based decoding,
tree-to-str  O(nc- |[V[H9~1)) O(neb?) so that we also grow the hypothesis strictly left-
thiswork  O(nkleg() . |V|9-1)  O(ncb) to-right, and only need to maintain the rightmost
boundary words?

Table 2: Summary of time complexities of various algo- Ce i
rithms.b is the beam width} is the English vocabulary, The key intuition is to adapt the coverage-vector

and c is the number of translation rules per node. As édea from phrase-based decoding to tree-to-string

special case, phrase-based decoding with distortion limftecoding. Basically, a coverage-vector keeps track
dinax 1S O(nbdpmax ). *: incremental decoding algorithms. Of which Chinese spans have already been translated

and which have not. Similarly, here we might need
a “tree coverage-vector” that indicates which sub-
o o ] trees have already been translated and which have
“Bush”. Similarly, ruler; shown in Figure 2 is ap- ¢ gyt unlike in phrase-based decoding, we can
plied to the VP subtree, which swaps the two NP$,o¢ simply choose any arbitrary uncovered subtree
yielding the situation in (d). Finally two phrasal o, ihe next step, since rules already dictate which
rulesry andrs translate the two remaining NPs andgree to visit next. In other words what we need

finish the translation. here is not really a tree coverage vector, but more of
In this framework, decoding without languages derivation history.
model (-LM decoding) is simply a linear-time  Wwe develop this intuition into an agenda repre-
depth-first search with memoization (Huang et alsented as a stack. Since tree-to-string decoding is a
2006), since a tree of. words is also of size top-down depth-first search, we can simulate this re-
O(n) and we visit every node only once. Addingcursion with a stack of active rules, i.e., rules that are
a language model, however, slows it down signifinot completed yet. For example we can simulate the
cantly because we now have to keep track of targegerivation in Figure 3 as follows. At the root node
language boundary words, but unlike the phrasgp@ we choose rule, and push its English-side
based case in Section 2, here we have to rememhgrihe stack, with variables replaced by matched tree
both sides the leftmost and the rightmost boundanyodes, herer; for NP®! and z, for VP®2. So we
words: each node is now split inteLM items like  have the following stack
(n®* b) wheren is a tree node, and andb are left
and right English boundary words. For example, a s = [. NP1 VP92,

- - 2 .
bigram-+-LM item for node VF* might be where the dot indicates the next symbol to process

in the English word-order. Since node fPis the
first in the English word-order, we expand it first,
and push rule;, rooted at NP to the stack:

(VP@Z held x Sharor}'

This is also the case with other syntax-based models [. NP1 VP92 [, Bush]

like Hiero or GHKM: language model integration

overhead is the most significant factor that causesince the symbol right after the dot in the top rule is
syntax-based decoding to be slow (Chiang, 2007). lmword, we immediately grab it, and append it to the
theory+LM decoding isO(nc|V[*9~1), whereV  current hypothesis, which results in the new stack
denotes English vocabulary (Huang, 2007). In prac-
tice we have to resort to beam search again: at each

node we would only allow top-+LM items. With  \qy the top rule on the stack has finished (dot is at
beam search, tree-to-string plec_odmg ;Nlth an intgpq end), so we trigger a “pop” operation which pops
grated language model runs in tirGgnch”), where  yhe 1o rule and advances the dot in the second-to-

bis the size of the beam at each node, argi(max- 4, e, denoting that N®' is now completed:
imum) number of translation rules matched at each

node (Huang, 2007). See Table 2 for a summary. [NP@L, vP92],

[. NP®1 VP92 ] [Bush. ].
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stack hypothesis

[<s> . |P@6 </ s>] <s>
p [<s> . |P@6 </ s>] [. Np@l VP@2] <s>
p [<s> . 1P@e </s>] [. NpPel VP@Q] [. BUSh] <s>
5 [<s>« P9 gs5] [ NP9 VP®2] [Bush. ] <s> Bush
c [<s> . IP@e </s>] [NP@1 . VP@2] <s> Bush
p [<s> L IP@e s>] [NP@1 . VP@Q] [. held NP*22:3 with NP@2'1'2] <s> Bush
S [<s> L IP@e s>] [NP@1 . VP@2] [held . NP92:2:3 with NP@2'1'2] <s> Bush held
p [<s>« 1P «s5] [NPOL L VP®2] [held . NP®2-2-3 with NP921-2] [, talks] ~ <s> Bush held
S [<s> L IP9e o s>] [NF)@1 . VP@Q] [hE|d . NP®2:2:3 with NP@2'1'2] [talkS .] <s> Bush held talks
¢ [eos . IP9 o] [NPOL . VPO2] [held NP92-23 , with NP92-1:2] < Bush held talks
s [<s>« IP9€ <s5] [NP@ L VP?2] [held NP®2:2:3 with . NP92:1-2] <s> Bush held talks with
P [<s>« IP9 <s5] [NPCL L VP?2] [held NP®2:2:3 with . NP921-2] [, Sharon] <s> Bush held talks with
5 [<s> 4 IP®€ «s5] [NP@L, VP9?] [held NP*2:2:3 with . NP92-1-2] [Sharon]  <s> Bush held talks with Sharon
¢ [<s>« IP9€ 5] [NP@L L VP9?] [held NP®22:3 with NP®2-1-2,] <s> Bush held talks with Sharon
¢ [<s> . IP9 g s5] [NPOT VP2, ] <s> Bush held talks with Sharon
¢ [<s> IP9€ . g5 <s> Bush held talks with Sharon
S [<s> P9 s>, ] <s> Bush held talks with Sharons-

Figure 4: Simulation of tree-to-string derivation in Figu8 in the incremental decoding algorithm. Actiopspredict;
s, scan;c, complete (see Figure 5).

Item C: (s, p): w; {:step,s: stack,p: hypothesisw: weight
Equivalence ¢: (s, p) ~£: (s, p/)iff. s = andlasty_1(p) = lastg—1(p)
Axiom 0: <[<s>gi1 . €</s>], <S>g71> : 0

C:(Janf], p): w

Predet TICO (e A A B ) wr e
O Jawef], p): w
Scan C: (.. [ae.f], pe): w—logPr(e| lasty_1(p))
Complete E €<<[a[an77ﬂ]ﬂ[y]jo>p> ;uw
Goal IT| : ([<s>97 L € <isna], parss) @ w

Figure 5: Deductive system for the incremental tree-tmgtdecoding algorithm. Functiofust,_,(-) returns the
rightmostg — 1 words (forg-gram LM), andmatch(n, C(r)) tests matching of rule against the subtree rooted at
noden. C(r) and E(r) are the Chinese and English sides of ruyland functionf (n, E(r)) = [x; — n.var(i)]E(r)
replaces each variablg on the English side of the rule with the descendant npder (i) undern that matches;;.
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The next step is to expand VP, and we use rule;  Proof. The time complexity depends (in part) on the
and push its English-side “VP> heldz, with z;”  number of all possible stacks for a tree of degtiA
onto the stack, again with variables replaced bgtack is a list of rules covering a path from the root

matched nodes: node to one of the leaf nodes in the following form:
[NPL . VP92][. held NP*2-23 with NP21-2] R Ro R,
—N— N
Note that this is a reordering rule, and the stack al- Lo [oomaen] o [l

ways follows the English word order because we
generate hypothesis incrementally left-to-right. FigWheren: = € is the root node ang; is a leaf node,
ure 4 works out the full example. with stack depths < d. Each ruleR;(i > 1) ex-
We formalize this algorithm in Figure 5. EachPands node;;_i, and thus has choices by the defi-
item (s, p) consists of a stack and a hypothesis nition of grammar constamt Furthermore, each rule
p. Similar to phrase-based dynamic programmind,n the stack is actually a dotted-rule, i.e., it is associ-
only the lasy— 1 words ofp are part of the signature ated with a dot position ranging from O towherer
for decoding withg-gram LM. Each stack is a list of is the arity of the rule (length of English side of the
dotted rulesi.e., rules with dot positions indicting rule). So the total number of stacks(g(cr)?).
progress, in the style of Earley (1970). We call the Besides the stack, each state also maintaind)
last (rightmost) rule on the stack thep rule which rightmost words of the hypothesis as the language
is the rule being processed currently. The symbol afnodel signature, which amounts @(|V|¢~"). So
ter the dot in the top rule is called tmext symbgl  the total number of states @((cr)?|V[9~1). Fol-
since it is the symbol to expand or process next. Ddowing previous work (Chiang, 2007), we assume

pending on the next symbal we can perform one @ constant number of English translations for each
of the three actions: foreign word in the input sentence, 86| = O(n).

And as mentioned above, for each state, therecare

* if a is a noder, we perform a Predict action sssible expansions, so the overall time complexity
which expandg using a rule- that can pattern- g F(n,d) = c(cr)d[V]9= = O((er)@nI—1). 0

match the subtree rooted &t we pushr is to

the stack, with the dot at the beginning; We do average-case analysis below because the

« if a is an English word, we perform a Scan aciree depth (height) for a sentence rofwords is a
tion which immediately adds it to the currentrandom variable: in the worst-case it can be linear in

hypothesis, advancing the dot by one position?? (degenerated into a linear-chain), but we assume
this adversarial situation does not happen frequently,

- if the dot is at the end of the top rule, weand the average tree depthiglog n).
perform a Complete action which simply pops

stack and advance the dot in the new top rule.Theorem 1. Assume for each, the depth of a
parse tree ofn words, notatedi,,, distributes nor-

mally with logarithmic mean and variance, i.e.,
Unlike phrase-based models, we show herg ~ A/(u,,02), whereu, = O(logn) ando2 =

3.3 Polynomial Time Complexity

that incremental decoding runs in average-cas9(logn), then the average-case complexity of the
polynomial-time for tree-to-string systems. algorithm ish(n) = O(n*1°¢>()+9-1) for constant
Lemma 1. For an input sentence of words and k, thus polynomial im.

its parse tree of deptld, the worst-case complex-

ity of our algorithm isf(n,d) = c(cr)?|V|9~! = Proof. From Lemma 1 and the definition of average-
O((cr)¥n9~1), assuming relevant English vocabu-case complexity, we have

lary |[V| = O(n), and where constants r andg are

the maximum number of rules matching each tree h(n) = Eq, A (i ,02)[f (75 dn)],
node, the maximum arity of a rule, and the language-
model order, respectively. whereE,...p[-] denotes the expectation with respect
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to the random variable in distribution D.

h(n) Ea, A (n,02) [ (75 di)]
]Ednw./\f(un,a;i) [O((Cr)dnngil)]v
O(ngilEanN(un,U%) [(Cr)d"])v

O(n9 ™ Eq,, oA (1,02 [exp(dy log(cr))]) (2)

Sinced,, ~ N (un,02) is a normal distribution,
dylog(cr) ~ N(u’,a’f) is also a normal distribu-
tion, wherey’ = pu, log(er) ando’ = o, log(cr).
Thereforeexp(d,, log(cr)) is a log-normal distribu-
tion, and by the property of log-normal distribution,
its expectation isxp (1’ + 0?/2). So we have

Ed, N (pin,02/2) [exp(d, log(cr))]
exp (¢ + 0’%/2)

exp (un log(er) + o7, log?(cr) /2)

exp (O(log n) log(er) + O(logn) log®(cr) /2)
exp (O(log n) log?(cr))

exp (k(log n) log?(cr)),

for some constark

IN

exp (log nk log2("))

2(
nklog (cv).

©)

Plug it back to Equation (2), and we have the

average-case complexity

< O(ng—lnklog2(cr))

O(nk’ logz(m“)+g—1).

Ea, [f (1, dn)]
(4)

progress in terms oivords though they do make
progress on th&ee So we devise a novel progress
indicator natural for tree-to-string translation: the
number of tree nodes covered so far. Initially that
number is zero, and in a prediction step which ex-
pands node using ruler, the number increments by
|C(r)], the size of the Chinese-side treelet-ofor
example, a prediction step using rufein Figure 2
to expand VP2 will increase the tree-node count by
|C(r3)| = 6, since there are six tree nodes in that
rule (not counting leaf nodes or variables).

Scanning and completion do not make progress
in this definition since there is no new tree node
covered. In fact, since both of them are determin-
istic operations, they are treated as “closure” op-
erators in the real implementation, which means
that after a prediction, we always do as many scan-
ning/completion steps as possible until the symbol
after the dot is another node, where we have to wait
for the next prediction step.

This method has$T’| = O(n) bins where|T| is
the size of the parse tree, and each bin halidsms.
Each item can expand tonew items, so the overall
complexity of this beam search §(ncb), which is
linear in sentence length.

4 Related Work

The work of Watanabe et al. (2006) is closest in

Sincek, ¢, r andg are constants, the average-casgpirit to ours: they also design an incremental decod-

complexity is polynomial in sentence length [

The assumptiond,, ~ N(O(logn),O(logn))
will be empirically verified in Section 5.

3.4 Linear-time Beam Search

ing algorithm, but for the hierarchical phrase-based
system (Chiang, 2007) instead. While we leave de-
tailed comparison and theoretical analysis to a future
work, here we point out some obvious differences:

1. due to the difference in the underlying trans-

Though polynomial complexity is a desirable prop-
erty in theory, the degree of the polynomial,
O(log cr) might still be too high in practice, depend-
ing on the translation grammar. To make it linear-
time, we apply the beam search idea from phrase-
based again. And once again, the only question to
decide is the choice of “binning”: how to assign each
item to a particular bin, depending on their progress?
While the number of Chinese words covered is a
natural progress indicator for phrase-based, it does
not work for tree-to-string because, among the three

actions, only scanning grows the hypothesis. The 2.

prediction and completion actions do not make real

279

lation models, their algorithm runs i@ (n2b)
time with beam search in practice while ours
is linear. This is because each prediction step
now hasO(n) choices, since they need to ex-
pand nodes like VP[1, 6] as:

VP[1,6] — PP[1,i]] VP[i, 6],

where the midpointi in general hasO(n)
choices (just like in CKY). In other words, their
grammar constantbecomes)(n).

different binning criteria: we use the number of
tree nodes covered, while they stick to the orig-



inal phrase-based idea of number of Chinesalso compare our incremental decoder with the stan-
words translated; dard cube pruning approach on the same tree-to-

. . string decoder.
3. as a result, their framework requires gram- g

mar transformation into the binary-branchings 1 Data and System Preparation

Greibach Normal Form (which is not aIwaysOur training corpus consists of 1.5M sentence pairs

possible) so that the resulting grammar alwayg., o)t 38M/32M words in Chinese/English, re-
contain at least one Chinese word in each rul

vely. ) e Tt
in order for a prediction step to always mak gpectlvely We first word-align them by GIZA++ and

Our f k b trast K hen parse the Chinese sentences using the Berke-
progress. Our framework, by contrast, wor %ey sarser (Petrov and Klein, 2007). then apply
with any grammar.

the GHKM algorithm (Galley et al., 2004) to ex-
Besides, there are some other efforts less closetyact tree-to-string translation rules. We use SRILM
related to ours. As mentioned in Section 1, whilefoolkit (Stolcke, 2002) to train a trigram language
we focus on enhancing syntax-based decoding withodel with modified Kneser-Ney smoothing on the
phrase-based ideas, other authors have explored tagget side of training corpus. At decoding time,
reverse, but also interesting, direction of enhancinge again parse the input sentences into trees, and
phrase-based decoding with syntax-aware reordefonvert them into translation forest by rule pattern-
ing. For example Galley and Manning (2008) promatching (Mi et al., 2008).
pose a shift-reduce style method to allow hiearar- \We use the newswire portion of 2006 NIST MT
chical non-local reorderings in a phrase-based dgvaluation test set (616 sentences) as our develop-
coder. While this approach is certainly better thament set and the newswire portion of 2008 NIST
pure phrase-based reordering, it remains quadralgT Evaluation test set (691 sentences) as our test
in run-time with beam search. set. We evaluate the translation quality using the
Within syntax-based paradigms, cube prunin@|EU-4 metric, which is calculated by the script
(Chiang, 2007; Huang and Chiang, 2007) has beénteval-v13a.pl with its default setting which is case-
come the standard method to speed-upM de- insensitive matching ofi-grams. We use the stan-
coding, which has been shown by many authors t@ard minimum error-rate training (Och, 2003) to
be highly effective; we will be comparing our incre-tune the feature weights to maximize the system’s
mental decoder with a baseline decoder using culgt EU score on development set.
pruning in Section 5. It is also important to note \We first verify the assumptions we made in Sec-
that cube pruning and incremental decoding are n@ibn 3.3 in order to prove the theorem that tree depth
mutually exclusive, rather, they could potentially bgas a random variable) is normally-distributed with
combined to further speed up decoding. We leav@(log n) mean and variance. Qualitatively, we veri-
this point to future work. fied that for most, tree depthi(n) does look like a
Multipass coarse-to-fine decoding is another poghormal distribution. Quantitatively, Figure 6 shows
ular idea (Venugopal et al., 2007; Zhang and Gildeahat average tree height correlates extremely well
2008; Dyer and Resnik, 2010). In particular, Dyekyith 3.5 log n, while tree height variance is bounded
and Resnik (2010) uses a two-pass approach, whesgs.5 log n.
their first-pass,—LM decoding is also incremental
and polynomial-time (in the style of Earley (1970)5-2 Comparison with Cube pruning
algorithm), but their second-passl.M decoding is \We implemented our incremental decoding algo-
still bottom-up CKY with cube pruning. rithm in Python, and test its performance on the de-
velopment set. We first compare it with the stan-
dard cube pruning approach (also implemented in
To test the merits of our incremental decoder w®ython) on the same tree-to-string systerfig-
conduct large-scale experiments on a state-of-the-artm . . .
plementation of cube pruning follows (Chiang,

tree-to-string system, and compare it with the stano7; Huang and Chiang, 2007) where besides a bean size
dard phrase-based system of Moses. Furturemore whinique+LM items, there is also a hard limit (of 1000) on the

5 Experiments
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Figure 7: Comparison with cube pruning. The scatter ploa)rconfirms that our incremental decoding scales linearly
with sentence length, while cube pruning super-lineaily=(50 for both). The comparison in (b) shows that at the
same level of translation quality, incremental decodirgdightly faster than cube pruning, especially at smallerbe.
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Figure 6: Mean and variance of tree depth vs. sentenéégure 8: Comparison of our incremental tree-to-string
length. The mean depth clearly scales véithlogn, and decoder with Moses in terms of speed. Moses is shown
the variance is bounded By5 log n. with various distortion limits (0, 6, 106-co; optimal: 10).

ure 7(a) is a scatter plot of decoding times versus le. at the | t levels of t lati lit
sentence length (using beam= 50 for both sys- example, at the lowest levels of transiation quaity

tems), where we confirm that our incremental de(BLEU scores around 29.5), incremental decoding

coder scales linearly, while cube pruning has asliglﬁf‘keS only 0.12 seconds, which is about 4 times as

tendency of superlinearity. Figure 7(b) is a side—by_—aSt as cube pruning. We stress again that cube prun-

side comparison of decoding speed versus transifd a_ind incremental decoding are not. mutually ex-
tion quality (in BLEU scores), using various bea Clusive, and rather they could potentlally be com-
sizes for both system$%£10-70 for cube pruning, ined to further speed up decoding.

andb=10-110 for incremental). We can see that ing 5 Comparison with Moses

cremental decoding is slightly faster than cube prun- _
ing at the same levels of translation quality, and th¥/e also compare with the standard phrase-based

difference is more pronounced at smaller beams: f&Stem of Moses (Koehn et al., 2007), with stan-
dard settings except for the ttable limit, which we set

number of (non-unique) pops from priority queues. to 100. Figure 8 compares our incremental decoder
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system/decoder BLEU time with our incremental algorithm, and study its perfor-
Moses (optimatl;,.x=10) 29.41 10.8 mance with higher-order language models.
tree-to-str: cube pruning€10) 29.51 0.65
tree-to-str: cube pruning€20) 29.96 0.96 Acknowledgements

tree—to—stri incrementabt10)  29.54 032 \ye would like to thank David Chiang, Kevin
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