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Abstract A major weakness of many existing essay scor-
ing engines such as IntelliMetric (Elliot, 2001) and
Automated essay scoring is one of the most  |ta|ligent Essay Assessor (Landauer et al., 2003)
:mportam educathnal applications of natural is that they adopt a holistic scoring scheme, which
anguage processing. Recently, researchers ) . ) )
have begun exploring methods of scoring es- summarizes the qua_llty of an essay with a single
says with respect to particular dimensions of ~ Score and thus provides very limited feedback to
quality such as coherence, technical errors, the writer. In particular, it is not clear which di-
and relevance to prompt, but there is rela- mension of an essay (e.g., coherence, relevance)
tively little work on modeling organization. a score should be attributed to. Recent work ad-
We present a new annotated corpus and pro-  gresses this problem by scoring a particular dimen-
pose heuristic-based and learning-based ap-  gjon of essay quality such as coherence (Miltsakaki
proaches to scoring essays along the organi- . .
zation dimension, utilizing techniques that in- and Kukich, _2094)’ technical errors, and relevance
volve sequence alignment, alignment kernels, ~ (©© Prompt (Higgins et al., 2004). Automated sys-
and string kernels. tems that provide instructional feedback along mul-
tiple dimensions of essay quality such @sterion
(Burstein et al., 2004) have also begun to emerge.
Nevertheless, there is an essay scoring dimension
Automated essay scoring, the task of employingpr which few computational models have been de-
computer technology to evaluate and score writveloped —organization Organization refers to the
ten text, is one of the most important educationagtructure of an essay. A high score on organization
applications of natural language processing (NLRneans that writers introduce a topic, state their po-
(see Shermis and Burstein (2003) and Shermis et aition on that topic, support their position, and con-
(2010) for an overview of the state of the art in thisclude, often by restating their position (Silva, 1993).
task). Recent years have seen a surge of interestAnwell-organized essay is structured in a way that
this and other educational applications in the NLRogically develops an argument. Note that organi-
community, as evidenced by the panel discussiaration is a different facet of text structure than co-
on “Emerging Application Areas in Computationalherence, which is concerned with the transition of
Linguistics” at NAACL 2009, as well as increasedideas at both the global (e.g., paragraph) and local
participation in the series of workshops on “Innova{e.g., sentence) levels. While organization is an im-
tive Use of NLP for Building Educational Applica- portant dimension of essay quality, state-of-the-art
tions”. Besides its potential commercial value, auessay scoring software such as e-rater V.2 (Attali
tomated essay scoring brings about a number of rednd Burstein, 2006) employs rather simple heuristic-
atively less-studied but arguably rather challenginfgased methods for computing the score of an essay
discourse-level problems that involve the computaalong this particular dimension.
tional modeling of different facets of text structure, Our goal in this paper is to develop a compu-
such as content, coherence, and organization. tational model for the organization of student es-

1 Introduction

229

Proceedings of the 2010 Conference on Empirical Methods in Natural Language Processing, pages 229-239,
MIT, Massachusetts, USA, 9-11 October 2010. (©)2010 Association for Computational Linguistics



says. While many models of text coherence haveTopic Languages Essays
been developed in recent years (e.g., Barzilay and/ost university degrees are 13 147
Lee (2004), Barzilay and Lapata (2005), Soricut and {éoretical and do not prepare
Marcu (2006), Elsner et al. (2007)), the same is notStudents for the real Worl-d'
’ . ) ’ ) .~ They are therefore of very lit
true for text organization. One reason is the avail- e yalye.
ability of training and test data for coherence mod-The prison system is ouf
eling. Coherence models are typically evaluated ondated. No civilized society
the sentence ordering task, and hence training anghould punish its criminals: it
test data can be generated simply by scrambling theshould rehabilitate them.
order of the sentences in a text. On the other hand, if" his novel Animal Farm 10 82
is not particularly easy to find poorly organized texts S€0'9¢ Orwell wrote “All
for training and evaluating organization models. We men are equal but some are
. ) more equal than others.” How
believe that student essays are an ideal source Ofe js this today?
well- and poorly-organized texts. We evaluate our
organization model on a data set of 1003 essays an-  Taple 1: Some examples of writing topics.

notated with organization scores.

In sum, our contributions in this paper are tWoyarrative writing asks students to compose descrip-
fold. First, we address a less-studied discourse-levg,e stories,argumentative(also known aersua-
task — predicting the organization score of an essayjve) writing requires students to state their opinion
— by developing a computational model of organign a topic and to validate that opinion with convinc-
zation, thus establishing a baseline against which fihg arguments. For this reason, we selected only ar-
ture work on this task can be compared. Second, Wimentative essays rather than narrative pieces, be-
annotate a subset of our student essay corpus WiByse they contain the discourse structures and kind
organization scores and make this data set publicp organization we are interested in modeling.
available. Since progress in organization modeling 14 ensure representation across native languages
is hindered in part by the lack of a publicly anno-of the authors, we selected mostly essays written
tated corpus, we believe that our data set will be g response to topics which are well-represented in

11 103

valuable resource to the NLP community. multiple languages. This avoids many issues that
) may arise when certain vocabulary is used in re-
2 CorpusInformation sponse to a particular topic for which essays written

. by authors from only a few languages are available.
We use as our corpus the 4.5 million word Interna.—l_y y guag

tional Corpus of Learner English (ICLE) (Granger able 1 shows three of the twelve topics selected for

: . annotation. Fifteen native languages are represented
et al., 2009), which consists of more than 6000 es- guag - 'ep
the set of essays selected for annotation.

says written by university undergraduates from 181
countri_es and 16 na_tive languages who are Iearneés Corpus Annotation
of English as a Foreign Language. 91% of the ICLE
texts are argumentative. The essays we used varyg develop our essay organization model, human an-
greatly in length, containing an average of 31.1 semotators scored 1003 essays using guidelines in an
tences in 7.5 paragraphs, averaging 4.1 sentences pgsay annotation rubric. Annotators evaluated the
paragraph. About one quarter of the essays had figeganization of each essay using a numerical score
or fewer paragraphs, and another quarter contain@@m 1 to 4 at half-point increments. This contrasts
nine or more paragraphs. Similarly, about one quawith previous work on essay scoring, where the cor-
ter of essays contained 24 or fewer sentences and s is annotated with a binary decision (igopdor
longest quarter contained 36 or more sentences bad) for a given scoring dimension (e.g., Higgins et
We selected a subset consisting of 1003 essagk (2004)). Hence, our annotation scheme not only
from the ICLE to annotate and use for training angbrovides a finer-grained distinction of organization
testing of our model of essay organization. Whilegyuality (which can be important in practice), but also
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makes the prediction task more challenging. label of each paragraph in an essay would be help-
The meaning of each integer score was describéddl for predicting its organization score.

and discussed in detail. Table 2 shows the descrip- Two questions naturally arise. First, how can we

tion of each score for the organization dimension. obtain the discourse function label of each para-

graph? One way is to automatically acquire such

7 essay isvall sructured and is organized in labels from'a corpus of stl_Jde_nt essays where e_ach
a way that logically develops an argument paragraph is annotated with its dlscours_e function

3 | essay isfairly well sructured but could  label. To our knowledge, however, there is no pub-

Score | Description of Essay Organization

somewhat benefit from reorganization licly available corpus that is annotated with such in-
2 essay ispoorly structured and would formation. As a result, we will resort to labeling a
greatly benefit from reorganization paragraph with its function label heuristically.

1 essay iscompletely unstructured and re-

- g Sl Second, which paragraph function labels would
quires major reorganlzatlon

be most useful for scoring the organization of an es-

say? Based on our linguistic intuition, we identify

four potentially useful paragraph function labels: In-
Our annotators were selected from over 30 applifoduction, Body, Rebuttal, and Conclusion. Table 4

cants who were familiarized with the scoring rubricdives the descriptions of these labels.

and given sample essays to score. The six who were

Table 2: Descriptions of the meaning of each score.

most consistent with the expected scores were give/r20e! | Name | Paragraph Type ,

additional essays to annotate. To ensure consistency Introduction Isrlgtoedsu;eusthgrs’ssayog')[%ﬁ :23

in scoring, we randomly selected a large subset of main ideas P

our corpus (846 essays) to have graded by two differ="g— [ Boqy provides reasons, evidence,

ent annotators. Analysis of these doubly annotated and examples to support main

essays reveals that, though annotators only exactly ideas

agree on the organization score of an essay 29% of C | Conclusion | summarizes and concludes ar-

the time, the scores they apply are within 0.5 points guments made in body para-

in 71% of essays and within 1.0 point in 93% of es- graphs

says. Additionally, if we treat one annotator’s scores Rebuttal | considers counter-arguments
to thesis or main ideas

as a gold standard and the other annotator’s scores

as predictions, the predicted scores have a mean er- . - .
Table 4: Descriptions of paragraph function labels.

ror of 0.54 and a mean squared error of 0.50. Table 3 P paragrap

shows the number of essays that received each of th

o eSetting aside for the moment the problem of ex-
seven scores for organization.

actly how to predict an essay’s organization score
score | 1.0 1.5]2.0| 25| 3.0 | 35| 4.0 given its paragraph sequence, the problem of ob-
essays| 24 | 14 | 35 | 146 416 | 289 79 taining paragraph labels to use for this task still re-
mains. As mentioned above, we adopt a heuristic ap-

Table 3: Distribution of organization scores. proach to paragraph function labeling. The question,
then, is: what kind of knowledge sources should our
heuristics be based on? We have identified two types
of knowledge sources that are potentially useful for
As mentioned before, a high score on organizatioparagraph labeling. The first of these are positional,
means that writers introduce a topic, support theilealing with where in the essay a paragraph appears.
position, and conclude. If one or more of these eleSo for example, the first paragraph in an essay is
ments are missing or if they appear out of order (e.glikely to be an Introduction, while the last is likely
the conclusion appears before the introduction), the be a Conclusion. A paragraph in any other posi-
resulting essay will typically be considered poorlytion, on the other hand, is more likely to be a Body
organized. Hence, knowing thdiscourse function or Rebuttal paragraph.

4 Function Labeling
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Label | Name Sentence Function

P Prompt restates the prompt given to the author and contains no néeriaar opinions
T Transition | shifts the focus to new topics but contains no meaningfualrimation

H Thesis states the author’s position on the topic for which he/slagsing

M Main Idea | asserts reasons and foundational arguments that suppahietsis

E Elaboration| further explains reasons and ideas but contains no evidereamples

S Support provides evidence and examples to support the claims mautbén statements
C Conclusion| summarizes and concludes the entire argument or one of timcideas

R Rebuttal considers counter-arguments that contrast with the tloesisin ideas

(0] Solution puts to rest the questions and problems brought up by ceargements

U

Suggestion| proposes solutions the problems brought up by the argument

Table 5: Descriptions of sentence function labels.

A second potentially useful knowledge source ineach sentence function labe| we identify several
volves the types of sentences appearing in a pareatures whose presence increases our confidence
graph. This idea presupposes that, like paragraphbat a given sentence is an examplexof So for
sentences too can have discourse function labels iexample, the presence of any of the words “agree”,
dicating the logical role they play in an argument:think”, or “opinion” increases our confidence that
The sentence label schema we propose, which is dite sentence they occur inis a Thesis. If the sentence
scribed in Table 5, is based on work in discoursistead contains words such as “however”, “but”,
structure by Burstein et al. (2003), but features addar “argue”, these increase our confidence that the
tional sentence labels. sentence is a Rebuttal. The features we examine

To illustrate why these sentence function labelfr sentence labeling are not limited to words, how-
may be useful for paragraph labeling, consider §ver- Each content word the sentence shares with
paragraph containing a Thesis sentence. The pré&€ essay prompt gives us evidence that the sentence
ence of a Thesis sentence is a strong indicator thi§a restatement of the prompt. Having searched a
the paragraph containing it is either an Introductio$entence for all these clues, we finally assign the
or Conclusion. Similarly, a paragraph containinggentence the function label having the most support
Rebuttal or Solution sentences is more likely to b@mong the clues found.

a Body or Rebuttal paragraph. The heuristic rules for paragraph labeling are sim-

Hence, to obtain a paragraph’s function Iabeli,lar in nature, though they depend heavily on the

we need to first label its sentences. However, V\)gbels of a paragraphs cpmponent sentences. |If a
are faced with the same problem: how can we Okp_aragraph contains Thesis, Prompt, or Background

tain the sentence function labels? One way is taentences, the paragraph is likely to be an Introduc-

learn them from a corpus where each sentence on. However, if a paragraph contains Main Idea,

manually annotated with its sentence function Ia;‘,upport, or Conclusion sentences, it is likely to be

bel, which is the approach adopted by Burstein ét Body paragraph. Finally, as mentioned previously,

al. (2003). However, this annotated corpus is naiome positional information is used in labeling para-

publicly available. In fact, to our knowledge, theregraphs' For example, a paragraph that is the first

is no publicly-available corpus that is annotated Wm;i)aragraph in an essay is likely to be an Introduction,

sentence function labels. Consequently, we adoptbé('t a paragraph that is neither the first nor the last

heuristic approach to sentence function labeling. s likely to b? either a Rebuttal or Body paragraph.
After searching a paragraph for all these features,

Overall, we created a knowledge-lean set Qfye gather the pieces of evidence in support of each

heuristic rules labeling paragraphs and Sentence&aragraph label and assign the paragraph the label
Because many of the paragraph labeling heuristiq.ﬁaving the most suppok.

depend on the availability of sentence labels, we will
describe the sentence labeling heuristics first. For ‘Space limitations preclude a complete listing of these-para
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5 Heuristic-Based Organization Scoring very similar. The Needleman-Wunsch alignment al-

gorithm has this effect since the score of the align-

Having applied labels to each paragraph in an egsen it produces would be hurt by the facts that (1)
say, how can we use these labels to predict the &gjere js not much overlap in the sets of paragraph
say's score? Recall that the importance of each pargyais each contains, and (2) the paragraph labels
graph label stems not from the label itself, but fro”{hey do share (I and C) do not occur in the same

the sequence of labels it appears in. Motivated byqer The resulting alignment would therefore con-
this observation, we exploit a technique that is COMyzin many mismatches or indés.

monly used in bioinformatics —sequence align- If we now consider a third essay whose para-

ment While sequence alignment has also begn us%‘?aph sequence could be represented as IBRBC, a
in text and paraphra§e generation (€.g., Barzﬂay a'b%od similarity function should tell us that IBBBC
Lee (2002; 2003)), it has not been extensively a0i,4 IBRBC are very similar. The Needleman-
plied to other areas of language processing, indu%unsch alignment score between the two paragraph
ing essay scoring. In this section, we will presen&equences has this property, as the alignment al-
two heuristic apprgaches to organization SCOring{qorithm would discover that the two sequences are
one based'on_allgnlrugaragraph sequencemnd the identical except for the third paragraph label, which
other on aligningsentence sequences could be mismatched for a small penalty. We would
therefore conclude that the IBBBC and IBRBC es-
says should receive similar organization scores.
As mentioned above, our first approach to heuristic 14 fully specify how to find thek nearest neigh-
organization scoring involves aligning paragraph sesors of an essay, we need to define a similarity func-
quences. Specifically, this approach operates in tw@yn petween paragraph labels. In sequence align-
steps. Given an essayn the test set, we (1) find the ment, similarity functionS(i, 7) tells us how likely
k essays in the training set that are most similat toj; is that symboli (in our case, a paragraph label)
via paragraph sequence alignment, and then (2) pr&t| pe substituted with another symbgl While
dict the organization score efby aggregating the \ye expect that in an alignment between high-scoring
scores of its nearest neighbors obtained in the ﬁrsbssays, an Introduction paragraph is most likely to
step. Below we describe these two steps in detail. pe zjigned with another Introduction paragraph, how
First, to obtain thek nearest neighbors of, much worse should the alignment score be if an In-
we employ the Needleman-Wunsch alignment algaroduction paragraph needs to be mismatched with
rithm (Needleman and Wunsch, 1970), which comy Reputtal paragraph or replaced with an indel? We
putes a similarity score for any pair of essays b¥olve this problem by heuristically defining the sim-

finding an optimal alignment between their parajlarity function as follows:S (i, j) = 1 wheni = j,
graph sequences. To illustrate why we believe S&(i,j) = —1 wheni # j, and alsoS(i,—) =

quence alignment can help us determine which egy_ ;) — _1, where —' is an indel. In other

says are most similar, consider two example esyords, the similarity function encourages the align-
says. One essay, which we will call IBBBC, beginsnent between two identical function labels and dis-
with an Introductory paragraph, follows it with threecoyrages the alignment between two different func-
Body paragraphs, and finally ends with a Concludion |abels, regardless of the type of function labels.
ing paragraph. Another essay CRRRI begins with after obtaining thek nearest neighbors ef the

a paragraph stating its Conclusion, follows it withpayt step is to predict the organization scorecof
three Rebuttal paragraphs, and ends with a pargy aggregating the scores of tsnearest neighbors

graph Introducing the essay's topic. We can tell byyto one number. (Note that we know the organiza-

a casual glance at the sequences that any reasonable

similarity function should tell us that they are not “In pairwise sequence alignment, a mismatch occurs when
one symbol has to be substituted for another to make two se-

graph and sentence labeling heuristics. See our website @iences match. An indel indicates that in order to transform

http://www.hlt.utdallas.edu/ ~alan/ICLE/ for  one sequence to match another, we must eitigart a symbol

the complete list of heuristics. into one sequence aielete a symbol from the other sequence.

5.1 Aligning Paragraph Sequences
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tion score of each nearest neighbor, since they aom aligning paragraph label sequences and the other
all taken from the training set.) One natural way tdased on aligning sentence label sequences. In the
do this would be to take the mean, median, or modarocess of constructing these two systems, however,
of its k& nearest neighboring essays from the trainingre created a lot of information about the essays
set. Hence, our first heuristic methég), for scoring  which might also be useful for organization scoring,

organization has three variants. but which the heuristic systems are unable to exploit.
o To remedy the problem, we introduce three learning-
5.2 Aligning Sentence Sequences based systems which abstract the additional infor-

An essay’s paragraph sequence captures informati#gtion we produced in three different ways. In each
about its organization at a high level, but ignore$ystem, we use the SVM"™ (Joachims, 1999) im-
much of its lower level structure. Since we have als§lémentation of regression support vector machines
heuristically labeled sentences, it now makes senéeVMs) (Cortes and Vapnik, 1995) to train a regres-
to examine the sequences of sentence function lab8r because SVMs have been frequently and suc-
within an essay’s paragraphs. The intuition is that €ssfully applied to a variety of NLP problems.

least some portion of an essay’s organization SCOE;  |inear Kerned

can be attributed to the organization of the sentence .

To address this concern, we propose a secomning the scores of an essay’s n_earest neighbors,
heuristic approach to organization scoring. Givetf'® Paragraph label sequence alignment approach
a test essay, we first find for eactparagraphin has three variants, and its sentence label sequence

¢ the k paragraphsin the training set that are most align_m_ent counterpart has nine. Unfortuna_tely, these
similar to it. Specifically, each paragraph is repreluristic approaches suffer from two major weak-
sented by its sequence séntencdunction labels. N€SSes. First, it is not_ln_tumvely clear which pf
Given this paragraph representation, we can find t{8€s€ 12 ways for predicting an essay's organiza-
k nearest neighbors of a paragraph by applying th_té)_n score is clearly better than the others. Second,
Needleman-Wunsch algorithm described in the prdt i not clear that the: nearest neighbors of an es-

vious subsection to aligeentencesequences, using S8y Will always be similar to it with respect to or-
the same similarity function we defined above. ganization score. While we do expect the alignment

Next, we score each paragraphby aggregating scores between good essays with reasonable para-

the scores of its nearest neighbors obtained in thedr@Ph seguences to be high, poorly organized es-
first step, assuming the score of a nearest neighbtyS PY their nature have more random paragraph
paragraph is the same as the organization score $fduences. Hence, we have no intuition aboutthe
the training set essay containing it. As before, wg€arest neighbors of a poor essay, as it may have as
can employ the mean, median, or mode to aggregaﬁ'_égh an allgnmen_t score with another poorly orga-
the scores of the nearest neighborgof nized essay as with a good essay.

Finally, we predict the organization scorecby Our solution to these problems is to use the orga-

aggregating the scores of its paragraphs obtained rwation scores obtained by the 12 heuristic variants

the second step. Again, we can employ mean, m&s features in a linear kernel SVM learner. We be-

dian, or mode to aggregate the scores. Since we th\ifeve that using the e_st_imates given by all the 12 vari-
three ways of aggregating the scores of a paragrapt"f‘gts of the two heuristic approaches rather than only

nearest neighbors and three ways of aggregating tﬂge of the;]m addrezses trl‘(e first weal;nessr,] mehntlo;gd
resulting paragraph scores, this second metHod above. The second weakness, on the other hand, is

addressed by treating the organization score predic-
tions obtained by the nearest neighbor methods as
features for an SVM learner rather than as estimates
of an essay’s organization score.

In the previous section, we proposed two heuris- The approach we have just described, however,
tic approaches to organization scoring, one basetbes not exploit the full power of linear kernel

for scoring organization has nine variants.

6 Learning-Based Organization Scoring
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SVMs. One strength of linear kernels is that theyn the training set.
make it easy to incorporate a wide variety of dif- While the number of nearest neighbor features is
ferent types of features. In an attempt to furthemanageable, the presence of a large humber of fea-
enhance the prediction capability of the SVM retures can sometimes confuse a learner. For that rea-
gressor, we will provide it with not only the 12 fea-son, we do feature selection on the two types of
tures derived from the heuristic-based approachesibsequence features, selecting only 100 features
but also with two additional types of features. for each type that has the highest information gain
First, to give our learner more direct access t¢see Yang and Pedersen (1997) for details). We
the information we used to heuristically predict escall the system resulting from the use of these three
say scores, we can extraoaragraph label subse- types of featuresil,,, because it useRegression
quence$ from each essay and use them as featurewith linear kernel to predict essay scores, and it
To illustrate the intuition behind these features, cordsesnearest neighboparagraph subsequence, and
sider two paragraph subsequences: Introductiorsentence subsequence features.
Body and Rebuttal-Introduction. It is fairly typi- _
cal to see the first subsequence, |1-B, at the begiﬁ'—2 String Kernel
ning of a good essay, so its occurrence should gie a traditional learning setting, the feature set em-
us a small amount of evidence that the essay it ogloyed by an off-the-shelf learning algorithm typ-
curs in is well-organized. The presence of the sedeally consists offlat features (i.e., features whose
ond subsequence, R—I, however, should indicate theglues are discrete- or real-valued, as the ones de-
its essay'’s organization is poor because, in generalsaribed in the Linear Kernel subsection). Advanced
good essay should not give a Rebuttal before an Imachine learning algorithms such as SVMs, on the
troduction. Because we can envision subsequenceter hand, have enabled the usesticturedfea-
of various lengths being useful, we create a binartures (i.e., features whose values are structures such
presence or absence feature in the linear kernel fag parse trees and sequences), owing to their ability
each paragraph subsequence of length 1, 2, 3, 4,teremploykernelsto efficiently compute the similar-
5 appearing in the training set. ity between two potentially complex structures.
Second, we emplogentence label subsequences Perhaps the most obvious advantage of employ-
as features in the linear kernel. Recall that wheid structured features smplicity. To understand
describing our alignment-based nearest neighbgfnis advantage, consider learning in a traditional set-
organization score prediction methods, we notetng. Recall that we can only employ flat features in
that an essay’s organization score may be partialNﬁiS setting, as we did with the linear kernel. Hence,
attributable to how well the sentences within itdf we want to use information from a parse tree as
paragraphs are organized. For example, if onieatures, we will need to design heuristics to extract
of an essay’s paragraphs contains the sentence {Be desired parse-based features from parse trees.
bel subsequence Main Idea—Elaboration-Supporfor certain tasks, designing a good set of heuris-
Conclusion this gives us some evidence that the eics can be time-consuming and sometimes difficult.
say is overall well-organized since one of its compo©On the other hand, SVMs enable a parse tree to
nent paragraphs contains this reasonably-organiz€§ employed directly as a structured feature, obvi-
subsequence. An essay with a paragraph contaidting the need to design heuristics to extract infor-
ing the subsequence Conclusion—Support-Thesigaation from potentially complex structures. How-
Rebuttal, however, is likely to be poorly orga-€ver, structured features have only been applied to a
nized because this is a poorly-organized subs@andful of NLP tasks such as semantic role labeling
quence. Since sentence label subsequences of dlfloschitti, 2004), syntactic parsing and named en-
fering lengths may be useful for score prediction, wéty identification (Collins and Duffy, 2002), relation
create a binary presence or absence feature for eg@Hraction (Bunescu and Mooney, 2005), and coref-

sentence label subsequence of length 1, 2, 3, 4, oekence resolution (Versley et al., 2008). Our goal
here is to explore this rarely-exploited capability of

®Note that a subsequence is not necessarily contiguous. SVMs for the task of essay scoring.
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While the vast majority of previous NLP work kernel value for an Alignment Kernél. We call
on using structured features have involved tree kethe system using this kernéta because it uses a
nels, we employ a kernel that is rarely investigated iRegression SVM with amlignment kernel to pre-
NLP: string kerneldLodhi et al., 2002). Informally, dict essay scores.

a string kernel aims to efficiently compute the sim- .

ilarity between two strings (or sequences) of sym(-s'4 Combining Kernels

bols based on the similarity of their subsequence®fecall that the flat features are computed using a lin-
We apply string kernels to essay scoring as followsgar kernel, while the two types of structured features
we represent each essay using its paragraph functigre computed using string and alignment kernels. If
label sequence, and employ a string kernel to conwe want our learner to make use of more than one of
pute the similarity between two essays based on thigese types of features, we need to emplograpos-
representation. Typically, a string kernel takes as irite kernel to combine them. Specifically, we define
put two parametersK (which specifies the length and employ the following composite kernel:

of the subsequences in the two strings to compare)
and \ (which is a value between 0 and 1 that spec-

ifies whether matches between non-contiguous sub- ,
sequences in the two strings should be consideréﬂhereFl andF; are the full set of features (contain-

as important as matches between contiguous subddd both flat and structured features) that represent
quences). In our experiments, we select values f&f€ tW0 essays under consideratiaf,is theith ker-

these parameters in a somewhat arbitrary manner. Ti§ W€ are combining, andis the number of kernels
particular, since\ ranges between 0 and 1, we sim Ve &re combining. To ensure that each kernel under

ply set it to 0.5. Fork, since in the flat features we consideration contributes equally t_o the composite
considered all paragraph label sequences of lengt&Me!, each kernel valug;(F1, F3) is normalized
from 1 to 5, we again take the middle value, settin§© that its value falls between 0 and 1.

it to 3. We call the system using this kernek be-
cause it uses Regression SVM with atring kernel
to predict essay scores. 7.1 Evaluation Metrics

. We designed three evaluation metrics to measure the
6.3 Alignment Kernel . . .
error of our organization scoring system. The sim-
In general, the purpose of a kernel function is tgyest metric,S1, is perhaps the most intuitive. It
measure the similarity between two examples. Th@easures the frequency at which a system predicts
string kernel we described in the previous subsegnhe wrong score out of the seven possible scores.
tion is just one way of measuring the similarity ofjence, a system that predicts the right score only
two essays given their paragraph sequences. Whigo, of the time would receive a$il score of 0.75.
this may be the most obvious way to use paragraph The §2 metric is slightly less intuitive thai$1,
sequence information from a machine learning pepyt no less reasonable. It measures the average
spective, our earlier use of the Needleman-Wunscffistance between the system’s score and the actual
algorithm suggests a more direct way of extractingcore. This metric reflects the idea that a system
structured information from paragraph sequences.that estimates scores close to the annotator-assigned
More specifically, recall that the Needlemanscores should be preferred over a system whose esti-
Wunsch algorithm finds an optimal alignment bemations are further off, even if both systems estimate
tween two paragraph sequences, where an opthe correct score at the same frequency.
mal alignment is defined as an alignment having Finally, the S3 evaluation metric measures the
the highest possible alignment score. The optimajerage square of the distance between a system’s
fa”gnment score can be viewed as another Sim”? “In particular, we note that for theoretical reasons, a Kerne
ity measure between two essays. As such, Wltmnction must alyvvays return a non-negative value. T’he align

some slight modifications, the alignment score bgpent score function does not have this property, so we iserea
tween two paragraph sequences can be used as shalignment scores until their theoretical minimum vaisi®.

1 n
K (F1, Fy) = > Ki(F, F),
i=1

7 Evaluation
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organization score estimations and the annotator- System | S1 | S2 | S3
assigned scores. The intuition behind this system 1] Avg 585 .412| .348
is that not only should we prefer a system whose es- 2| Hp .548 | .339| .198
timations are close to the annotator scores, but we 3| H, 575 .397| .329
should also prefer one whose estimations are not too 4 | Rlnps 520 .331 .186
frequently very far away from the annotator scores. 5| Rs 577 | .369| .222
These three scores are given by: 6| Ra .686 | .519 | .429
1 1 Y 1 Y ) 7| Rlspps .534 | .332| .187
y2 b w2 A-ElL 5 (A B 8 [ Rla,,, | 541].332] 178
7 Ei =1 =1 9| Rsa 517 .325 | .177
whereA; andE; are the annotator assigned and sys- 10 | Rlsayps | .517| .323| .175

tem estimated scores respectively for essand N

is the number of essays. Since many of the systems
we have described assign test essays real-valued or-
ganization scores, to obtaif; for systemS1 we (p < 0.01) with respect to thes2 and S3 metrics,
round the outputs of each system to the nearest pfit its S1 performance is less significant with re-
the seven scores the human annotators were permpect toAvg (p < 0.1) and is indistinguishable at
ted to assign (1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0). even thep < 0.1 level from H,.> In general, how-

To test our system, we performed 5-fold cross valever, it appears to be the case that systems based
idation on our 1003 essay set, micro-averaging oWn aligning paragraph label sequences achieve better
results into three scores corresponding to the threesults than systems that attempt to align sentence
scoring metrics described above. label sequences.

Table 6: System Performance

7.2 Resultsand Discussion L earning-based approaches. Rows 4-6 of Table
6 show the results we obtained using each of the

Theaveragebaseline. As mentioned before, there :
ree single-kernel systems. When compared to the

is no standard baseline for organization modelin ) i
against which we can compare our systems. To statfSt Paseline, these results suggestinas a pretty

with, we employ a simple “average” baselingug good heuristic approach to organization scoring. In

computes the average organization score of essagSt: only one of these three learning-based sys-
in the training set and assigns this score to each td&MS Elnps) performs better thafy,, under the three
set essay. Results of this baseline are shown in rop°"iNg metrics, and in each case, the difference be-
1 of Table 6. Though simple, this baseline is by ndVeen the two is not significant everyat< 0.1. This
means easy-to-beat, since 41% of the essays havguggests that, even thougt,,,; performs slightly

score of 3, and 96% of the essays have a score ttRgtter thani,, the only major benefit we have ob-
is within one point of 3. tained by using the linear kernel is that it has made

Heurigtic basdli Recall th h 12 it unnecessary for us to choose between the 12 pro-
_eurlstflch mhes. ‘Reca that \r:ve ave 12 ver- ,ocoq heuristic systems.
sions of the two heuristic approaches to organization -~ «qarin g that the second best one-kernel sys-

prediction. Space limitations .preclude_ a discussio&}m’ Rs, does not have access to any of the near-
of'the results of all thesg versions, so instead, to Oté'st neighbor features, which have already proven
tain the stronges_t baseline results, we s_how only tkl?seful, its performance seems reasonably good in
bgst .results achieved by the three versions based Mt its performance is at least better than they
aligning paragraph Iabelisequences n .rOW}PPX. system. This suggests that, even thougih does
and the bes_t rgsults achieved by the nine version, t perform exceptionally, it is extracting some use-
based on aligning sentence label sequences in " information for organization scoring from the

3 (H,) of Table 6 Itis clear from th? results_ tr?"’ltheuristically assigned paragraph label sequences.
the H,, systems yielded the best baseline predlctlonfhe best one-kernel systeri] however, is sig-
under all three scoring metrics, performing signif- s '

icantly better than both thelvg and H, systems ®All significance tests are two-tailed pairedests.
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nificantly better thanRs with respect to all three S3. When we compare this combined system to the
scoring metrics, witlp < 0.1 for S1 andp < 0.05 best baselinef{,), we discover the improvements
for S2 and S3. By contrast, it initially appears that derived from the three-kernel system are significant
the alignment kernel is not extracting any usefuimprovements over it g < 0.05 andp < 0.01 with
information from these paragraph sequences at atgspect taS1 and.S3 respectively.

since itsS1, S2, andS3 scores are all much worse F?ature analysis. To better understand which of

than all of the baseline systems. The second bet%e three flat features (nearest neighbors, paragraph
one-kernel systenks performs significantly better g » paragrap

. . label sequences, or sentence label sequences) con-
thanRa atp < 0.01 for all three scoring metrics. d d )

. ) tributes the most to the linear kernel portion of the
Next, we explore the impact of composite kernels ,
. .~ ~8ystems’ performances, we analyze the three fea-
which allow our learners to make use of multiple . L
. ture types onRl,,s using the backward elimination
types of flat and structured features. Specifically, th]e : . .
) . . Teature selection algorithm. First, we remove each

results shown in rows 7-9 are obtained by combin- .
the three feature groups independently from the

: ) ) 0
ing two kernels at a time. These experiments reve?{lnps,s feature set and determine which of the three

the surprising result that the two worst Ioerfc.)rmin(‘:‘removals yields the best performance according to
single-kernel systemds and la, when combined each scoring metric. Next, among the remaining

into Rsa, yield the best two-kernel system results

: N : two feature groups, we repeat the same step, remov-
which are significant with respect to the best ONne  each of the two arouns independently from the
kernel system results undéB atp < 0.1. This re- g group b y

. feature set to determine which of the two removals
sult suggests that these two different methods of ex-
ields the best performance.

tracting information from paragraph sequences pro- : L .
g paragrap q P While space limitations preclude showing the ac-

vide us with different kinds of evidence useful for . :
. . . . tual numbers, the trend is consistent among all three
organization scoring, although neither method by it-

. scoring metrics: the first feature type to remove
self was exceptionally useful. ThougRsa does . .
. : is paragraph sequences (meaning that they are the
not have any access to nearest neighbor inform

tion, it still performs significantly better thaH, at ﬁaast |mportant) and the last to remove is the near
est neighbor features. Nevertheless, performance al-
p < 0.05 underS1 andS3. . -
: . . ways drops when a feature type is removed, indicat-
While we have already pointed out th&tsa is ing that all three feature types contribute positivel
the best composite two-kernel system, it is not cle g yp P y

r
which of Ris,,, and Rlan,, is second-best. Neithera}o overall performance. The fact that flat paragraph

/ nce f r rovi I ful high-
system consistently performs better than the oth Spduence eatures proved to be least useful hig

. . . ghts the importance of the structured methods we
under all three scoring metrics, and the difference resented for usina paraaranh sequence information
between them are not significant evempat 0.1. It P g paragrap d '

is clear pn_ly thaRsa |s better than both, asits SCOresg  onclusions
are statistically significantly better at< 0.01 with
respect toRls,,s and Rla,,, under at least one of We have investigated the relatively less-studied
the three scoring metrics in each case. problem of modeling the organization in student es-
Finally, in the last row of Table 6, we combinesays. The contributions of our work include the
all three kernels into one SVM learner. The moshovel application of two techniques from bioinfor-
important lesson we learn from this experiment isnatics and machine learning — sequence align-
that each of the three kernels provides the learnenent and string kernels, as well as the introduc-
with a different kind of useful information, so thattion of alignment kernels — to essay scoring. We
a composite kernel using all three sources of inshowed that each technique makes a significant con-
formation performs better than any system usingibution to a scoring system, and we hope that this
fewer kernels. Although the improvements over thevork will increase awareness of these powerful tech-
best two-kernel systemRisa) and one-kernel sys- niques among NLP researchers. Finally, to stimulate
tem (Rl,,s) are small, they are still statistically sig- work on this problem, we make our corpus of anno-
nificant atp < 0.1 under one of the scoring metrics, tated essays available to other researchers.
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