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Abstract 

This paper studies the effects of training data 
on binary text classification and postulates 
that negative training data is not needed and 
may even be harmful for the task. Traditional 
binary classification involves building a clas-
sifier using labeled positive and negative 
training examples. The classifier is then ap-
plied to classify test instances into positive 
and negative classes. A fundamental assump-
tion is that the training and test data are iden-
tically distributed. However, this assumption 
may not hold in practice. In this paper, we 
study a particular problem where the positive 
data is identically distributed but the negative 
data may or may not be so. Many practical 
text classification and retrieval applications fit 
this model. We argue that in this setting nega-
tive training data should not be used, and that 
PU learning can be employed to solve the 
problem. Empirical evaluation has been con-
ducted to support our claim. This result is im-
portant as it may fundamentally change the 
current binary classification paradigm.  

1 Introduction 

Text classification is a well-studied problem in 
machine learning, natural language processing, and 
information retrieval. To build a text classifier, a 
set of training documents is first labeled with pre-
defined classes. Then, a supervised machine learn-
ing algorithm (e.g., Support Vector Machines 
(SVM), naïve Bayesian classifier (NB)) is applied 
to the training examples to build a classifier that is 
subsequently employed to assign class labels to the 
instances in the test set. In this paper, we focus on 
binary text classification with two classes (i.e. pos-
itive and negative classes).  

Most learning methods assume that the training 
and test data have identical distributions. However, 
this assumption may not hold in practice, i.e., the 
training and the test distributions can be different. 
The problem is called covariate shift or sample 
selection bias (Heckman 1979; Shimodaira 2000; 
Zadrozny 2004; Huang et al. 2007; Sugiyama et al. 
2008; Bickel et al. 2009). In general, this problem 
is not solvable because the two distributions can be 
arbitrarily far apart from each other. Various as-
sumptions were made to solve special cases of the 
problem. One main assumption was that the condi-
tional distribution of the class given an instance is 
the same over the training and test sets (Shimodai-
ra 2000; Huang et al. 2007; Bickel et al. 2009).  

In this paper, we study another special case of 
the problem in which the positive training and test 
samples have identical distributions, but the nega-
tive training and test samples may have different 
distributions. We believe this scenario is more ap-
plicable for binary text classification. As the focus 
in many applications is on identifying positive in-
stances correctly, it is important that the positive 
training and the positive test data have the same 
distribution. The distributions of the negative train-
ing and negative test data can be different. We be-
lieve that this special case of the sample selection 
bias problem is also more applicable for machine 
learning. We will show that a partially supervised 
learning model, called PU learning (learning from 
Positive and Unlabeled examples) fits this special 
case quite well (Liu et al. 2002).  

Following the notations in (Bickel et al. 2009), 
our special case of the sample selection bias prob-
lem can be formulated as follows: We are given a 
training sample matrix XL with row vectors x1, …, 
xk. The positive and negative training instances are 
governed by different unknown distributions p(x|λ) 
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and p(x|δ) respectively. The element yi of vector y 
= (y1,  y2, …, yk) is the class label for training in-
stance xi (yi ∈{+1, -1}, where +1 and -1 denote 
positive and negative classes respectively) and is 
drawn based on an unknown target concept p(y|x). 
In addition, we are also given an unlabeled test set 
in matrix XT with rows xk+1, …, xk+m. The (hidden) 
positive test instances in XT are also governed by 
the unknown distribution p(x|λ), but the (hidden) 
negative test instances in XT are governed by an 
unknown distribution, p(x|θ), where θ may or may 
not be the same as δ. p(x|θ) and p(x|δ) can differ 
arbitrarily, but there is only one unknown target 
conditional class distribution p(y|x).  

This problem setting is common in many appli-
cations, especially in those applications where the 
user is interested in identifying a particular type of 
documents (i.e. binary text classification). For ex-
ample, we want to find sentiment analysis papers 
in the literature. For training a text classifier, we 
may label the papers in some EMNLP proceedings 
as sentiment analysis (positive) and non-sentiment 
analysis (negative) papers. A classifier can then be 
built to find sentiment analysis papers from ACL 
and other EMNLP proceedings. However, this la-
beled training set will not be appropriate for identi-
fying sentiment analysis papers from the WWW, 
KDD and SIGIR conference proceedings. This is 
because although the sentiment analysis papers in 
these proceedings are similar to those in the train-
ing data, the non-sentiment analysis papers in these 
conferences can be quite different. Another exam-
ple is email spam detection. A spam classification 
system built using the training data of spam and 
non-spam emails from a university may not per-
form well in a company. The reason is that al-
though the spam emails (e.g., unsolicited 
commercial ads) are similar in both environments, 
the non-spam emails in them can be quite different.  

One can consider labeling the negative data in 
each environment individually so that only the 
negative instances relevant to the testing environ-
ment are used to train the classifier.  However, it is 
often impractical (if not impossible) to do so. For 
example, given a large blog hosting site, we want 
to classify its blogs into those that discuss stock 
markets (positive), and those that do not (nega-
tive). In this case, the negative data covers an arbi-
trary range of topics. It is clearly impractical to 
label all the negative data. 

Most existing methods for addressing the sam-

ple selection bias problem work as follows.  First, 
they estimate the bias of the training data based on 
the given test data using statistical methods. Then, 
a classifier is trained on a weighted version of the 
original training set based on the estimated bias. In 
this paper, we show that our special case of the 
sample selection bias problem can be solved in a 
much simpler and somewhat radical manner—by 
simply discarding the negative training data alto-
gether. We can use the positive training data and 
the unlabeled test data to build the classifier using 
the PU learning model  (Liu et al. 2002).  

PU learning was originally proposed to solve the 
learning problem where no labeled negative train-
ing data exist. Several algorithms have been devel-
oped in the past few years that can learn from a set 
of labeled positive examples augmented with a set 
of unlabeled examples. That is, given a set P of 
positive examples of a particular class (called the 
positive class) and a set U of unlabeled examples 
(which contains both hidden positive and hidden 
negative examples), a classifier is built using P and 
U to classify the data in U as well as future test 
data into two classes, i.e., those belonging to P 
(positive) and those not belonging to P (negative). 
In this paper, we also propose a new PU learning 
method which gives more consistently accurate 
results than the current methods.  

Our experimental evaluation shows that when 
the distributions of the negative training and test 
samples are different, PU learning is much more 
accurate than traditional supervised learning from 
the positive and negative training samples. This 
means that the negative training data actually 
harms classification in this case. In addition, when 
the distributions of the negative training and test 
samples are identical, PU learning is shown to per-
form equally well as supervised learning, which 
means that the negative training data is not needed.   

This paper thus makes three contributions. First, 
it formulates a new special case of the sample se-
lection bias problem, and proposes to solve the 
problem using PU learning by discarding the nega-
tive training data. Second, it proposes a new PU 
learning method which is more accurate than the 
existing methods. Third, it experimentally demon-
strates the effectiveness of the proposed method 
and shows that negative training data is not needed 
and can even be harmful. This result is important 
as it may fundamentally change the way that many 
practical classification problems should be solved.  
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2 Related Work  

A key assumption made by most machine learning 
algorithms is that the training and test samples 
must be drawn from the same distribution. As 
mentioned, this assumption can be violated in prac-
tice. Some researchers have addressed this problem 
under covariate shift or sample selection bias. 
Sample selection bias was first introduced in the 
econometrics by Heckman (1979). It came into the 
field of machine learning through the work of Za-
drozny (2004). The main approach in machine 
learning is to first estimate the distribution bias of 
the training data based on the test data, and then 
learn using weighted training examples to compen-
sate for the bias (Bickel et al. 2009).  

Shimodaira (2000) and Sugiyama and Muller 
(2005) proposed to estimate the training and test 
data distributions using kernel density estimation. 
The estimated density ratio could then be used to 
generate weighted training examples. Dudik et al. 
(2005) and Bickel and Scheffer (2007) used maxi-
mum entropy density estimation, while Huang et 
al. (2007) proposed kernel mean matching. Su-
giyama et al. (2008) and Tsuboi et al. (2008) esti-
mated the weights for the training instances by 
minimizing the Kullback-Leibler divergence be-
tween the test and the weighted training distribu-
tions. Bickel et al. (2009) proposed an integrated 
model. In this paper, we adopt an entirely different 
approach by dropping the negative training data 
altogether in learning. Without the negative train-
ing data, we use PU learning to solve the problem 
(Liu et al. 2002; Yu et al. 2002; Denis et al. 2002; 
Li et al. 2003; Lee and Liu, 2003; Liu et al. 2003; 
Denis et al. 2003; Li et al. 2007; Elkan and Noto, 
2008; Li et al. 2009; Li et al. 2010). We will dis-
cuss this learning model further in Section 3.  

Another related work to ours is transfer learning 
or domain adaptation. Unlike our problem setting, 
transfer learning addresses the scenario where one 
has little or no training data for the target domain, 
but has ample training data in a related domain 
where the data could be in a different feature space 
and follow a different distribution. A survey of 
transfer learning can be found in (Pan and Yang 
2009). Several NLP researchers have studied trans-
fer learning for different applications (Wu et al. 
2009a; Yang et al. 2009; Agirre & Lacalle 2009; 
Wu et al. 2009b; Sagae & Tsujii 2008; Goldwasser 
& Roth 2008; Li and Zong 2008; Andrew et al. 

2008; Chan and Ng 2007; Jiang and Zhai 2007; 
Zhou et al. 2006), but none of them addresses the 
problem studied here.  

3 PU Learning Techniques 

In traditional supervised learning, ideally, there is a 
large number of labeled positive and negative ex-
amples for learning. In practice, the negative ex-
amples can often be limited or unavailable. This 
has motivated the development of the model of 
learning from positive and unlabeled examples, or 
PU learning, where P denotes a set of positive ex-
amples, and U a set of unlabeled examples (which 
contains both hidden positive and hidden negative 
instances). The PU learning problem is to build a 
classifier using P and U in the absence of negative 
examples to classify the data in U or a future test 
data T. In our setting, the test set T will also act as 
the unlabeled set U.  

PU learning has been investigated by several re-
searchers in the past decade. A study of PAC learn-
ing for the setting under the statistical query model 
was given in (Denis, 1998). Liu et al. reported the 
sample complexity result and showed how the 
problem may be solved (Liu et al., 2002).  Subse-
quently, a number of practical algorithms (e.g., Liu 
et al., 2002; Yu et al., 2002; Li and Liu, 2003) 
were proposed. They generally follow a two-step 
strategy: (i) identifying a set of reliable negative 
documents RN from the unlabeled set; and then (ii) 
building a classifier using P (positive set), RN (re-
liable negative set) and U-RN (unlabelled set) by 
applying an existing learning algorithm (such as 
naive Bayesian classifier or SVM) iteratively. 
There are also some other approaches based on 
unbalanced errors (e.g., Liu et al. 2003; Lee and 
Liu, 2003; Elkan and Noto, 2008). 

In this section, we first introduce a representa-
tive PU learning technique S-EM, and then present 
a new technique called CR-SVM. 

3.1 S-EM Algorithm  

S-EM (Liu et al. 2002) is based on naïve Bayesian 
classification (NB) (Lewis, 1995; Nigam et al., 
2000) and the EM algorithm (Dempster et al. 
1977). It has two steps. The first step uses a spy 
technique to identify some reliable negatives (RN) 
from the unlabeled set U and the second step uses 
the EM algorithm to learn a Bayesian classifier 
from P, RN and U–RN. 
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Step 1: Extracting reliable negatives RN from U 
using a spy technique 
The spy technique in S-EM works as follows (Fig-
ure 1): First, a small set of positive examples (de-
noted by SP) called “spies” is randomly sampled 
from P (line 2). The default sampling ratio in S-
EM is s = 15%. Then, an NB classifier is built us-
ing P–SP as the positive set and U∪SP as the neg-
ative set (lines 3-5). The NB classifier is applied to 
classify each u ∈ U∪SP, i.e., to assign a probabil-
istic class label p(+|u) (+ means positive) to u. The 
idea of the spy technique is as follows. Since the 
spy examples were from P and were put into U as 
negatives in building the NB classifier, they should 
behave similarly to the hidden positive instances in 
U. We thus can use them to find the reliable nega-
tive set RN from U. Using the probabilistic labels 
of spies in SP and an input parameter l (noise lev-
el), a probability threshold t is determined. Due to 
space constraints, we are unable to explain l. De-
tails can be found in (Liu et al. 2002). t is then used 
to find RN from U (lines 8-10).  

1.  RN ← ∅;                  // Reliable negative set 
2.  SP ← Sample(P, s%);          // spy set 
3.  Assign each example in P – SP the class label +1; 
4.  Assign each example in U ∪SP the class label -1; 
5.  C ←NB(P – SP, U∪SP);   // Produce a NB classifier  
6.  Classify each u ∈U∪SP using C; 
7.  Decide a probability threshold t using SP and l; 
8.  For each u ∈U do 
9.       If its probability p(+|u) < t then 
10.          RN ← RN ∪ {u}; 

Figure 1. Spy technique for extracting RN from U 

Step 2: Learning using the EM algorithm 
Given the positive set P, the reliable negative set 
RN, and the remaining unlabeled set U–RN, we run 
EM using NB as the base learning algorithm. 

The naive Bayesian (NB) method is an effective 
text classification algorithm. There are two differ-
ent NB models, namely, the multinomial NB and 
the multi-variate Bernoulli NB. In this paper, we 
use the multinomial NB since it has been observed 
to perform consistently better than the multi-
variate Bernoulli NB (Nigam et al., 2000).  

Given a set of training documents D, each doc-
ument di ∈ D is an ordered list of words. We use 
wdi,k to denote the word in position k of di, where 
each word is from the vocabulary V = {w1, … , w|v|}, 
which is the set of all words considered in classifi-

cation. We also have a set of classes C = {c1, c2} 
representing positive and negative classes. For 
classification, we compute the posterior probability 
Pr(cj|di). Based on the Bayes rule and multinomial 
model, we have 

      
   (1) 

and with Laplacian smoothing, 

    (2) 

where N(wt,di) is the number of times that the word 
wt occurs in document di, and Pr(cj|di) {0,1} de-
pending on the class label of the document. As-
suming that probabilities of words are independent 
given the class, we have the NB classifier:  

 
(3) 

EM (Dempster et al. 1977) is a popular class of 
iterative algorithms for maximum likelihood esti-
mation in problems with incomplete data. It is of-
ten used to address missing values in the data by 
computing expected values using the existing val-
ues. The EM algorithm consists of two steps, the 
E-step and the M-step. The E-step fills in the miss-
ing data, and M-step re-estimated the parameters. 
This process is iterated till satisfaction (i.e. con-
vergence). For NB, the steps used by EM are iden-
tical to those used to build the classifier (equations 
(3) for the E-step, and equations (1) and (2) for the 
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Figure 2. EM algorithm with the NB classifier 
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M-step). In EM, Pr(cj|di) takes the value in [0, 1] 
instead of {0, 1} in all the three equations.                                                                               

The algorithm for the second step of S-EM is 
given in Figure 2. Lines 1-3 build a NB classifier f 
using P and RN. Lines 4-8 run EM until conver-
gence. Finally, the converged classifier is used to 
classify the unlabeled set U (lines 10-13).     

3.2 Proposed CR-SVM  

As we will see in the experiment section, the per-
formance of S-EM can be weak in some cases. 
This is due to the mixture model assumption of its 
NB classifier (Nigam et al. 2000), which requires 
that the mixture components and classes be of one-
to-one correspondence. Intuitively, this means that 
each class should come from a distinctive distribu-
tion rather than a mixture of multiple distributions. 
In our setting, however, the negative class often 
has documents of mixed topics, e.g., representing 
the broad class of everything else except the top-
ic(s) represented by the positive class.  

There are some existing PU learning methods 
based on SVM which can deal with this problem, 
e.g., Roc-SVM (Li and Liu, 2003). Like S-EM, 
Roc-SVM also has two steps. The first step uses 
Rocchio classification (Rocchio, 1971) to find a set 
of reliable negatives RN from U. In particular, this 
method treats the entire unlabeled set U as negative 
documents and then uses the positive set P and the 
unlabeled set U as the training data to build a Roc-
chio classifier. The classifier is subsequently ap-
plied to classify the unlabeled set U. Those 
documents that are classified as negative are then 
considered as reliable negative examples RN. The 
second step of Roc-SVM runs SVM iteratively 
(instead of EM). Unlike NB, SVM does not make 
any distributional assumption. 

However, Roc-SVM does not do well due to the 
weakness of its first step in finding a good set of 
reliable negatives RN. This motivates us to propose 
a new SVM based method CR-SVM to detect a 
better quality RN set. The second step of CR-SVM 
is similar to that in Roc-SVM.  

Step 1: Extracting reliable negatives RN from U 
using Cosine and Rocchio  

The first step of the proposed CR-SVM algorithm 
for finding a RN set consists of two sub-steps:  
Sub-step 1 (extracting the potential negative set 
PN using the cosine similarity): Given the positive 

set P and the unlabeled set U, we extract a set of 
potential negatives PN from U by computing the 
similarities of the unlabeled documents in U and 
the positive documents in P. The idea is that those 
documents in U that are very dissimilar to the doc-
uments in P are likely to be negative.  

1. PN = ∅;  
2. Represent each document in P and U as vectors us-

ing the TF-IDF representation; 
3. For each dj ∈ P do 
4.  

5. ; 
6. For each dj ∈ P  do 
7. compute cos(pr, dj) using Equation (4); 
8. Sort all the documents dj∈P according to cos(pr, dj) 

in decreasing order; 
9. ω = cos(pr, dp) where dp is ranked in the position of 

(1- l)*|P|; 
10. For each di ∈ U  do 
11. If cos(pr, di)< ω then 
12. PN = PN ∪{di} 

Figure 3. Extracting potential negatives PN from U 

The detailed algorithm is given in Figure 3. 
Each document in P and U is first represented as a 
vector d = (q1, q2, …, qn) using the TF-IDF scheme 
(Salton 1986). Each element qi (i=1, 2, …, n) in d 
represents a word feature wi. A positive representa-
tive vector (pr) is built by summing up the docu-
ments in P and normalizing it (lines 3-5). Lines 6-7 
compute the similarities of each document dj in P 
with pr using the cosine similarity, cos(pr, dj).  

Line 8 sorts the documents in P according to 
their cos(pr, dj) values. We want to filter away as 
many as possible hidden positive documents from 
U so that we can obtain a very pure negative set.  
Since the hidden positives in U should have the 
same behaviors as the positives in P in terms of 
their similarities to pr, we set their minimum simi-
larity as the threshold value ω which is the mini-
mum similarity before a document is considered as 
a potential negative document: 
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ment dj in P could be near 0 or smaller than most 
(or even all) negative documents. It would there-
fore be prudent to ignore a small percentage l of 
the documents in P most dissimilar to the repre-
sentative positive (pr) and assume them as noise or 
outliers.  Since we do not know the noise level of 
the data, to be safe, we use a noise level l = 5% as 
the default. The final classification result is not 
sensitive to l as long as it is not too big. In line 9, 
we use the noise level l to decide on a suitable ω. 
Then, for each document di in U, if its cosine simi-
larity cos(pr, di) < ω, we regard it as a potential 
negative and store it in PN (lines 10-12). 

Our experiment results showed that PN is still 
not sufficient or big enough for accurate PU learn-
ing. Thus, we need to do a bit more work to find 
the final RN.   

Sub-step 2 (extracting the final reliable negative 
set RN from U using Rocchio with PN): At this 
point, we have a positive set P and a potential neg-
ative set PN where PN is a purer negative set than 
U. To extract the final reliable negatives, we em-
ploy the Rocchio classification to build a classifier 
RC using P and PN (We do not use SVM here as it 
is very sensitive to the noise in PN). Those docu-
ments in U that are classified as negatives by RC 
will then be regarded as reliable negatives, and 
stored in set RN.   

The algorithm for this sub-step is given in Fig-
ure 4. Following the Rocchio formula, a positive 
and a negative prototype vectors p and n are built 
(lines 3 and 4), which are used to classify the doc-
uments in U (lines 5-7). α and β are parameters for 
adjusting the relative impact of the positive and 
negative examples. In this work, we use α = 16 and 
β = 4 as recommended in (Buckley et al. 1994).  

Step 2:  Learning by running SVM iteratively 

This step is similar to that in Roc-SVM, building 

the final classifier by running SVM iteratively with 
the sets P, RN and the remaining unlabeled set Q 
(Q = U – RN).  

The algorithm is given in Figure 5. We run 
SVM classifiers Si (line 3) iteratively to extract 
more and more negative documents from Q. The 
iteration stops when no more negative documents 
can be extracted from Q (line 5). There is, howev-
er, a danger in running SVM iteratively, as SVM is 
quite sensitive to noise. It is possible that during 
some iteration, SVM is misled by noisy data to 
extract many positive documents from Q and put 
them in the negative set RN. If this happens, the 
final SVM classifier will be inferior. As such, we 
employ a test to decide whether to keep the first 
SVM classifier or the final one. To do so, we use 
the final SVM classifier obtained at convergence 
(called Slast, line 9) to classify the positive set P to 
see if many positive documents in P are classified 
as negatives. Roc-SVM chooses 5% as the thre-
shold, so CR-SVM also uses this threshold. If there 
are 5% of positive documents (5%*|P|) in P that 
are classified as negative, it indicates that SVM has 
gone wrong and we should use the first SVM clas-
sifier (S1). In our experience, the first classifier is 
always quite strong; good results can therefore be 
achieved even without catching the last (possibly 
better) classifier.  

The main difference between Roc-SVM and 
CR-SVM is that Roc-SVM does not produce PN. It 
simply treats the unlabeled set U as negatives for 
extracting RN. Since PN is clearly a purer negative 
set than U, the use of PN by CR-SVM helps ex-
tract a better quality reliable negative set RN which 
subsequently allows the final classifier of CR-
SVM to give better results than Roc-SVM.   

Note that the methods (S-EM and CR-SVM) are 
all two-step algorithms in which the first step and 
the second step are independent of each other. The 
algorithm for the second step basically needs a 
good set of reliable negatives RN extracted from U. 
This means that one can pick any algorithm for the 
first step to work with any algorithm for the second 
step. For example, we can also have CR-EM which 
uses the algorithm (shown in Figures 3 and 4) of 
the first step of CR-SVM to combine with the al-
gorithm of the second step of S-EM. CR-EM ac-
tually works quite well as it is also able to exploit 
the more accurate reliable negative set RN ex-
tracted using cosine and Rocchio. 

 

1. RN = ∅;  
2. Represent each document in P, PN and U as vectors 

using the TF-IDF representation; 
3. ; 

4. ; 

5. For each di ∈ U  do 
6. If  cos(di, n)> cos(di, p) then 
7. RN  = RN ∪{di} 

Figure 4. Identifying RN using the Rocchio classifier 
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4 Empirical Evaluation 

We now present the experimental results to support 
our claim that negative training data is not needed 
and can even harm text classification. We also 
show the effectiveness of the proposed PU learning 
methods CR-SVM and CR-EM. The following 
methods are compared: (1) traditional supervised 
learning methods SVM and NB which use both 
positive and negative training data; (2) PU learning 
methods, including two existing methods S-EM 
and Roc-SVM and two new methods CR-SVM and 
CR-EM, and (3) one-class SVM (Schölkop et al., 
1999) where only positive training data is used in 
learning (the unlabeled set is not used at all).  

We used LIBSVM 1  for SVM and one-class 
SVM, and two publicly available 2  PU learning 
techniques S-EM and Roc-SVM. Note that we do 
not compare with some other PU learning methods 
such as those in (Liu et al. 2003, Lee and Liu, 2003 
and Elkan and Noto, 2008) as the purpose of this 
paper is not to find the best PU learning method 
but to show that PU learning can address our spe-
cial sample selection bias problem. Our current 
methods already do very well for this purpose.  

4.1 Datasets and Experimental Settings 

We used two well-known benchmark data collec-
tions for text classification, the Reuters-21578 col-
lection 3  and the 20 Newsgroup collection 4 . 
Reuters-21578 contains 21578 documents. We 
used the most populous 10 out of the 135 catego-
ries following the common practice of other re-
searchers. 20 Newsgroup has 11997 documents 
from 20 discussion groups. The 20 groups were 
also categorized into 4 main categories.  

We have performed two sets of experiments, 
and just used bag-of-words as features since our 
objective in this paper is not feature engineering.  

(1) Test set has other topic documents. This set 
of experiments simulates the scenario in which the 
negative training and test samples have different 
distributions. We select positive, negative and oth-
er topic documents for Reuters and 20 Newsgroup, 
and produce various data sets. Using these data 
sets, we want to show that PU learning can do bet-
                                                           
1 http://www.csie.ntu.edu.tw/~cjlin/libsvm/ 
2 http://www.cs.uic.edu/~liub/LPU/LPU-download.html 
3 http://www.research.att.com/~lewis/reuters21578.html 
4 http://people.csail.mit.edu/jrennie/20Newsgroups/ 

ter than traditional learning that uses both positive 
and negative training data. 

For the Reuters collection, each of the 10 cate-
gories is used as a positive class. We randomly 
select one or two of the remaining categories as the 
negative class (denoted by Neg 1 or Neg 2), and 
then we randomly choose some documents from 
the rest of the categories as other topic documents. 
These other topic documents are regarded as nega-
tives and added to the test set but not to the nega-
tive training data. They thus introduce a different 
distribution to the negative test data. We generated 
20 data sets (10*2) for our experiments this way. 

The 20 Newsgroup collection has 4 main cate-
gories with sub-categories5; the sub-categories in 
the same main category are relatively similar to 
each other. We are able to simulate two scenarios: 
(1) the other topic documents are similar to the 
negative class documents (similar case), and (2) 
the other topic documents are quite different from 
the negative class documents (different case). This 
allows us to investigate whether the classification 
results will be affected when the other topic docu-
ments are somewhat similar or vastly different 
from the negative training set. To create the train-
ing and test data for our experiments, we randomly 
select one sub-category from a main category (cat 
1) as the positive class, and one (or two) sub-
category from another category (cat 2) as the nega-
tive class (again denoted by Neg 1 or Neg 2). For 
the other topics, we randomly choose some docu-
                                                           
5  The four main categories and their corresponding sub-
categories are: computer (graphics, os, ibmpc.hardware, 
mac.hardware, windows.x), recreation (autos, motorcycles, 
baseball, hockey), science (crypt, electronics, med, space), and 
talk (politics.misc, politics.guns, politics.mideast, religion). 

1. Every document in P is assigned the class label +1; 
2. Every document in RN is assigned the label –1; 
3. Use P and RN  to train a SVM classifier Si, with i = 

1 initially and i = i+1 with each iteration (line 3-7);  
4. Classify Q using Si. Let the set of documents in Q 

that are classified as negative be W;  
5. If (W = ∅) then  stop; 
6. else Q = Q – W; 
7. RN = RN ∪W 
8. goto (3); 
9. Use the last SVM classifier Slast to classify P; 
10. If more than 5% positives are classified as negative  
11. then use S1 as the final classifier; 
12. else use Slast as the final classifier; 

Figure 5.  Constructing the final classifier using SVM 
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ments from the remaining sub-categories of cat 2 
for the similar case, and some documents from a 
randomly chosen different category (cat 3) (as the 
other topic documents) for the different case. We 
generated 8 data sets (4*2) for the similar case, 
and 8 data sets (4*2) for the different case.   

The training and test sets are then constructed as 
follows: we partition the positive (and similarly for 
the negative) class documents into two standard 
subsets: 70% for training and 30% for testing. In 
order to create different experimental settings, we 
vary the number of the other topic documents that 
are added to the test set as negatives, controlled by 
a parameter α, which is a percentage of |TN|, where 
|TN| is the size of the negative test set without the 
other topic documents. That is, the number of oth-
er topic documents added is α × |TN|.  

(2) Test set has no other topic documents. This 
set of experiments is the traditional classification 
in which the training and test data have the same 
distribution. We employ the same data sets as in 
(1) but without having any other topic documents 
in the test set. Here we want to show that PU learn-
ing can do equally well without using the negative 
training data even in the traditional setting.  

4.2 Results with Other Topic Documents in 
Test Set 

We show the results for experiment set (1), i.e. the 
distributions of the negative training and test data 
are different (caused by the inclusion of other topic 
documents in the test set, or the addition of other 
topic documents to complement existing negatives 
in the test set). The evaluation metric is the F-score 
on the positive class (Bollmann and Cherniavsky, 
1981), which is commonly used for evaluating text 
classification.  

4.2.1  Results on the Reuters data 
Figure 6 shows the comparison results when the 
negative class contains only one category of doc-
uments (Neg 1), while Figure 7 shows the results 
when the negative class contains documents from 
two categories (Neg 2) in the Reuters collection. 
The data points in the figures are the averages of 
the results from the corresponding datasets.  

Our proposed method CR-SVM is shown to per-
form consistently better than the other techniques. 
When the size of the other topic documents (x-
axis) in the test set increases, the F-scores of the 

two traditional learning methods SVM and NB 
decreased much more dramatically as compared 
with the PU learning techniques. The traditional 
learning models were clearly unable to handle dif-
ferent distributions for training and test data. 
Among the PU learning techniques, the proposed 
CR-SVM gave the best results consistently. Roc-
SVM did not do consistently well as it did not 
manage to find high quality reliable negatives RN 
sometimes. The EM based methods (CR-EM and 
S-EM) performed well in the case when we had 
only one negative class (Figure 6). However, it did 
not do well in the situation where there were two 
negative classes (Figure 7) due to the underlying 
mixture model assumption of the naïve Bayesian 
classifier. One-class SVM (OSVM) performed 
poorly because it did not exploit the useful infor-
mation in the unlabeled set at all.   

 
Figure 6. Results of Neg 1 using the Reuter data 

 
Figure 7. Results of Neg 2 using the Reuter data 

4.2.2  Results on 20 Newsgroup data 
Recall that for the 20 Newsgroup data, we have 
two settings: similar case and different case.  
Similar case: Here, the other topic documents are 
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similar to the negative class documents, as they 
belong to the same main category.  

The comparison results are given in Figure 8 
(Neg 1) and Figure 9 (Neg 2). We observe that 
CR-EM, S-EM and CR-SVM all performed well. 
EM based methods (CR-EM and S-EM) have a 
slight edge over CR-SVM. Again, the F-scores of 
the traditional supervised learning (SVM and NB) 
deteriorated when more other topic documents 
were added to the test set, while CR-EM, S-EM 
and CR-SVM were able to remain unaffected and 
maintained roughly constant F-scores. When the 
negative class contained documents from two cate-
gories (Neg 2), the F-scores of the traditional 
learning dropped even more rapidly. Both Roc-
SVM and One-class SVM (OSVM) performed 
poorly, due to the same reasons given previously.  

 
Figure 8. Results of Neg 1, similar case – using the 20 
Newsgroup data 

 
Figure 9. Results of Neg 2, similar case – using the 20 
Newsgroup data 

Different case: In this case, the other topic docu-
ments are quite different from the negative class 
documents, since they are originated from different 
main categories.  

The results are shown in Figures 10 (Neg 1) and 
11 (Neg 2). The trends are similar to those for the 
similar case, except that the performance of the 
traditional supervised learning methods (SVM and 
NB) dropped even more rapidly with more other 
topic documents. As the other topic documents 
have very different distributions from the negatives 
in the training set in this case, they really confused 
the traditional classifiers. In contrast, the three PU 
learning techniques were still able to perform con-
sistently well, regardless of the number of other 
topic documents added to the test data.  

 
Figure 10. Results of Neg 1, different case – using the 
20 Newsgroup data  

 
Figure 11.  Results of Neg 2, different case – using the 
20 Newsgroup data 

In summary, the results showed that learning 
with negative training data based on the traditional 
paradigm actually harms classification when the 
identical distribution assumption does not hold.  

4.3 Results without Other Topic Documents in 
Test Set 

Given an application, one may not know whether 
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the identical distribution assumption holds. The 
above results showed that PU learning is better 
when it does not hold.  How about when the as-
sumption does hold? To find out, we compared the 
results of SVM, NB, and three PU learning me-
thods using the datasets without any other topic 
documents added to the test set. In this case, the 
training and test data distributions are the same. 

Table 1 shows the results for this scenario. Note 
that for PU learning, the negative training data 
were not used. The traditional supervised learning 
techniques (SVM and NB), which made full use of 
the positive and negative training data, only per-
formed just about 1-2% better than the PU learning 
method CR-SVM (which is not statistically signifi-
cant based on paired t-test). This suggests that we 
can do away with negative training data, since PU 
learning can perform equally well without them.  
This has practical importance since the full cover-
age of negative training data is hard to find and to 
label in many applications. 

From the results in Figures 6–11 and Table 1, 
we can conclude that PU learning can be used for 
binary text classification without the negative 
training data (which can be harmful for the task). 
CR-SVM is our recommended PU learning method 
based on its generally consistent performance. 

Table 1. Comparison of methods without other docu-
ments in test set 

 Methods 
Reuters 
 (Neg 1) 

Reuters 
 (Neg 2) 

20News 
(Neg 1) 

20News 
(Neg 2) 

SVM 0.971 0.964 0.988 0.990 
NB 0.972 0.947 0.988 0.992 
S-EM 0.952 0.921 0.974 0.975 
CR-EM 0.955 0.897 0.983 0.986 
CR-SVM 0.960 0.959 0.967 0.974 

5 Conclusions 

This paper studied a special case of the sample se-
lection bias problem in which the positive training 
and test distributions are the same, but the negative 
training and test distributions may be different. We 
showed that in this case, the negative training data 
should not be used in learning, and PU learning 
can be applied to this setting. A new PU learning 
algorithm (called CR-SVM) was also proposed to 
overcome the weaknesses of the current two-step 
algorithms.  
 Our experiments showed that the traditional 
classification methods suffered greatly when the 
distributions are different for the negative training 

and test data, but PU learning does not. We also 
showed that PU learning performed equally well in 
the ideal case where the training and test data have 
identical distributions. As such, it can be advanta-
geous to discard the potentially harmful negative 
training data and use PU learning for classification.  
 In our future work, we plan to do more compre-
hensive experiments to compare the classic super-
vised learning and PU learning techniques with 
different kinds of settings, for example, by varying 
the ratio between positive and negative examples, 
as well as their sizes. It is also important to explore 
how to catch the best iteration of the SVM/NB 
classifier in the iterative running process of the 
algorithms. Finally, we would like to point out that 
it is conceivable that negative training data could 
still be useful in many cases. An interesting direc-
tion to explore is to somehow combine the ex-
tracted reliable negative data from the unlabeled 
set and the existing negative training data to further 
enhance learning algorithms.  
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