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Abstract not well understood what kind of structure is being
We define the crouching Dirichlet, hidden found by an unconstrained HMM (He'adden I'II etal.,
Markov model (CDHMM), an HMM for part- 2008)_. However, HMMS_ are falrl_y simple directed
of-speech tagging which draws state prior dis-  9raphical models, and it is straightforward to ex-
tributions for each local document context. tend them to define alternative generative processes.
This simple modification of the HMM takes This also applies to linguistically motivated HMMs
advantage of the dichotomy in natural lan-  for recovering states and sequences that correspond

guage between content and functionwords. In- mgre closely to those implicitly defined by linguists
contrast, a standard HMM draws all prior dis- - hay they Jabel sentences with parts-of-speech.
tributions once over all states gnd it is knowp One way in which a basic HMM's structure is a
to perform poorly in unsupervised and semi- o . .
supervised POS tagging. This modification ~ POOr model for POS tagging is that there is no inher-
significantly improves unsupervised POS tag- ent distinction between (open-class) content words
ging performance across several measures on  and (closed-class) function words. Here, we propose
five data sets for four languages. We alsoshow  two extensions to the HMM. The first, HMM+, is a
that simply using different hyperparameter  yery simple modification where two different hyper-
values for content and function word states in - yarameters are posited for content states and func-
zusr:)a:ir;?%?y Zf'\f/le l\élti\(/v(\a/hlch we call HMM+) is tion states, respectively. The other is ttruch-

' ing Dirichlet, hidden Markov model (CDHMM), an
extended HMM that captures this dichotomy based
on the statistical evidence that comes from context.
Hidden Markov Models (HMMs) are simple, ver- Content states display greater variance across lo-
satile, and widely-used generative sequence modetsl context (e.g. sentences, paragraphs, documents),
They have been applied to part-of-speech (POS) taghd we capture this variance by adding a component
ging in supervised (Brants, 2000), semi-superviset the model for content states that is based on la-
(Goldwater and Griffiths, 2007; Ravi and Knight,tent Dirichlet allocation (Blei et al., 2003). This ex-
2009) and unsupervised (Johnson, 2007) trainingnsion is in some ways similar to the LDAHMM
scenarios. Though discriminative models achievef Griffiths et al. (2005). Both models are compos-
better performance in both semi-supervised (Smitite in that two distributions do not mix with each
and Eisner, 2005) and supervised (Toutanova et abther. Unlike the LDAHMM, the generation of con-
2003) learning, there has been only limited work ottent states is folded into the CDHMM process.
unsupervised discriminative sequence models (e.g.,We compare the HMM+ and CDHMM against a
on synthetic data and protein sequences (Xu et abasic HMM and LDAHMM on POS tagging on a
2006)), and none to POS tagging. more extensive and diverse set of languages than

The tagging accuracy of purely unsupervisegbrevious work in monolingual unsupervised POS
HMMs is far below that of supervised and semitagging: four languages from three familigSe(-
supervised HMMs; this is unsurprising as it is stillmanic: English and GermarRomance: Portuguese;

1 Introduction
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andMayan: Uspanteko). The CDHMM easily out- standard topic model, and its output is also compet-
performs all other models, including HMM+, acrosstive when compared with a standard HMM. How-
three measures (accuracy, F-score, and variati@ver, Griffiths et al. (2005) note that the topic model
of information) for unsupervised POS tagging orcomponent inevitably loses some finer distinctions
most data sets. However, the HMM+ is surpriswith respect to parts-of-speech. Though many con-
ingly competitive, outperforming the basic HMM tent states such as adjectives, verbs, and nouns can
and LDAHMM, and rivaling or even passing thevary a great deal across documents, the topic state

CDHMM on some measures and data sets. groups these words together. This leads to assign-
ment of word tokens to clusters that are a poorer fit
2 Background for POS tagging. This paper shows that a model that

conflates the LDAHMM topics with content states

The Bayesian formulation for a basic HMM (Gold- R X ,
can significantly improve POS tagging.

water and Griffiths, 2007) is:

vilé ~ Dir(¢) 3 Models

Ocly ~ Dir(y) We aim to model the fact that in many languages
wifti =1 ~ Mult(yy) words can generally be grouped into function words
tilti-y =t~ Mult(d) and content words and that these groups often
have significantly different distributions. There are

Dir is the conjugate Dirichlet prior to Mult (a multi- :
nomial distribution). The state transitions are gen€W function words and they appear frequently,

erated by Multd;) whose priord, is generated by while there are many content_words_appear_ing infre-
Dir () with a symmetric (i.e. uniform) hyperparam-quemly' Another difference in distribution is often
eter. Emissions are generated by Mult) with implied in information retrieval by the use of stop-
a prior v, generated by Di¢) with a symmetric word filters andf-idf values to remove or reduce the
hyperparamete¢. Hyperparameter values smallerNfluénce of words which occur frequently but have
than one encourage posteriors that are peaked, wifif variance (i.e. their global probability is similar
smaller values increasing this concentration. It & their local probability in a document).

not necessary that the hyperparameters be symmet-A difference in distribution is also revealed when
ric, but this is a common approach when one wanfé€ parts-of-speech are known. When no smoothing
to be naive about the data. This is particularly agl@rameters are added, the joint probability of a word

propriate in unsupervised POS tagging with regartiat is not ‘the’ or ‘a” occurring with 2T tag (in
to novel data since there won't laepriori grounds the Penn Treebank) is almost always zero. Similarly
for favoring certain distributions over others. peaked distributions are observed for other function

There is considerable work on extensions tGategories such &¥D and CC. On the other hand,

HMM-based unsupervised POS tagging ($62 the joint probability of any word occurring witNN
but here we concentrate on the LDAHMM (Grif- is much less likely to be zero and the distribution is

fiths et al., 2005), which models topics and statg'uch less likely to be peaked.

probabilistic topic model and an HMM in which a Properties—that certain words have higher variance
single state is allocated for words generated frofCroSs contexts (e.g. a document) and that certain
the topic model. A strength of this model is that iftags have more peaked emission distributions—in a
is able to use less supervision than previous topg€duence model. To do this, we definedfmiching
models since it does not require a stopword listirichlet, hidden Markov model* (CDHMM). This
While the topic model component still uses the baggT©del, like LDAHMM, captures items of high vari-

of-words assumption, the joint model infers whichRNCe across contexts, but it does so without losing

i i d . .. . .
Words are more likely to.carry topical .content an IWe call our model a “crouching Dirichlet” model since it
which words are more likely to contribute to thejnolves a Dirichlet prior that generates distributionsdertain

local sequence. This model is competitive with atates as if it were “crouching” on the side.
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08 £ the sequence depend on whether stedé stepi is
teC orteF. If teC, the word emission is depen-
dent ong (the content word prior) and the state tran-

@ w; sition is dependent ofh(the “topic” prior) ands (the
transition prior). Ifte F', the word emission proba-

/L bility is dependent on) (the function word prior)

¢ and the state transition ah (again, the transition

prior). Therefore, iftc ', the transition and emis-
sion structure is identical to the standard Bayesian
HMM.

To elaborate, three prior distributions are defined
globally for this model: (1)), the transition prior
such thatp(|t,d;) = &y, (2) ¢1, the function word
prior such thap(wlt, ;) = ., (3) é¢, the content
word prior such thap(wlt, ¢:) = ¢,,;. Locally for

7y

Figure 1. Graphical representation of relevant var ] ]
ables and dependencies at a given time stepb- each contextl (documents in our case), we define

served wordw; is dependent on hidden state Y the topic prior such thai(t[6.4) = 64 for teC.
Edges to priord, ¢, may or may not be activated 1€ generative story is as follows:
depending on the value of. The edge to transition 1 For each statecT

prior ¢ is always activated. Hyperparameters to pri-

ors are represented by dots. $8el for details. (@) [Ii))_re(lw) a distribution over states, -~
ir(~y
(b) If teC, draw a distribution over words
sequence distinctions, namely, a given word’s lo- ¢ ~ Dir(B)
cal function via its part-of-speech. We also define

. i X (c) If teF, draw a distribution over words
the HMM+, a simple adaptation of a basic HMM Wi ~ Dir(€)

which accounts for the latter property by using dif-
ferent priors for emissions from content and function 2. For each context

states. (@) Draw a distributiond; ~ Dir(«) over

31 CDHMM stateseC

The CDHMM incorporates an LDA-like module to () Eor each V\;Ofdui nd

its graphical structure in order to capture words ' .drawt,» rom d,_, © 64

and tags which have high variance across contexts. ii. if ,€C, then draww; from ¢, else
Such tags correspond to content states. Like the draww; from ¢,

LDAHMM, the model is composite in that distribu-  £qr each contexti. we draw a prior distribution
tions over a single random variable are composegl,__formally identical to the LDA topic prior—that
of several different distribution functions which de-jg gefined only for the stategC.. This prior is then
pend on the value of the underlying variable. used to weight the draws for states at each word,

We posit the following model (see fig. 1 for a dia-from 8,,_, o 64, where we have defined the vector
gram of dependencies and all variables involved at\gyyed operatiom as follows:

single time step). We observe a sequence of tokens

w=(wi,...,wy) that we assume is generated by 20t Oja ti€C

an underlying state sequente(ty,...,ty) Over a (01 0 Oa)r = 1s teF

state alphabel” with first order Markov dependen- Z0lt '

cies. T is a union of disjoint content stat€s and where(¢d;, , o 6,),, is the element corresponding to
function stated”. In this composite model, the pri- statet; in the vectors;, , o 64. Z is a normalization
ors for the emission and transition for each step inonstant such that the probability mass sums to one.
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Figure 2: Conditional distribution fafr; in the CDHMM.
The important thing to note is that the draw forNote thatp(w, t|A) is equal to
states at each word is proportional tac@mposite
of (a) the product of the individual elements of the ﬁﬁ 0.5 [t €C]
topic and transition priors whetyeC' and (b) the ' (Puws 1Ol )
transition priors whert;cF. The draw is propor- d i
. . .. . I[t;€F]
tional to the product of topic and transition priors (ww”tﬁti\ti_l) 1)

whent;eC because we have made a product of ex-

perts (PoE) factorization assumption (Hinton, 2002yvhere [-] is the indicator functionD is the number
for tractability and to reduce the size of our model©f documents in the corpus amd; is the number of
Without such an assumption, the transition paramd@kens in document.

ters would lie in a partitioned space of si@é|C[*) Another important measure is the conditional dis-

thermore, this combination of a composite hiddeNariables except the hidden state variable of interest

state space with a product of experts assumption &0d which is derived by integrating out the priors:

lows us to capture high variance for certain states.
. . _ p(tilt—i, wih) o< p(tilt—is h)p(wilt,w_i; k) (2)
To summarize, the CDHMM is a composite

model where both the observed token and the hidd&heret_; is the joint random variableé without ¢;

state variable are composite distributions. For thgndw_; is w without w;.

hidden state, this means that there is a “topical” ele- There are two well-known approaches to conduct-

ment with high variance across contexts that is emng Gibbs sampling for HMMs. The default method

bedded in the state sequence for a subset of eventsio sampleA based on the posterior, then sample

We embed this element through a PoE assumptigsach¢; based on the conditional distribution. An-

where transitions into content states are modeled agher approach is to sample directly from the con-

a product of the transition probability and the locabjitional distribution without sampling from the pos-

probability of the content state. terior since the conditional distribution incorporates
the posterior through integration. This is called a

. ollapsed Gibbs sampler, which is the method em-
Inference. We use a Gibbs sampler (Gao ana:loyed for the models in this study.

Johnson, 2008) to learn the, parameters Of. th_|s alrPdThe full conditional distribution for tag transitions
all other models under consideration. In this infers

for the Gibbs sampler is given in Figure 2. At each

ence regime, two distributions are of particular m'time step, we decrement all counts for the current

terest. One is the posterior density and the other |s .
the conditional distribution, neither of which can beva.Iue oft;, sgmple anew valug.fa){ from a'mu'ltlno-
. ' mial proportional to the conditional distribution and
learned in closed form. assign that value tg. 3, ¢ are the hyperparameters
Letting A = (6,4, ¢,v) andh = («a, 3,7,€), the  for the word emission priors of the content states and
posterior density is given as function states, respectively; is the hyperparame-
ter for the state transition priorsy is the hyperpa-
rameter for the state prior given that it is in some

p(Alw, t; h) oc p(w, t|A)p(A; h) contextd. Note that we have overridden notation so
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that C' and T here refer to the size of the alphabet. corpus| tokens| docs| avg. | tags

W is the size of the vocabulary. Notation such as WSJ| 974254| 1801 | 541 | 43
Ny, 1, refers to the counts of the events indicated Brown | 797328| 343 | 2325| 80
by the subscript, minus the current token and tag un- Tiger | 447079| 1090 410| 58
der considerationNy,;,_, is the number of times; Florestal 197422] 1956| 101| 19
has occurred aftef; _; minus the tag fow;. N, Uspanteko| 70125 29 | 2418 83

is the number of times); has occurred with; minus
the current valuelNV;, and N, are the counts for the Table 2: Number of tokens, documents, average to-
given tag and document minus the current value. kens per document and total tag types for each cor-

In its broad outline, the CDHMM is not much PUS:
more complicated than an HMM since the decompo-
sition (eqn. 1) is nearly identical to that of an HMM4  Data and Experiments

with the exception that conditional probabilities for .
a subset of the states—the content states—are locpta. We use five datasets from four languages

An inference algorithm can be derived that involve$English, German, Portuguese, Uspanteko) for eval-
no more than adding a single term to the standaf¢fting POS tagging performance.

MCMC algorithm for HMMs (see Figure 2). e English: the Brown corpus (Francis et al., 1982)

and the Wall Street Journal portion of the Penn
Treebank (Marcus et al., 1994).

e German: the Tiger corpus (Brants et al., 2002).

The CDHMM explicitly posits two different types e Portuguese: the full Bosque subset of the Floresta
of states: function states and content states. Hav-corpus (Afonso et al., 2002).

ing made this distinction, there is a very simple way Uspanteko (an endangered Mayan language of
to capture the difference in emission distributions Guatemala): morpheme-segmented and POS-
for function and content states within an otherwise tagged texts collected and annotated by the
standard HMM: posit different hyperparameters for OKMA language documentation project (Pixabaj
the two types. One type has a small hyperparame-et al., 2007); we use the cleaned-up version de-
ter to model a sparse distribution for function words scribed in Palmer et al. (2009).

and the other has a relatively large hyperparameter

to model a distribution with broader support. ThisTable 2 provides the statistics for these corpora.
extension, which we refer to as HMM+, provides an e lowercase all words, do not remove any punc-
important benchmark to compare with the CDHMMtUation orhapax legomena, and we do not replace
to see how much is gained by its additional ability tdumerals with a single identifier. Due to the nature
model the fact that function words occur frequently?f the models, document boundaries are retained.

but have low variance across contexts. Evaluation We report values for three evaluation
As with the CDHMM, we use Gibbs sampling tometrics on all five corpora, using their full tagsets.
estimate the model parameters while holding the two _
different hyperparameters fixed. The conditiona? Accuracy: We use a greedy search algorithm to
distribution for tag transitions for this model is iden- Map €ach unsupervised tag to a gold label such
tical to that in fig. 2 except that it does not have the that accuracy is maximized. \We evaluate on a

32 HMM+

Nyja, o . 1-to-1 mapping between unsupervised tags and
second termiNdi “co Inthe first case whergeC. gold labels, as well as many-to-M¢to-1), cor-

We are not aware of a published instance of such responding to the evaluation mappings used in
an extension to the HMM—uwhich our results show Johnson (2007). The 1-to-1 mapping provides a
to be surprisingly effective. Goldwater and Griffiths  stricter evaluation. The many-to-one mapping, on
(2007) posits different hyperparameters for individ- the other hand, may be more adequate as unsu-
ual states, but not for different groups of states. pervised tags tend to be more fine-grained than
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Accuracy Pairwise P/R Scores
Ito-1 | Mol P ] R ] F
HMM || 0.34(0.01)| 0.49 (0.03)|| 0.51(0.03) | 0.19(0.01)| 0.28 (0.01)|| 3.72 (0.08)
LDAHMM || 0.30 (0.04)| 0.45 (0.04)|| 0.25 (0.07)| 0.27 (0.03)| 0.26 (0.04) || 3.64 (0.14)
HMM+ || 0.42(0.04) | 0.46 (0.05)|| 0.24 (0.03)| 0.49(0.03) | 0.32(0.03)|| 2.65(0.15)
CDHMM || 0.44(0.01) | 0.58(0.02) || 0.31(0.01)| 0.43(0.03)| 0.36 (0.02) || 2.73(0.08)

HMM || 0.32 (0.01)] 0.50 (0.02)][ 0.60 (0.02) | 0.18 (0.00)| 0.28 (0.01)| 3.82 (0.05)
LDAHMM | 0.28 (0.06)| 0.41 (0.08)|| 0.25 (0.10)| 0.28 (0.05)| 0.25 (0.05)|| 3.71 (0.21)
HMM+ || 0.43(0.06)| 0.48 (0.07)|| 0.29 (0.05)| 0.50 (0.04)| 0.37 (0.05) || 2.63 (0.19)
COHMM || 0.48(0.02) | 0.62(0.02) || 0.32 (0.03)| 0.54(0.04) | 0.40 (0.03) || 2.48 (0.06)

HMM || 0.29 (0.02)] 0.49 (0.02)]] 0.49 (0.04) | 0.14 (0.01)] 0.22 (0.02)] 3.91 (0.06)
LDAHMM || 0.31(0.04)| 0.50 (0.04)|| 0.26 (0.07)| 0.24(0.02)| 0.25 (0.04)|| 3.51(0.11)
HMM+ || 0.41(0.08)| 0.44 (0.05)|| 0.25 (0.05)| 0.58(0.10) | 0.35 (0.06) || 2.70 (0.25)
CDHMM || 0.47 (0.01) | 0.61(0.02) || 0.45 (0.01)| 0.58(0.03) | 0.50 (0.02) || 2.72 (0.04)

HMM || 0.36 (0.01)] 0.49(0.02) || 0.39 (0.01) | 0.18 (0.00)| 0.25 (0.00) || 3.63 (0.04)
LDAHMM || 0.35(0.02)| 0.47 (0.02)|| 0.26 (0.04)| 0.23(0.03)| 0.24 (0.02)|| 3.52 (0.09)
HMM+ || 0.32(0.02)| 0.35(0.03)|| 0.12 (0.02)| 0.52(0.05) | 0.20 (0.02)|| 3.13 (0.06)
coHMM || 0.39(0.02) | 0.50(0.02) || 0.16 (0.02)| 0.39 (0.03)| 0.23 (0.02)|| 3.00 (0.06)

HMM || 0.30 (0.01)] 0.58 (0.03)]] 0.62 (0.05) | 0.18 (0.01)] 0.28 (0.01)] 3.51 (0.06)
LDAHMM || 0.36(0.06) | 0.59 (0.04)|| 0.55(0.10)| 0.29 (0.07)| 0.38(0.08) || 3.22 (0.15)
HMM+ || 0.35(0.04)| 0.52(0.02)|| 0.28 (0.04)| 0.43(0.06) | 0.34 (0.04) || 2.58 (0.07)
coHMM || 0.36(0.01) | 0.64(0.02) || 0.37 (0.02)| 0.27 (0.01)| 0.31 (0.01)|| 2.73 (0.05)

Model Vi

Usp. (50) || Tiger (50) ||Brown (50)| WSJ (50)

Flor. (50)

Table 1: Evaluation on WSJ, Brown, Tiger, Floresta and Usglemfor models with 50 states. For VI, lower
is better

gold part-of-speech tags. In particular, they tend (2007) noted that this measure can point out mod-
to form semantically coherent sub-classes of gold els that have more consistent errors in the form
parts of speech. of lower VI, even when accuracy figures are the

e Pairwise Precision and Recall: Viewing tagging Same.

as a clustering task over tokens, we evaluate pair- We also report learning curves dhvto-1 with ge-
wise precision ) and recall ) between the gmetrically increasing training set sizes of 8, 16, 32,
model tag sequencel{) and gold tag sequence g4 128 256, 512, 1024, and all documents, or as

(G) by counting the true positivesy), false pos- many as possible given the corpus.
itives (fp) and false negativesff) between the

two and settingP = tp/(tp + fp) and R = 5 Experiments
tp/(tp+ fn). tpis the number of token pairs that
share atag i/ as well as in7, fpis the number

token pairs that share the same taginbut have

different tags inGG, and fn is the number token 51 Modelsand Parameters
pairs assigned a different tag M but the same
in G (Meila, 2007). We also provide thg-score
which is the harmonic mean @&f and R. e HMM: a standard HMM

e Variation of Information (VI): The variation of e HMM+: an HMM in which the hyperparameters
information is an information theoretic metric for the word emissions are asymmetric, such that
that measures the amount of information lost and content states have different word emission priors
gained in going from tag sequentéto G (Meila, compared to function states.

2007). It is defined a¥’ I(M,G) = H(M) + e LDAHMM: an HMM with a distinguished state
H(G) —2I(M,G) whereH denotes entropy and that generates words from a topic model (Griffiths
I mutual information. Goldwater and Griffiths et al., 2005)

In this section we discuss our parameter settings and
experimental results.

We compare four different models:
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Figure 3: Averaged many-to-one accuracy on the full tagsettfe modelsiMM+, LDAHMM , CDHMM
when the number of states is set at 20, 30, 40 and 50 states.

e CDHMM: our HMM with context-based emis- where the differences for the best models are not sig-
sions, where the context used is the document nificantly different from each other, but are signifi-

, _ cantly better from the others, the top model scores
We implemented all of these models, ensuring pet,o given in bold italic.

formance differences are due to the models them- CDHMM is extremely strong on the accuracy met-

selves rather than implementation details. ric: it wins or ties for all datasets for both 1-to-1 and
For all models, the transition hyperparameters \; 1,1 measures. For pairwisg-score, it obtains

are set td).1. For theLbAHMM andHMM all emis-  q pest score for two datasets (WSJ and Tiger), and

sion hyperparameters are set to 0.0001. These figaq \vith umm + on Brown (we return to Uspanteko

ures are the MCMC settings that provided the bes,q rigresta below in an experiment that varies the
results in Johnson (2007). For the models that distiny mper of states). For VHMM+ andcDHMM both

guish content and function stateMM +, COHMM),  g4gily outperform the other models, WitDHMM

we fixed the number of content states at 5 and set tk}\ﬁnning Brown and Uspanteko andvm + winning
function state emission hyperparametrs 0.0001  F|5resta.

and the content state emission hyperparameéters |, the case of Uspanteko, the absolute difference
0.1. For the models with an LDA or LDA-like com- ;. mean performance between models is smaller

ponent (DAHMM, CDHMM), we set the tOpiC Of ,yera put still significant. This is due to the reduced
content-state hyperparameter= 1. , variance between samples for all models. This is
_ Fordecoding, we use maximum posterior decotsyiking pecause the nomeHMM models have much
ing to obtain a single sample after the required buryigher standard deviation on other corpora but have
in, as has been done in other unsupervised HMMrply reduced standard deviation only for Uspan-
experiments. We use this sample for evaluation. gy The most likely explanation is that the Uspan-
52 Results teko corpus is much smaller than the other corgora.

_._NonethelesscDHMM comes out strongest on most
Results for all models on the full tagset are prowdegneasures

in table 17 Each number is the mean accuracy of A simple baseline for accuracy is to choose the

ten randomly initialized samples after a single chaipnost frequent tag for all tokens: this gives accura-

burn-in of 1000 iterations. The model with a Stajes of . 14 (WSJ), 0.14 (Brown), 0.21 (Tiger), 0.20
tistically significant < 0.05) best score for each

measure and data set is given in plain bold. In cases 3which is interesting in itself since the weak law of large
numbers implies that sample standard deviation decreaies w

2Similar results are obtained with reduced tagsets, as is coraample size, which in our case is the number of tokens rather
monly done in other work on unsupervised POS-tagging. than the 10 samples under discussion
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Accuracy P/R Scores
Ito-1 | M-to-1 P ] R ] F
HMM || 0.36 (0.01)| 0.58 (0.01)|| 0.56(0.02) | 0.16 (0.00)| 0.25(0.01)|| 3.53 (0.04)
LDAHMM || 0.35(0.01)| 0.58 (0.02)|| 0.45(0.04)| 0.17 (0.01)| 0.24 (0.01)|| 3.46 (0.06)
HMM+ || 0.35(0.02)| 0.41(0.02)| 0.18 (0.01)| 0.36 (0.03) | 0.24 (0.01)|| 3.25 (0.08)
CDHMM || 0.40(0.01) | 0.59(0.01) || 0.25(0.02)| 0.27 (0.02)| 0.26 (0.01) || 3.05(0.03)

HMM || 0.31 (0.02)] 0.48 (0.03)]] 0.40(0.03) | 0.21 (0.01)| 0.28 (0.02)[[ 3.54 (0.10)
LDAHMM | 0.35(0.06)| 0.46 (0.06)|| 0.27 (0.07)| 0.45 (0.08)| 0.33 (0.05)|| 3.10 (0.10)
HMM+ || 0.37 (0.04)| 0.50 (0.03)|| 0.30 (0.02)| 0.45 (0.06)| 0.36 (0.03)|| 2.62 (0.06)
CDHMM || 0.44(0.02) | 0.55(0.02) || 0.30 (0.01)| 0.53(0.03) | 0.39(0.02) || 2.39 (0.07)

Model Vi

Flor. (20) || Usp. (100

Table 3: Evaluation for Uspanteko and Floresta. Experimanthis table use state sizes that correspond
more closely to the size of the tag sets in the respectiveocarp

(Floresta), and 0.11 (Uspanteko). Clearly, all of the
models easily outperform this baseline. F-score v
Number of states. Figure 3 shows the change in _ | o %

accuracy for the different models for different cor- ° 1
pora when the overall number of states is varied °
between 20 and 50. The figure shows results for 2 ﬂH

05

M-to-1. All models with the exception ofiMM+ EN
show improvements as the number of states is in-_ |
creased. This brings up the valid concern (Clark, VI Taer Pl Uspancto
2003; Johnson, 2007) that a model could posit a
very large number of states and obtain high M-toFjgure 5: f-score and VI focbHMM by number of
1 scores. However, it is neither the case here nggates
in any of the studies we cite. Furthermore, as is
strongly suggested witAmM +, it does not seem as
if all models will benefit from assuming a large num-
ber of states.

Looking at the results by number of states on VI
and f-score forcbHMM(Figure 5), it is clear that Variance. As we average performance figures
Floresta displays the reverse pattern of all other datver ten runs for each model, it is also instructive
sets where performance monotonically deterioratde consider standard deviation across runs. Standard
as state sizes are increased. Though the exact reaslewiation is lowest for thebHmM models and the
is unknown, we believe it is partially due to the factvanilla HmM. Standard deviation is high fermm +
that Floresta has 19 tags. We therefore wonderethdLDAHMM . This is not surprising fOLDAHMM ,
whether positing a state size that more closely asince it has fifty topic parameters in addition to the
proximated the size of the gold tag set performs bettumber of states posited, and random initial condi-
ter. Since the discrepancy is greatest for Uspantekimns would have greater effect on the outcome than
and Floresta, we present tabulated results for expdor the other models. It is unexpected, however, that
iments with state settings of 100 and 20 states retMM+ has high variance over different chains. The
spectively (table 3). With the exception of VI (wheremodel shares the large content emission hyperpa-
lower is better) for Uspanteko, the scores generallsameterg = 0.1 with cbHMM. At this point, it can
improve when the model state size is closer to thenly be assumed that the additional LDA component
gold size. M-to-1 goes down for Floresta when 20acts as a regularization factor fabHMM and re-
states are posited, but this is to be expected since thigced the volatility in having a large emission hy-
score is defined, to a certain extent, to do better witherparameter.

larger models.
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Figure 4. Learning curves on M-to-1 evaluation. The staptesach point represent two standard deviations.

Learning curves We present learning curves on6 Related work

different sizes of subcorpora in Figure 4. The graphs

are box plots of the full M-1 accuracy figures onUnsupervised POS tagging is an active area of re-

10 randomly initialized training runs for seven sub-search. Most recent work has involved HMMs.

corpora in Brown, nine in WSJ, Tiger, Floresta andsiven that an unconstrained HMM is not well under-

three in Uspanteko. stood in POS tagging, much work has been done on
examining the mechanism and the properties of the
HMM as applied to natural language data (Johnson,
2007; Gao and Johnson, 2008; Headden Il et al.,

Comparing the graphs, the performanceisiv + 200_8). Co_nversely, there has al_so been work focused

shows the strongest improvement for English ang" improving the HMM as an inference procedure

German data as the amount of training data irfhat looked at POS tagging as an example (Graca et

creases. Also, it is evident thabHmm posts con- &l 2009; Liang and Klein, 2009). Nonparametric

sistent performance gains across data sets as it tralfi§IMs for unsupervised POS tag induction (Snyder
on more data. This stands in oppositiorHtam and et al., 2008; Van Gael et al., 2009) have seen partic-

LDAHMM which do not seem able to take advantagHIar activity due to the fact that model size assump-
of more information for WSJ and Floresta. This_tions are unnecessary and it lets the data “speak for

suggests that performance fopHmm andHvm+  1S€lf”

could improve if the training corpora were aug- There is also work on alternative unsupervised
mented with out-of-corpus raw data. One exceptiomodels that are not HMMs (Schuitze, 1993; Abend
to the consistent improvement over increased data®$ al., 2010; Reichart et al., 2010b) as well as re-
the performance of the models on Uspanteko, whicgearch on improving evaluation of unsupervised tag-
uniformly flatline. One reason might be that the tag§ers (Frank et al., 2009; Reichart et al., 2010a).

are labeled over segmented morphemes instead ofThough they did not concentrate on unsupervised
words like the other corpora. Another could be thamethods, Haghighi and Klein (2006) conducted an
Uspanteko has a relatively large number of tags in@ansupervised experiment that utilized certain to-
very small corpus. ken features (e.g. character suffixes of 3 or less,
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has initial capital, etc.; the features themselves athat sampled emission hyperparameters for each
from Smith and Eisner (2005)) to learn parameterstate rather than a single symmetric hyperparame-
in an undirected graphical model which was theer. They showed that this outperformed a symmet-
equivalent of an HMM in directed models. It wasric model. An interesting heuristic model is Zhao
also the first study to posit the one-to-one evaluaand Marcus (2009) that uses a seed set of closed
tion criterion which has been repeated extensivelglass words to classify open class words.

since (Johnson, 2007; Headden Il et al., 2008;

Graca et al., 2009). 7 Conclusion

Flnk_el et al. (2007) is an interesting variant of_un—We have shown that a hidden Markov model that
supervised POS tagging where a parse tree is aﬁl- i bset of the states to h distrib
sumed and POS tags are induced from this structufg 2cates @ Subset of the states 10 have distribu-

. . tions conditioned on localized domains can signif-
non-parametrically. It is the converse of unsuperi-C nilv improve performance in unsupervised part
vised parsing which assumes access to a tagged cof’—1 y Imp P P P

pus and induces a parsing model of-speech tagging. We have also demonstrated that

. . significant performance gains are possible simpl
Other models more directly influenced or closel g P g P i

- . y setting a different emission hyperparameter for
parallel our work. Griffiths et al. (2005) is the work subgroup of the states. It is encouraging that these

that inspired the current approach where a set ?agsults hold for both models not just on the WSJ but

states is des.ignated to capture variance across €O oss a diverse set of languages and measures.
texts. The primary goal of that model was to induce We believe our proposed extensions to the HMM

a tOpI.C mpdel given data tha.t had not been fllteregre a significant contribution to the general HMM
of noise in the form of function words. As such,

distinguishing between topic states such that theand unsgperwsed POStgggmg .Ilterature |n.t_hat.both
an be implemented with minimum modification

model different syn_tactlc states was not attempte df existing MCMC inferred HMMs, have (nearly)
and we have seen in sec. 3 that such an extension_is

. . . equivalent run times, produce output that is easy to
not entirely straightforward.Boyd-Graber and Blei .nqtglrv ret singe trl1e a{rz ba;e d or:Jffuenera'ltive frgme-
(2009) has some parallels to our model in that a hio|- P y 9

. L . work, and bring about considerable performance im-
den variable over topics is distributed according to " "’ g P

. . rovemen h me time.
a normalized product between a context prior and %0 ements at the same time
syntactic prior. However, it assumes a much greatey
amount of information than we do in that a parse tree

as well as (possibly) POS tags are taken as observerthe authors would like to thank Elias Ponvert and
The model has a very different goal from ours ashe anonymous reviewers. This work was supported

well, which is to infer a syntactically informed topic by a grant from the Morris Memorial Trust Fund of
model. Teichert and Daumé Il (2010) is anothethe New York Community Trust.

study with close similarities to our own. This study
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