
Proceedings of the 2010 Conference on Empirical Methods in Natural Language Processing, pages 167–176,
MIT, Massachusetts, USA, 9-11 October 2010. c©2010 Association for Computational Linguistics

Efficient Graph-Based Semi-Supervised Learning
of Structured Tagging Models

Amarnag Subramanya
Google Research

Mountain View, CA 94043
asubram@google.com

Slav Petrov
Google Research

New York, NY 10011
slav@google.com

Fernando Pereira
Google Research

Mountain View, CA 94043
pereira@google.com

Abstract

We describe a new scalable algorithm for
semi-supervised training of conditional ran-
dom fields (CRF) and its application to part-
of-speech (POS) tagging. The algorithm uses
a similarity graph to encourage similar n-
grams to have similar POS tags. We demon-
strate the efficacy of our approach on a do-
main adaptation task, where we assume that
we have access to large amounts of unlabeled
data from the target domain, but no additional
labeled data. The similarity graph is used dur-
ing training to smooth the state posteriors on
the target domain. Standard inference can be
used at test time. Our approach is able to scale
to very large problems and yields significantly
improved target domain accuracy.

1 Introduction

Semi-supervised learning (SSL) is the use of
small amounts of labeled data with relatively large
amounts of unlabeled data to train predictors. In
some cases, the labeled data can be sufficient to pro-
vide reasonable accuracy on in-domain data, but per-
formance on even closely related out-of-domain data
may lag far behind. Annotating training data for all
sub-domains of a varied domain such as all of Web
text is impractical, giving impetus to the develop-
ment of SSL techniques that can learn from unla-
beled data to perform well across domains. The ear-
liest SSL algorithm is self-training (Scudder, 1965),
where one makes use of a previously trained model
to annotate unlabeled data which is then used to
re-train the model. While self-training is widely

used and can yield good results in some applica-
tions (Yarowsky, 1995), it has no theoretical guaran-
tees except under certain stringent conditions, which
rarely hold in practice(Haffari and Sarkar, 2007).

Other SSL methods include co-training (Blum
and Mitchell, 1998), transductive support vector ma-
chines (SVMs) (Joachims, 1999), and graph-based
SSL (Zhu et al., 2003). Several surveys cover a
broad range of methods (Seeger, 2000; Zhu, 2005;
Chapelle et al., 2007; Blitzer and Zhu, 2008). A ma-
jority of SSL algorithms are computationally expen-
sive; for example, solving a transductive SVM ex-
actly is intractable. Thus we have a conflict between
wanting to use SSL with large unlabeled data sets
for best accuracy, but being unable to do so because
of computational complexity. Some researchers at-
tempted to resolve this conflict by resorting to ap-
proximations (Collobert et al., 2006), but those lead
to suboptimal results (Chapelle et al., 2007).

Graph-based SSL algorithms (Zhu et al., 2003;
Joachims, 2003; Corduneanu and Jaakkola, 2003;
Belkin et al., 2005; Subramanya and Bilmes, 2009)
are an important subclass of SSL techniques that
have received much attention in the recent past, as
they outperform other approaches and also scale eas-
ily to large problems. Here one assumes that the data
(both labeled and unlabeled) is represented by ver-
tices in a graph. Graph edges link vertices that are
likely to have the same label. Edge weights govern
how strongly the labels of the nodes linked by the
edge should agree.

Most previous work in SSL has focused on un-
structured classification problems, that is, problems
with a relatively small set of atomic labels. There
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has been much less work on SSL for structured pre-
diction where labels are composites of many atomic
labels with constraints between them. While the
number of atomic labels might be small, there will
generally be exponentially many ways to combine
them into the final structured label. Structured pre-
diction problems over sequences appear for exam-
ple in speech recognition, named-entity recogni-
tion, and part-of-speech tagging; in machine trans-
lation and syntactic parsing, the output may be tree-
structured.

Altun et al. (2005) proposed a max-margin ob-
jective for semi-supervised learning over structured
spaces. Their objective is similar to that of manifold
regularization (Belkin et al., 2005) and they make
use of a graph as a smoothness regularizer. However
their solution involves inverting a matrix whose size
depends on problem size, making it impractical for
very large problems. Brefeld and Scheffer (2006)
present a modified version of the co-training algo-
rithm for structured output spaces. In both of the
above cases, the underlying model is based on struc-
tured SVM, which does not scale well to very large
datasets. More recently Wang et al. (2009) proposed
to train a conditional random field (CRF) (Lafferty et
al., 2001) using an entropy-based regularizer. Their
approach is similar to the entropy minimization al-
gorithm (Grandvalet and Bengio, 2005). The prob-
lem here is that their objective is not convex and thus
can pose issues for large problems. Further, graph-
based SSL algorithms outperform algorithms based
on entropy minimization (Chapelle et al., 2007).

In this work, we propose a graph-based SSL
method for CRFs that is computationally practical
for very large problems, unlike the methods in the
studies cited above. Our method is scalable be-
cause it trains with efficient standard building blocks
for CRF inference and learning and also standard
graph label propagation machinery. Graph regular-
izer computations are only used for training, so at
test time, standard CRF inference can be used, un-
like in graph-based transductive methods. Briefly,
our approach starts by training a CRF on the source
domain labeled data, and then uses it to decode unla-
beled data from the target domain. The state posteri-
ors on the target domain are then smoothed using the
graph regularizer. Best state sequences for the unla-
beled target data are then created by Viterbi decod-

ing with the smoothed state posteriors, and this au-
tomatic target domain annotation is combined with
the labeled source domain data to retrain the CRF.

We demonstrate our new method in domain adap-
tation for a CRF part-of-speech (POS) tagger. While
POS tagging accuracies have reached the level of
inter-annotator agreement (>97%) on the standard
PennTreebank test set (Toutanova et al., 2003; Shen
et al., 2007), performance on out-of-domain data is
often well below 90%, impairing language process-
ing tasks that need syntactic information. For exam-
ple, on the question domain used in this paper, the
tagging accuracy of a supervised CRF is only 84%.
Our domain adaptation algorithm improves perfor-
mance to 87%, which is still far below in-domain
performance, but a significant reduction in error.

2 Supervised CRF

We assume that we have a set of labeled source do-
main examples Dl = {(xi,yi)}li=1, but only un-
labeled target domain examples Du = {xi}l+u

i=l+1.

Here xi = x
(1)
i x

(2)
i · · ·x

(|xi|)
i is the sequence of

words in sentence i and yi = y
(1)
i y

(2)
i · · · y

(|xi|)
i is

the corresponding POS tag sequence, with y(j)
i ∈ Y

where Y is the set of POS tags. Our goal is to learn
a CRF of the form:

p(yi|xi; Λ)∝exp
(Ni∑

j=1

K∑
k=1

λkfk(y(j−1)
i ,y

(j)
i ,xi, j)

)
for the target domain. In the above equation, Λ =
{λ1, . . . , λK} ∈ RK , fk(y(j−1)

i , y
(j)
i ,xi, j) is the k-

th feature function applied to two consecutive CRF
states and some window of the input sequence, and
λk is the weight of that feature. We discuss our fea-
tures in detail in Section 6. Given only labeled data
Dl, the optimal feature weights are given by:

Λ∗=argmin
Λ∈RK

[
−

l∑
i=1

log p(yi|xi; Λ)+γ‖Λ‖2
]

(1)

Here ‖Λ‖2 is the squared `2-norm and acts as the
regularizer, and γ is a trade-off parameter whose set-
ting we discuss in Section 6. In our case, we also
have access to the unlabeled data Du from the target
domain which we would like to use for training the
CRF. We first describe how we construct a similarity
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graph over the unlabeled which will be used in our
algorithm as a graph regularizer.

3 Graph Construction

Graph construction is the most important step in
graph-based SSL. The standard approach for un-
structured problems is to construct a graph whose
vertices are labeled and unlabeled examples, and
whose weighted edges encode the degree to which
the examples they link should have the same la-
bel (Zhu et al., 2003). Then the main graph con-
struction choice is what similarity function to use
for the weighted edges between examples. How-
ever, in structured problems the situation is more
complicated. Consider the case of sequence tag-
ging we are studying. While we might be able to
choose some appropriate sequence similarity to con-
struct the graph, such as edit distance or a string
kernel, it is not clear how to use whole sequence
similarity to constrain whole tag sequences assigned
to linked examples in the learning algorithm. Al-
tun et al. (2005) had the nice insight of doing the
graph construction not for complete structured ex-
amples but instead for the parts of structured exam-
ples (also known as factors in graphical model ter-
minology), which encode the local dependencies be-
tween input data and output labels in the structured
problem. However, their approach is too demanding
computationally (see Section 5), so instead we use
local sequence contexts as graph vertices, exploting
the empirical observation that the part of speech of
a word occurrence is mostly determined by its local
context.

Specifically, the set V of graph vertices consists
of all the word n-grams1 (types) that have occur-
rences (tokens) in training sentences (labeled and
unlabeled). We partition V = Vl ∪ Vu where Vl cor-
responds to n-grams that occur at least once in the
labeled data, and Vu corresponds to n-grams that oc-
cur only in the unlabeled data.

Given a symmetric similarity function between
types to be defined below, we link types u and v with

1We pad the n-grams at the beginning and end of sentences
with appropriate dummy symbols.

Description Feature
Trigram + Context x1 x2 x3 x4 x5

Trigram x2 x3 x4

Left Context x1 x2

Right Context x4 x5

Center Word x2

Trigram – Center Word x2 x4

Left Word + Right Context x2 x4 x5

Left Context + Right Word x1 x2 x4

Suffix HasSuffix(x3)

Table 1: Features we extract given a sequence of words
“x1 x2 x3 x4 x5” where the trigram is “x2 x3 x4”.

an edge of weight wuv, defined as:

wuv =

{
sim(u, v) if v ∈ K(u) or u ∈ K(v)
0 otherwise

whereK(u) is the set of k-nearest neighbors of u ac-
cording to the given similarity. For all experiments
in this paper, n = 3 and k = 5.

To define the similarity function, for each token
of a given type in the labeled and unlabeled data,
we extract a set of context features. For example,
for the token x2 x3 x4 occurring in the sequence
x1 x2 x3 x4 x5, we use feature templates that cap-
ture the left (x1 x2) and right contexts (x4 x5). Addi-
tionally, we extract suffix features from the word in
the middle. Table 1 gives an overview of the features
that we used. For each n-gram type, we compute the
vector of pointwise mutual information (PMI) val-
ues between the type and each of the features that
occur with tokens of that type. Finally, we use the
cosine distance between those PMI vectors as our
similarity function.

We have thus circumvented the problem of defin-
ing similarities over sequences by defining the graph
over types that represent local sequence contexts.
Since our CRF tagger only uses local features of the
input to score tag pairs, we believe that the graph
we construct captures all significant context infor-
mation. Figure 1 shows an excerpt from our graph.
The figure shows the neighborhoods of a subset of
the vertices with the center word ‘book.’ To reduce
clutter, we included only closest neighbors and the
edges that involve the nodes of interest.
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[the conference on]

[whose book on]
[the auction on]

[U.N.-backed conference on]

[the conference speakers]

[to schedule a]

[to postpone a]
VB

[to ace a]

[to book a]

[to run a]

[to start a] NN
NN

NN

VB
VB

[you book a]

[you rent a]

[you log a]

[you unrar a]

[to book some]
[to approve some]

VB
[to fly some]

[to approve parental-consent]

6

43
[the book that]

[the job that]

[the constituition that]

[the movie that]

[the city that]

NN

NN

[a movie agent]

[a clearing agent]

[a book agent]
7

4

6

Figure 1: Vertices with center word ‘book’ and their local neighborhoods, as well as the shortest-path distance between
them. Note that the noun (NN) and verb (VB) interpretations form two disjoint connected components.

It is remarkable that the neighborhoods are co-
herent, showing very similar syntactic configura-
tions. Furthermore, different vertices that (should)
have the same label are close to each other, form-
ing connected components for each part-of-speech
category (for nouns and verbs in the figure). We ex-
pect the similarity graph to provide information that
cannot be expressed directly in a sequence model.
In particular, it is not possible in a CRF to directly
enforce the constraint that similar trigrams appear-
ing in different sentences should have similar POS
tags. This constraint however is important dur-
ing (semi-supervised) learning, and is what makes
our approach different and more effective than self-
training.

In practice, we expect two main benefits from
our graph-based approach. First, the graph allows
new features to be discovered. Many words occur
only in the unlabeled data and a purely supervised
CRF would not be able to learn feature weights for
those observations. We could use self-training to
learn weights for those features, but self-training just
tends to reinforce the knowledge that the supervised
model already has. The similarity graph on the other
hand can link events that occur only in the unlabeled
data to similar events in the labeled data. Further-
more, because the graph is built over types rather
than tokens, it will encourage the same interpreta-
tion to be chosen for similar trigrams occurring in
different sentences. For example, the word ‘unrar’
will most likely not occur in the labeled training
data. Seeing it in the neighborhood of words for

which we know the POS tag will help us learn the
correct POS tag for this otherwise unknown word
(see Figure 1).

Second, the graph propagates adjustments to the
weights of known features. Many words occur only
a handful of times in our labeled data, resulting in
poor estimates of their contributions. Even for fre-
quently occurring events, their distribution in the tar-
get domain might be different from their distribution
in the source domain. While self-training might be
able to help adapt to such domain changes, its ef-
fectiveness will be limited because the model will
always be inherently biased towards the source do-
main. In contrast, labeled vertices in the similar-
ity graph can help disambiguate ambiguous contexts
and correct (some of) the errors of the supervised
model.

4 Semi-Supervised CRF

Given unlabeled data Du, we only have access to
the prior p(x). As the CRF is a discriminative
model, the lack of label information renders the
CRF weights independent of p(x) and thus we can-
not directly utilize the unlabeled data when train-
ing the CRF. Therefore, semi-supervised approaches
to training discriminative models typically use the
unlabeled data to construct a regularizer that is
used to guide the learning process (Joachims, 1999;
Lawrence and Jordan, 2005). Here we use the graph
as a smoothness regularizer to train CRFs in a semi-
supervised manner.

Our algorithm iterates between the following five
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Algorithm 1 Semi-Supervised CRF Training
Λs = crf-train(Dl, Λ0)
Set Λ(t)

0 = Λ(s)

while not converged do
{p} = posterior decode(Du, Λold)
{q} = token to type({p})
{q̂} = graph propagate({q})
D(1)

u = viterbi decode({q̂}, Λold)
Λ(t)

n+1 = crf-train(Dl ∪ D
(1)
u , Λ(t)

n )
end while
Return last Λ(t)

simple (and convex) steps: Given a set of CRF pa-
rameters, we first compute marginals over the un-
labeled data (posterior decode). The marginals
over tokens are then aggregated to marginals over
types (token to type), which are used to initial-
ize the graph label distributions. After running la-
bel propagation (graph propagate), the posteriors
from the graph are used to smooth the state posteri-
ors. Decoding the unlabeled data (viterbi decode)
produces a new set of automatic annotations that can
be combined with the labeled data to retrain the CRF
using the supervised CRF training objective (crf-
train). These steps, summarized in Algorithm 1, are
iterated until convergence.

4.1 Posterior Decoding

Let Λ(t)
n (t refers to target domain) represent the esti-

mate of the CRF parameters for the target domain af-
ter the n-th iteration.2 In this step, we use the current
parameter estimates to compute the marginal proba-
bilities

p(y(j)
i |xi; Λ(t)

n ) 1 ≤ j ≤ |xi|, i ∈ Dl

over POS tags for every word position j for i index-
ing over sentences in Dl ∪ Du.

4.2 Token-to-Type Mapping
Recall that our graph is defined over types while
the posteriors computed above involve particular to-
kens. We accumulate token-based marginals to cre-
ate type marginals as follows. For a sentence i and
word position j in that sentence, let T (i, j) be the

2In the first iteration, we initialize the target domain param-
eters to the source domain parameters: Λ

(t)
0 = Λ(s).

trigram (graph node) centered at position j. Con-
versely, for a trigram type u, let T−1(u) be the set
of actual occurrences (tokens) of that trigram u; that
is, all pairs (i, j) where i is the index of a sentence
where u occurs and j is the position of the center
word of an occurrence of u in that sentence. We cal-
culate type-level posteriors as follows:

qu(y) ,
1

|T−1(u)|
∑

(i,j)∈T−1(u)

p(y(j)
i |xi; Λ(t)

n ) .

This combination rule connects the token-centered
CRF with the type-centered graph. Other ways
of combining the token marginals, such as using
weights derived from the entropies of marginals,
might be worth investigating.

4.3 Graph Propagation
We now use our similarity graph (Section 3) to
smooth the type-level marginals by minimizing the
following convex objective:

C(q) =
∑
u∈Vl

‖ru − qu‖2

+ µ
∑

u∈V,v∈N (i)

wuv‖qu − qv‖2 + ν
∑
u∈V

‖qu − U‖2

s.t.
∑

y

qu(y) = 1 ∀u & qu(y) ≥ 0 ∀u, y (2)

where q = {q1, q2, . . . q|V |}. The setting of the
hyperparameters µ and ν will be discussed in Sec-
tion 6, N (u) is the set of neighbors of node u, and
ru is the empirical marginal label distribution for tri-
gram u in the labeled data. We use a squared loss to
penalize neighboring nodes that have different label
distributions: ‖qu − qv‖2 =

∑
y(qu(y) − qv(y))2,

additionally regularizing the label distributions to-
wards the uniform distribution U over all possible
labels Y . It can be shown that the above objective is
convex in q.

Our graph propagation objective can be seen as a
multi-class generalization of the quadratic cost crite-
rion (Bengio et al., 2007). The first term in the above
objective requires that we respect the information
in our labeled data. The second term is the graph
smoothness regularizer which requires that the qi’s
be smooth with respect to the graph. In other words,
if wuv is large, then qu and qv should be close in the

171



squared-error sense. This implies that vertices u and
v are likely to have similar marginals over POS tags.
The last term is a regularizer and encourages all type
marginals to be uniform to the extent that is allowed
by the first two terms. If a unlabeled vertex does
not have a path to any labeled vertex, this term en-
sures that the converged marginal for this vertex will
be uniform over all tags, ensuring that our algorithm
performs at least as well as a standard self-training
based algorithm, as we will see later.

While the objective in Equation 2 admits a closed
form solution, it involves inverting a matrix of or-
der |V | and thus we use instead the simple iterative
update given by

q(m)
u (y) =

γu(y)
κu

where

γu(y) = ru(y)δ(u ∈ Vl)

+
∑

v∈N (u)

wuvq
(m−1)
v (y) + νU(y),

κu = δ(u ∈ Vl) + ν + µ
∑

v∈N (u)

wuv (3)

where m is the iteration index and δ is the indica-
tor function that returns 1 if and only if the con-
dition is true. The iterative procedure starts with
q(0)

u (y) = qu(y) as given in the previous section.
In all our experiments we run 10 iterations of the
above algorithm, and we denote the type marginals
at completion by q∗u(y).

4.4 Viterbi Decoding
Given the type marginals computed in the previous
step, we interpolate them with the original CRF to-
ken marginals. This interpolation between type and
token marginals encourages similar n-grams to have
similar posteriors, while still allowing n-grams in
different sentences to differ in their posteriors. For
each unlabeled sentence i and word position j in it,
we calculate the following interpolated tag marginal:

p̂(y(j)
i = y|xi) = αp(y(j)

i = y|xi; Λ(t)
n )

+ (1− α)q∗T (m,n)(y) (4)

where α is a mixing coefficient which reflects the
relative confidence between the original posteriors
from the CRF and the smoothed posteriors from the
graph. We discuss how we set α in Section 6.

The interpolated marginals summarize all the in-
formation obtained so far about the tag distribution
at each position. However, if we were to use them on
their own to select the most likely POS tag sequence,
the first-order tag dependencies modeled by the CRF
would be mostly ignored. This happens because the
type marginals obtained from the graph after label
propagation will have lost most of the sequence in-
formation. To enforce the first-order tag dependen-
cies we therefore use Viterbi decoding over the com-
bined interpolated marginals and the CRF transition
potentials to compute the best POS tag sequence for
each unlabeled sentence. We refer to these 1-best
transcripts as y∗i , i ∈ Du.

4.5 Re-training the CRF
Now that we have successfully labeled the unlabeled
target domain data, we can use it in conjunction with
the source domain labeled data to re-train the CRF:

Λ(t)
n+1 =argmin

Λ∈RK

[
−

l∑
i=1

log p(yi|xi; Λ(t)
n )

− η
l+u∑

i=l+1

log p(y∗i |xi; Λ(t)
n )+γ‖Λ‖2

]
(5)

where η and γ are hyper-parameters whose setting
we discuss in Section 6. Given the new CRF pa-
rameters Λ we loop back to step 1 (Section 4.1) and
iterate until convergence. It is important to note that
every step of our algorithm is convex, although their
combination clearly is not.

5 Related Work

Our work differs from previous studies of
SSL (Blitzer et al., 2006; III, 2007; Huang
and Yates, 2009) for improving POS tagging in
several ways. First, our algorithm can be general-
ized to other structured semi-supervised learning
problems, although POS tagging is our motivating
task and test application. Unlike III (2007), we
do not require target domain labeled data. While
the SCL algorithm (Blitzer et al., 2006) has been
evaluated without target domain labeled data, that
evaluation was to some extent transductive in that
the target test data (unlabeled) was included in the
unsupervised stage of SCL training that creates the
structural correspondence between the two domains.
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We mentioned already the algorithm of Altun et
al. (2005), which is unlikely to scale up because
its dual formulation requires the inversion of a ma-
trix whose size depends on the graph size. Gupta
et al. (2009) also constrain similar trigrams to have
similar POS tags by forming cliques of similar tri-
grams and maximizing the agreement score over
these cliques. Computing clique agreement poten-
tials however is NP-hard and so they propose ap-
proximation algorithms that are still quite complex
computationally. We achieve similar effects by us-
ing our simple, scalable convex graph regularization
framework. Further, unlike other graph-propagation
algorithms (Alexandrescu and Kirchhoff, 2009), our
approach is inductive. While one might be able
to make inductive extensions of transductive ap-
proaches (Sindhwani et al., 2005), these usually re-
quire extensive computational resources at test time.

6 Experiments and Results

We use the Wall Street Journal (WSJ) section of
the Penn Treebank as our labeled source domain
training set. We follow standard setup procedures
for this task and train on sections 00-18, compris-
ing of 38,219 POS-tagged sentences with a total of
912,344 words. To evaluate our domain-adaptation
approach, we consider two different target domains:
questions and biomedical data. Both target do-
mains are relatively far from the source domain
(newswire), making this a very challenging task.

The QuestionBank (Judge et al., 2006), provides
an excellent corpus consisting of 4,000 questions
that were manually annotated with POS tags and
parse trees. We used the first half as our develop-
ment set and the second half as our test set. Ques-
tions are difficult to tag with WSJ-trained taggers
primarily because the word order is very different
than that of the mostly declarative sentences in the
training data. Additionally, the unknown word rate
is more than twice as high as on the in-domain de-
velopment set (7.29% vs. 3.39%). As our unla-
beled data, we use a set of 10 million questions
collected from anonymized Internet search queries.
These queries were selected to be similar in style
and length to the questions in the QuestionBank.3

3In particular, we selected queries that start with an English
function word that can be used to start a question (what, who,

As running the CRF over 10 million sentences can
be rather cumbersome and probably unnecessary, we
randomly select 100,000 of these queries and treat
this asDu. Because the graph nodes and the features
used in the similarity function are based on n-grams,
data sparsity can be a serious problem, and we there-
fore use the entire unlabeled data set for graph con-
struction. We estimate the mutual information-based
features for each trigram type over all the 10 million
questions, and then construct the graph over only
the set of trigram types that actually occurs in the
100,000 random subset and the WSJ training set.

For our second target domain, we use the Penn
BioTreebank (PennBioIE, 2005). This corpus con-
sists of 1,061 sentences that have been manually an-
notated with POS tags. We used the first 500 sen-
tences as a development set and the remaining 561
sentences as our final test set. The high unknown
word rate (23.27%) makes this corpus very difficult
to tag. Furthermore, the POS tag set for this data is a
super-set of the Penn Treebank’s, including the two
new tags HYPH (for hyphens) and AFX (for com-
mon post-modifiers of biomedical entities such as
genes). These tags were introduced due to the im-
portance of hyphenated entities in biomedical text,
and are used for 1.8% of the words in the test set.
Any tagger trained only on WSJ text will automati-
cally predict wrong tags for those words. For unla-
beled data we used 100,000 sentences that were cho-
sen by searching MEDLINE for abstracts pertaining
to cancer, in particular genomic variations and muta-
tions (Blitzer et al., 2006). Since we did not have ac-
cess to additional unlabeled data, we used the same
set of sentences as target domain unlabeled data,Du.
The graph here was constructed over the 100,000 un-
labeled sentences and the WSJ training set. Finally,
we remind the reader that we did not use label infor-
mation for graph construction in either corpus.

6.1 Baselines

Our baseline supervised CRF is competitive
with state-of-the-art discriminative POS taggers
(Toutanova et al., 2003; Shen et al., 2007), achieving
97.17% on the WSJ development set (sections 19-
21). We use a fairly standard set of features, includ-
ing word identity, suffixes and prefixes and detectors

when, etc.), and have between 30 and 160 characters.
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Questions Bio
Dev Eval Dev Eval

Supervised CRF 84.8 83.8 86.5 86.2
Self-trained CRF 85.4 84.0 87.5 87.1
Semi-supervised CRF 87.6 86.8 87.5 87.6

Table 2: Domain adaptation experiments. POS tagging accuracies in %.

for special characters such as dashes and digits. We
do not use of observation-dependent transition fea-
tures. Both supervised and semi-supervised models
are regularized with a squared `2-norm regularizer
with weight set to 0.01.

In addition to the supervised baseline trained ex-
clusively on the WSJ, we also consider a semi-
supervised self-trained baseline (“Self-trained CRF”
in Table 2). In this approach, we first train a su-
pervised CRF on the labeled data and then do semi-
supervised training without label propagation. This
is different from plain self-training because it aggre-
gates the posteriors over tokens into posteriors over
types. This aggregation step allows instances of the
same trigram in different sentences to share infor-
mation and works better in practice than direct self-
training on the output of the supervised CRF.

6.2 Domain Adaptation Results
The data set obtained concatenating the WSJ train-
ing set with the 10 million questions had about 20
million trigram types. Of those, only about 1.1 mil-
lion trigram types occurred in the WSJ training set
or in the 100,000 sentence sub-sample. For the
biomedical domain, the graph had about 2.2 mil-
lion trigrams. For all our experiments we set hy-
perparameters as follows: for graph propagation,
µ = 0.5, ν = 0.01, for Viterbi decoding mixing,
α = 0.6, for CRF re-training, η = 0.001, γ = 0.01.
These parameters were chosen based on develop-
ment set performance. All CRF objectives were op-
timized using L-BFGS (Bertsekas, 2004).

Table 2 shows the results for both domains. For
the question corpus, the supervised CRF performs
at only 85% on the development set. While it is al-
most impossible to improve in-domain tagging ac-
curacy and tagging is therefore considered a solved
problem by many, these results clearly show that
the problem is far from solved. Self-training im-
proves over the baseline by about 0.6% on the de-

velopment set. However the gains from self-training
are more modest (0.2%) on the evaluation (test) set.
Our approach is able to provide a more solid im-
provement of about 3% absolute over the super-
vised baseline and about 2% absolute over the self-
trained system on the question development set. Un-
like self-training, on the question evaluation set, our
approach provides about 3% absolute improvement
over the supervised baseline. For the biomedical
data, while the performances of our approach and
self-training are statistically indistinguishable on the
development set, we see modest gains of about 0.5%
absolute on the evaluation set. On the same data, we
see that our approach provides about 1.4% absolute
improvement over the supervised baseline.

7 Analysis & Conclusion

The results suggest that our proposed approach pro-
vides higher gains relative to self-training on the
question data than on the biomedical corpus. We
hypothesize that this caused by sparsity in the graph
generated from the biomedical dataset. For the ques-
tions graph, the PMI statistics were estimated over
10 million sentences while in the case of the biomed-
ical dataset, the same statistics were computed over
just 100,000 sentences. We hypothesize that the lack
of well-estimated features in the case of the biomed-
ical dataset leads to a sparse graph.

To verify the above hypothesis, we measured the
percentage of trigrams that occur in the target do-
main (unlabeled) data that do not have any path to
a trigram in the source domain data, and the aver-
age minimum path length between a trigram in the
target data and a trigram in the source data (when
such a path exists). The results are shown in Ta-
ble 3. For the biomedical data, close to 50% of the
trigrams from the target data do not have a path to
a trigram from the source data. Even when such a
path exists, the average path length is about 22. On
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Questions Bio
% of unlabeled trigrams

12.4 46.8not connected to
any labeled trigrams
average path length

9.4 22.4
between an unlabeled
trigram and its nearest

labeled trigram

Table 3: Analysis of the graphs constructed for the two
datasets discussed in Section 6. Unlabeled trigrams occur
in the target domain only. Labeled trigrams occur at least
once in the WSJ training data.

the other hand, for the question corpus, only about
12% of the target domain trigrams are disconnected,
and the average path length is about 9. These re-
sults clearly show the sparse nature of the biomed-
ical graph. We believe that it is this sparsity that
causes the graph propagation to not have a more no-
ticeable effect on the final performance. It is note-
worthy that making use of even such a sparse graph
does not lead to any degradation in results, which we
attribute to the choice of graph-propagation regular-
izer (Section 4.3).

We presented a simple, scalable algorithm for
training structured prediction models in a semi-
supervised manner. The approach is based on using
as a regularizer a nearest-neighbor graph constructed
over trigram types. Our results show that the ap-
proach not only scales to large datasets but also pro-
duces significantly improved tagging accuracies.
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