“Poetic’ Statistical Machine Translation: Rhyme and Meter

Dmitriy Genzel Jakob Uszkoreit Franz Och
Google, Inc.
1600 Amphitheatre Pkwy

Mountain View, CA 94043, USA
{dmitriy,uszkoreit, och}@google.com

Abstract

As a prerequisite to translation of poetry, we
implement the ability to produce translations
with meter and rthyme for phrase-based MT,
examine whether the hypothesis space of such
a system is flexible enough to accomodate
such constraints, and investigate the impact of
such constraints on translation quality.

1 Introduction

Machine translation of poetry is probably one of the
hardest possible tasks that can be considered in com-
putational linguistics, MT, or even Al in general. It
is a task that most humans are not truly capable of.
Robert Frost is reported to have said that poetry is
that which gets lost in translation. Not surprisingly,
given the task’s difficulty, we are not aware of any
work in the field that attempts to solve this problem,
or even discuss it, except to mention its difficulty,
and professional translators like to cite it as an exam-
ple of an area where MT will never replace a human
translator. This may well be true in the near or even
long term. However, there are aspects of the prob-
lem that we can already tackle, namely the problem
of the poetic form.

Vladimir Nabokov, in his famous translation of
Eugene Onegin (Nabokov, 1965), a poem with a
very strict meter and rhyming scheme, heavily dis-
parages those translators that attempt to preserve the
form, claiming that since it is impossible to perfectly
preserve both the form and the meaning, the form
must be entirely sacrificed. On the other hand, Dou-
glas Hofstadter, who spends 600 pages describing

158

how to translate a 60 word poem in 80 different ways
in Le Ton beau de Marot (1998), makes a strong case
that a poem’s form must be preserved in translation,
if at all possible. Leaving the controversy to the pro-
fessional translators, we investigate whether or not
it is possible to produce translations that conform to
certain metrical constraints common in poetry.

Statistical machine translation techniques, unlike
their traditional rule-based counterparts, are in fact
well-suited to the task. Because the number of po-
tential translation hypotheses is very large, it is not
unreasonable to expect that some of them should
conform to an externally imposed standard. The
goal of this paper is to investigate how these hy-
potheses can be efficiently identified, how often they
are present, and what the quality penalty for impos-
ing them is.

2 Related Work

There has been very little work related to the transla-
tion of poetry. There has been some work where MT
techniques were used to produce poetry (Jiang and
Zhou, 2008). In other computational poetry work,
Ramakrishnan et al (2009) generate song lyrics from
melody and various algorithms for poetry gener-
ation (Manurung et al., 2000; Diaz-Agudo et al.,
2002). There are books (Hartman, 1996) and arti-
cles (Bootz, 1996) on the subject of computer poetry
from a literary point of view. Finally, we must men-
tion Donald Knuth’s seminal work on complexity of
songs (Knuth, 1984).

Proceedings of the 2010 Conference on Empirical Methods in Natural Language Processing, pages 158-166,
MIT, Massachusetts, USA, 9-11 October 2010. (©)2010 Association for Computational Linguistics

3 Statistical MT and Poetry

We can treat any poetic form as a constraint on the
potential outputs. A naive approach to ensure that an
output of the MT system is, say, a haiku, is to create
a haiku detector and to examine a (very large) n-best
list of translations. This approach would not suc-
ceed very often, since the haikus that may be among
the possible translations are a very small fraction of
all translations, and the MT decoder is not actively
looking for them, since it is not part of the cost it
attempts to minimize. Instead, we would want to re-
cast “Haikuness” as a feature function, such that a
real haiku has 0 cost, and those outputs that are not,
have large cost. This feature function must be local,
rather than global, so as to guide the decoder search.

The concept of feature functions as used in sta-
tistical MT is described by Och and Ney (Och and
Ney, 2002). For a phrase based system, a feature
function is a function whose inputs are a partial hy-
pothesis state s;,, and a phrase pair p, and whose
outputs are the hypothesis state after p is appended
to the hypothesis: sy, and the cost incurred, c. For
hierarchical, tree-to-string and some other types of
MT systems which combine two partial hypotheses
and are not generating translations left-to-right, one
instead has two partial hypotheses states s;.r; and
Sright as inputs, and the outputs are the same. Our
first goal is to describe how these functions can be
efficiently implemented.

The feature function costs are multiplied by fixed
weights and added together to obtain the total hy-
pothesis cost. Normally feature functions include
the logarithm of probability of target phrase given
source, source given target and other phrase-local
features which require no state to be kept, as well
as features like language model, which require non-
trivial state. The weights are usually learned auto-
matically, however we will set them manually for
our feature functions to be effectively infinite, since
we want them to override all other sources of infor-
mation.

We will now examine some different kinds of po-
etry and consider the properties of such feature func-
tions, especially with regard to keeping necessary
state. We are concerned with minimizing the amount
of information to be kept, both due to memory re-
quirements, and especially to ensure that compati-

159

ble hypotheses can be efficiently recombined by the
decoder.

3.1 Line-length constrained poetry

Some poetic genres, like the above-mentioned
haiku, require that a poem contain a certain num-
ber of lines (3 for haiku), each containing a certain
number of syllables (5,7,5 for haiku). These gen-
res include lanternes, fibs, tankas, and many others.
These genres impose two constraints. The first con-
straint is on total length. This requires that each hy-
pothesis state contain the current translation length
(in syllables). In addition, whenever a hypothesis is
expanded, we must keep track of whether or not it
would be possible to achieve the desired final length
with such an expansion. For example, if in the ini-
tial state, we have a choice between two phrases, and
picking the longer of the two would make it impos-
sible to have a 17-syllable translation later on, we
must impose a high cost on it, so as to avoid going
down a garden path.

The second constraint is on placing line breaks:
they must come at word boundaries. Therefore the
5th and 12th (and obviously 17th) syllable must end
words. This also requires knowing the current hy-
pothesis’ syllable length, but unlike the first con-
straint, it can be scored entirely locally, without con-
sidering possible future expansions. For either con-
straint, however, the sentence has to be assembled
strictly left-to-right, which makes it impossible to
build partial hypotheses that do not start the sen-
tence, which hierarchical and tree-to-string decoders
require.

3.2 Rhythmic poetry

Some famous Western poetry, notably Shakespeare,
is written in rhythmic poetry, also known as blank
verse. This poetry imposes a constraint on the pat-
tern of stressed and unstressed syllables. For exam-
ple, if we use 0 to indicate no stress, and 1 to indicate
stress, blank verse with iambic foot obeys the regu-
lar expression (01)x*, while one with a dactylic foot
looks like (100)*. This genre is the easiest to han-
dle, because it does not require current position, but
only its value modulo foot length (e.g. for an iamb,
whether the offset is even or odd). It is even possi-
ble, as described in Section 4, to track this form in a
decoder that is not left-to-right.

3.3 Rhythmic and rhyming poetry

The majority of English poetry that was written un-
til recently has both rhythm and rhyme. Generally
speaking, a poetic genre of this form can be de-
scribed by two properties. The first is a rhyming
scheme. A rhyming scheme is a string of letters,
each corresponding to a line of a poem, such that
the same letter is used for the lines that rhyme.
E.g. aa is a scheme for a couplet, a 2-line poem
whose lines rhyme. A sonnet might have a com-
plicated scheme like abbaabbacdecde. The second
property concerns meter. Usually lines that rhyme
have the same meter (i.e. the exact sequence of
stressed and unstressed syllables). For example, an
iambic pentameter is an iamb repeated 5 times, i.e.
0101010101. We can describe a genre completely
by its thyming scheme and a meter for each letter
used in the rhyming scheme. We will refer to this ob-
ject as genre description. E.g. {abab,a : 010101, b :
10101010} is a quatrain with trimeter iambic and
tetrameter trochaic lines. Note that the other two
kinds of poetry can also be fit by this structure, if
one permits another symbol (we use *) to stand for
the syllables whose stress is not important, e.g. a
haiku: {abe, a @ sk, b o osokskoskoskok sk, € 1 okokok ok |
For this type of genre, we need to obey the same two
constraints as in the line-based poetry, but also to en-
sure that rhyming constraints hold. This requires us
to include in a state, for any outstanding rhyme let-
ter, the word that occurred at the end of that line. It
is not sufficient to include just the syllable that must
rhyme, because we wish to avoid self-rhymes (word
rhyming with an identical word).

4 Stress pattern feature function

We will first discuss an easier special case, namely
a feature function for blank verse, which we will re-
fer to as stress pattern feature function. This feature
function can be used for both phrase-based and hier-
archical systems.

In addition to a statistical MT system (Och and
Ney, 2004; Koehn et al., 2007), it is necessary to
have the means to count the syllables in a word and
to find out which ones are stressed. This can be done
with a pronunciation module of a text-to-speech
system, or a freely available pronunciation dictio-
nary, such as CMUDict (Rudnicky, 2010). Out-of-

160

vocabulary words can be treated as always imposing
a high cost.

4.1 Stress pattern for a phrase-based system

In a phrase based system, the feature function state
consists of the current hypothesis length modulo
foot length. For a 2-syllable foot, it is either O or
1, for a 3-syllable foot, O, 1, or 2. The proposed
target phrase is converted into a stress pattern using
the pronunciation module, and the desired stress pat-
tern is left shifted by the current offset. The cost is
the number of mismatches of the target phrase vs.
the pattern. For example, if the desired pattern is
010, current offset is 1, and the proposed new phrase
has pattern /0011, we shift the desired pattern by 1,
obtaining /00 and extend it to length 5, obtaining
10010, matching it against the proposal. There is
one mismatch, at the fifth position, and we report a
cost of 1. The new state is simply the old state plus
phrase length, modulo foot length, O in this example.

4.2 Stress pattern for a hierarchical system

In a hierarchical system, we in general do not know
how a partial hypothesis might be combined on the
left. A hypothesis that is a perfect fit for pattern 010
would be horrible if it is placed at an offset that is
not divisible by 3, and vice versa, an apparently bad
hypothesis might be perfectly good if placed at such
an offset. To solve this problem, we create states
that track how well a partial hypothesis fits not only
the desired pattern, but all patterns obtained by plac-
ing this pattern at any offset, and also the hypothesis
length (modulo foot length, as usual). For instance,
if we observe a pattern 10101, we record the fol-
lowing state: {length: 1, OI cost: 5, 10 cost: 0}.
If we now combine this state with another, such as
{length: 0, 01 cost: 1, 10 cost: 0}, we simply add
the lengths, and combine the costs either of the same
kind (if left state’s length is even), or the opposite (if
it is odd). In this instance we get {length: 1, 01
cost: 5, 10 cost: 1}. If both costs are greater than 0,
we can subtract the minimum cost and immediately
output it as cost: this is the unavoidable cost of this
combination. For this example we get cost of 1, and
anew state: {length: 1, 01 cost: 4, 10 cost: 0}. For
the final state, we output the remaining cost for the
pattern we desire. The approach is very similar for
feet of length 3.

4.3 Stress pattern: Whatever fits

With a trivial modification we can output transla-
tions that can fit any one of the patterns, as long
as we do not care which. The approach is identical
for both hierarchical and phrase-based systems. We
simply track all foot patterns (length 2 and length
3 are the only ones used in poetry) as in the above
algorithm, taking care to combine the right pattern
scores based on length offset. The length offset now
has to be tracked modulo 2*3.

This feature function can now be used to trans-
late arbitrary text into blank verse, picking whatever
meter fits best. If no meters can fit completely, it
will produce translations with the fewest violations
(assuming the weight for this feature function is set
high).

5 General poetic form feature function

In this section we discuss a framework for track-
ing any poetic genre, specified as a genre descrip-
tion object (Section 3.3 above). As in the case of
the stress pattern function, we use a statistical MT
system, which is now required to be phrase-based
only. We also use a pronunciation dictionary, but
in addition to tracking the number and stress of syl-
lables, we must now be able to provide a function
that classifies a pair of words as rhyming or non-
rhyming. This is in itself a non-trivial task (Byrd
and Chodorow, 1985), due to lack of a clear defini-
tion of what constitutes a thyme. In fact rhyming is
a continuum, from very strong rhymes to weak ones.
We use a very weak definition which is limited to a
single syllable: if the final syllables of both words
have the same nucleus and coda', we say that the
words rhyme. We accept this weak definition be-
cause we prefer to err on the side of over-generation
and accept even really bad poetry.

5.1 Tracking the target length

The hardest constraint to track efficiently is the
range of lengths of the resulting sentence. Phrase-
based decoders use a limited-width beam as they
build up possible translations. Once a hypothesis
drops out of the beam, it cannot be recovered, since
no backtracking is done. Therefore we cannot afford

'In phonology, nucleus and coda together are in fact called
rhyme or rime

161

to explore a part of the hypothesis space which has
no possible solutions for our constraints, we must be
able to prune a hypothesis as soon as it leads us to
such a subspace, otherwise we will end up on an un-
recoverable garden path. To avoid this problem, we
need to have a set of possible sentence lengths avail-
able at any point in the search, and to impose a high
cost if the desired length is not in that set.

Computing this set exactly involves a standard dy-
namic programming sweep over the phrase lattice,
including only uncovered source spans. If the maxi-
mum source phrase size is k, source sentence length
is n and maximum target/source length ratio for a
phrase is [(and therefore target sentence is limited
to at most [n words), this sweep requires going over
O(n?) source ranges, each of which can be produced
in k ways, and tracking In potential lengths in each,
resulting in O(n3kl) algorithm. This is unaccept-
ably slow to be done for each hypothesis (even not-
ing that hypotheses with the same set of already cov-
ered source position can share this computation).

We will therefore solve this task approximately.
First, we can note that in most cases the set of possi-
ble target lengths is a range. This is due to phrase
extraction constraints, which normally ensure that
the lengths of target phrases form a complete range.
This means that it is sufficient to track only a mini-
mum and maximum value for each range, reducing
time to O(n?k). Second, we can note that whenever
a source range is interrupted by a covered phrase and
split into two ranges, the minimal and maximal sen-
tence length is simply the sum of the correspond-
ing lengths over the two uncovered subranges, plus
the current hypothesis length. Therefore, if we pre-
compute the minimum and maximum lengths over
all ranges, using the same dynamic programming al-
gorithm in advance, it is only necessary to iterate
over the uncovered ranges (at most O(n), and O(1)
in practice, due to reordering constraints) at runtime
and sum their minimum and maximum values. As a
result, we only need to do O(n?k) work upfront, and
on average O(1) extra work for each hypothesis.

5.2 State space

A state for the feature function must contain the fol-
lowing elements:

o Current sentence length (in syllables)

e Set of uncovered ranges (as needed for the
computation above)

e Zero or more letters from the rhyming scheme
with the associated word that has an outstand-
ing rhyme

5.3 The combination algorithm

To combine the hypothesis state s;;, with a phrase
pair p, do the following

1. Initialize cost as 0, Syt aS Sip

2. Update s,,;: increment sentence length by tar-
get phrase length (in syllables), update cover-
age range

3. Compute minimum and maximum achievable
sentence length; if desired length not in range,
increment cost by a penalty

4. For each word in the target phrase

(a) If the word’s syllable pattern does not
match against desired pattern, add number
of mismatches to cost

(b) If at the end of a line:

i. If the line would end mid-word, incre-
ment cost by a penalty
ii. Let x be this line’s rhyme scheme let-
ter
iii. If x is present in the state S, check
if the word associated with = rhymes
with the current word, if not, incre-
ment cost by a penalty
iv. Remove x with associated word from
the state s+
v. If letter x occurs further in the
rhyming scheme, add x with the cur-
rent word to the state s,

5.4 Tracking multiple patterns

The above algorithm will allow to efficiently search
the hypothesis space for a single genre description
object. In practice, however, there may be several
desirable patterns, any one of which would be ac-
ceptable. A naive approach, to use multiple fea-
ture functions, one with each pattern, does not work,
since the decoder is using a (log-)linear model, in
which costs are additive. As a result, a pattern that

162

matches one pattern, but not another, will still have
high cost, perhaps as high as a pattern that partially
matches both. We need to combine feature functions
not linearly, but with a min operator. This is easily
achieved by creating a combined state that encodes
the union of each individual function’s states (which
can share most of the information), and in addition
each feature function’s current total cost. As long
as at least one function has zero cost (i.e. can po-
tentially match), no cost is reported to the decoder.
As soon as all costs become positive, the minimum
over all costs is reported to the decoder as unavoid-
able cost, and should be subtracted from each fea-
ture function cost, bringing the minimum stored in
the output state back to 0.

It is also possible to prune the set of functions that
are still viable, based on their cost, to avoid keeping
track of patterns that cannot possibly match. Using
this approach we can translate arbitrary text, provide
a large number of poetic patterns and expect to get
some sort of poem at the end. Given a wide variety
of poetic genres, it is not unreasonable to expect that
for most inputs, some pattern will apply. Of course,
for translating actual poetry, we would likely have a
specific form in mind, and a positive outcome would
be less likely.

6 Results

We train a baseline phrase-based French-English
system using WMT-09 corpora (Callison-Burch et
al., 2009) for training and evaluation. We use a pro-
prietary pronunciation module to provide phonetic
representation of English words.

6.1 Stress Pattern Feature Function

We have no objective means of “poetic” quality eval-
uation. We are instead interested in two metrics:
percentage of sentences that can be translated while
obeying a stress pattern constraint, and the impact
of this constraint on BLEU score (Papineni et al.,
2002). Obviously, WMT test set is not itself in any
way poetic, so we use it merely to see if arbitrary
text can be forced into this constraint.

The BLEU score impact on WMT has been fairly
consistent during our experimentation: the BLEU
score is roughly halved. In particular, for the
above system the baseline score is 35.33, and stress

Table 1: Stress pattern distribution

Name Pattern | % of matches
Tamb 01 9.6%

Trochee 10 7.2%

Anapest 001 27.1%
Amphibrach | 010 32.1%

Dactyl 100 23.8%

pattern-constrained system only obtains 18.93.

The proportion of sentences successfully matched
is 85%, and if we permit a single stress error, it is
93 %, which suggests that the constraint can be sat-
isfied in the great majority of cases. The distribution
of stress patterns among the perfect matches is given
in Table 1.

Some of the more interesting example translations
with stress pattern enforcement enabled are given in
table 2.

6.2 Poetic Form Feature Function

For poetic form feature function, we perform the
same evaluation as above, to estimate the impact of
forcing prose into an arbitrary poetic form, but to get
more relevant results we also translate a poetic work
with a specific genre requirement.

Our poetic form feature function is given a list
of some 210 genre descriptions which vary from
Haikus to Shakespearean sonnets. Matching any one
of them satisfies the constraint. We translate WMT
blind set and obtain a BLEU score of 17.28 with the
baseline of 35.33 as above. The proportion of sen-
tences that satisfied one of the poetic constraints is
87%. The distribution of matched genres is given
in Table 3. Some of the more interesting example
translations are given in table 2.

For a proper poetic evaluation, we use a French
translation of Oscar Wilde’s Ballad of Reading Gaol
by Jean Guiloineau as input, and the original Wilde’s
text as reference. The poem consists of 109 stanzas
of 6 lines each, with a genre description of {abcbdb,
a/c/d: 01010101, b: 010101}. The French version
obeys the same constraint. We treat each stanza as a
sentence to be translated. The baseline BLEU score
is 10.27. This baseline score is quite low, as can
be expected for matching a literal MT translation
against a professional poetical translation. We eval-
uate our system with a poetic constraint given above.

163

Table 3: Genre distribution for WMT corpus.
(Descriptions of these genres can be found in Wikipedia,
http://en.wikipedia.org)

Genre Number | Percentage
No poem 809 13.1%
Blank verse | 5107 82.7%
Couplet 81 1.3%
Haiku 42 0.7%
Cinquain 33 0.5%
Dodoitsu 24 0.4%
Quinzaine 23 0.4%
Choka 18 0.3%
Fib 15 0.2%
Tanka 14 0.2%
Lanterne 4 0.1%
Triplet 1 0.02%
Quatrain 1 0.02%
Total 6172 100%

The resulting score is 7.28. Out of 109 stanzas, we
found 12 translations that satisfy the genre constraint
(If we allow any poetic form, 108 out of 109 stanzas
match some form). Two sample stanzas that satisfied
the constraints are given in Table 4.

7 Discussion and Future Work

In this work we demonstrate how modern-day sta-
tistical MT system can be constrained to search for
translations obeying particular length, meter, and
rhyming constraints, whether a single constraint, or
any one of a set. We further demonstrate that the hy-
pothesis space is often rich enough that these con-
straints can be satisfied. The impact on translation
quality, however, is quite profound, as is to be ex-
pected. It seems that at the present state of machine
translation, one does indeed have to choose between
getting either the form or the meaning right. In the
present form, however, we can already find good
translations, as a sort of found poetry (Drury, 2006),
by translating a large quantity of text, whether poetic
or not.

This is the first attempt to deal with poetry trans-
lation, and the great majority of work to achieve rea-
sonable quality in form and meaning still remains to
be done. One major problem with the current fea-
ture function is that while it can avoid the areas of
the search space where length constraints cannot be

Table 2: Example translations. Stressed syllables are italicized

Reference A police spokesman said three people had been arrested and the
material was being examined.

Baseline A policeman said that three people were arrested and that the ma-
terial is currently being analyzed.

Stress Pattern (001) A police said that three were arrested and that the equipment is
currently being examined.

Poetic: Couplet in amphi- | An officer stated that three were arrested

brachic tetrameter and that the equipment is currently tested.

Reference A trio of retired generals launched a mutiny in the Lords, protest-
ing against cuts in military spending: being armed-forces minister
is, they claimed, a part-time job.

Baseline A trio of retired generals have launched a revolt among the Lords,
protesting against cuts in military spending: they have proclaimed
only Minister of Defence is for them, a part-time employment.

Stress Pattern (010) A trio of general retirement launched a rebellion among Lords,

protesting the spending cuts troops: they claimed Minister only
defense is for them, a part-time job.

Poetic: Blank Verse in amphi-
brachic trimeter

A trio of generals retired

have launched an uprising among Lords,
protesting the spending cuts members:
they minister only proclaimed the
defense is for them, a part-time job.

Reference We must continue to condemn human rights abuses in Burma.

Baseline We must continue to denounce the violations of human rights
abuses in Burma.

Stress Pattern (100) We must continue to speak out against rights abuses committed in

Burma.

Poetic: Haiku: 5-7-5 syllables

We must continue
denounce violations of
human rights Burma.

164

Table 4: Sample translations from Oscar Wilde’s Ballad of Reading Gaol.

Wilde’s original

Our translation

He did not wring his hands, as do
Those witless men who dare

To try to rear the changeling Hope
In the cave of black Despair:

He only looked upon the sun,
And drank the morning air.

Without hands twisted like these men,
Poor men without hope, dare

To nourish hope in our vault

Of desperation there

And looked toward the sun, drink cool
Until the evening air.

With slouch and swing around the ring
We trod the Fool’s Parade!

We did not care: we knew we were
The Devil’s Own Brigade:

And shaven head and feet of lead
Make a merry masquerade.

We are in our circle we

Dragged like the Fools’ Parade!

It mattered little, since we were
The Devil’s sad Brigade:

A shaved head and the feet of lead
Regardless gay charade!

satisfied, it cannot avoid the areas where rhyming
constraints are impossible to satisfy. As a result, we
need to allow a very wide hypothesis beam (5000 per
each source phrase coverage), to ensure that enough
hypotheses are considered, so that there are some
that lead to correct solutions later. We do not cur-
rently have a way to ensure that this happens, al-
though we can attempt to constrain the words that
end lines to have possible rhymes, or employ other
heuristics. A more radical solution is to create an
entirely different decoding algorithm which places
words not left-to-right, or in a hierarchical fashion,
but first placing words that must rhyme, and build-
ing hypotheses around them, like human translators
of poetry do.

As a result, the system at present is too slow, and
we cannot make it available online as a demo, al-
though we may be able to do so in the future.

The current approach relies on having enough lex-
ical variety in the phrase table to satisfy constraints.
Since our goal is not to be literal, but to obtain a
satisfactory compromise between form and mean-
ing, it would clearly be beneficial to augment target
phrases with synonyms and paraphrases, or to allow
for words to be dropped or added.

8 Acknowledgements

We would like to thank all the members of the MT
team at Google, especially Richard Zens and Moshe
Dubiner, for their help. We are thankful to the
anonymous reviewers for their comments, especially

165

to the one that to our amazement did the entire re-

view in verse2.

References

P. Bootz. 1996. Poetic machinations. Visible Language,
30(2):118-37.

Roy J. Byrd and Martin S. Chodorow. 1985. Using an
on-line dictionary to find rhyming words and pronun-
ciations for unknown words. In Proceedings of the
23rd Annual Meeting of the Association for Compu-
tational Linguistics, pages 277-283, Chicago, Illinois,
USA, July. Association for Computational Linguistics.

Chris Callison-Burch, Philipp Koehn, Christof Monz,
and Josh Schroeder. 2009. Findings of the 2009
Workshop on Statistical Machine Translation. In
Proceedings of the Fourth Workshop on Statistical
Machine Translation, pages 1-28, Athens, Greece,
March. Association for Computational Linguistics.

B. Diaz-Agudo, P. Gervés, and P. Gonzilez-Calero.
2002. Poetry generation in colibriza. In Advances in
Case-Based Reasoning, pages 157-159. Springer.

John Drury. 2006. The poetry dictionary. Writer’s Di-
gest Books.

C.O. Hartman. 1996. Virtual muse: experiments in com-
puter poetry. Wesleyan University Press.

Douglas R. Hofstadter. 1998. Le Ton Beau De Marot:
In Praise of the Music of Language. Perseus Books
Group.

2With the reviewer’s permission, we feel that the ex-
tra work done by the reviewer deserves to be seen by
more than a few people, and make it available for you to
view at: http://research.google.com/archive/
papers/review_in_verse.html

Long Jiang and Ming Zhou. 2008. Generating Chi-
nese couplets using a statistical MT approach. In
Proceedings of the 22nd International Conference on
Computational Linguistics (Coling 2008), pages 377—
384, Manchester, UK, August. Coling 2008 Organiz-
ing Committee.

D.E. Knuth. 1984. The complexity of songs. Communi-
cations of the ACM, 27(4):344-346.

Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris
Callison-Burch, Marcello Federico, Nicola Bertoldi,
Brooke Cowan, Wade Shen, Christine Moran, Richard
Zens, Chris Dyer, Ondrej Bojar, Alexandra Con-
stantin, and Evan Herbst. 2007. Moses: Open source
toolkit for statistical machine translation. In Proceed-
ings of the 45th Annual Meeting of the Association for
Computational Linguistics Companion Volume Pro-
ceedings of the Demo and Poster Sessions, pages 177—
180, Prague, Czech Republic, June. Association for
Computational Linguistics.

H.M. Manurung, G. Ritchie, and H. Thompson. 2000.
Towards a computational model of poetry generation.
In Proceedings of AISB Symposium on Creative and
Cultural Aspects and Applications of Al and Cognitive
Science, pages 79-86. Citeseer.

Vladimir Nabokov. 1965. Eugene Onegin: A Novel in
Verse by Alexandr Pushkin, Translated from the Rus-
sian. Bollingen Foundation.

Franz Josef Och and Hermann Ney. 2002. Discrimi-
native training and maximum entropy models for sta-
tistical machine translation. In Proceedings of 40th
Annual Meeting of the Association for Computational
Linguistics, pages 295-302, Philadelphia, Pennsylva-
nia, USA, July. Association for Computational Lin-
guistics.

Franz Josef Och and Hermann Ney. 2004. The align-
ment template approach to statistical machine transla-
tion. Computational Linguistics, 30(4):417-449.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic eval-
uation of machine translation. In Proceedings of 40th
Annual Meeting of the Association for Computational
Linguistics, pages 311-318, Philadelphia, Pennsylva-
nia, USA, July. Association for Computational Lin-
guistics.

Ananth Ramakrishnan A., Sankar Kuppan, and Sobha
Lalitha Devi. 2009. Automatic generation of Tamil
lyrics for melodies. In Proceedings of the Workshop
on Computational Approaches to Linguistic Creativity,
pages 40—46, Boulder, Colorado, June. Association for
Computational Linguistics.

Alex Rudnicky. 2010. The Carnegie Mellon pronounc-
ing dictionary, version 0.7a. Online.

166

