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Abstract

We propose a language-independent approach
for improving statistical machine translation
for morphologically rich languages using a
hybrid morpheme-word representation where
the basic unit of translation is the morpheme,
but word boundaries are respected at all stages
of the translation process. Our model extends
the classic phrase-based model by means
of (1) word boundary-aware morpheme-level
phrase extraction, (2) minimum error-rate
training for a morpheme-level translation
model using word-level BLEU, and (3) joint
scoring with morpheme- and word-level lan-
guage models. Further improvements are
achieved by combining our model with the
classic one. The evaluation on English to
Finnish usingeuroparl (714K sentence pairs;
15.5M English words) shows statistically sig-
nificant improvements over the classic model
based on BLEU and human judgments.

}@comp.nus.edu.sg

There has been a line of recent SMT research
that incorporates morphological analysis as part of
the translation process, thus providing access to the
information within the individual words. Unfortu-
nately, most of this work either relies on language-
specific tools, or only works for very small datasets.

Below we propose a language-independent ap-
proach to SMT of morphologically rich lan-
guages using a hybrid morpheme-word representa-
tion where the basic unit of translation is the mor-
pheme, but word boundaries are respected at all
stages of the translation process. We use unsuper-
vised morphological analysis and we incorporate its
output into the process of translation, as opposed to
relying on pre-processing and post-processing only
as has been done in previous work.

The remainder of the paper is organized as fol-
lows. Section 2 reviews related work. Sections 3
and 4 present our morphological and phrase merging
enhancements. Section 5 describes our experiments,
and Section 6 analyzes the results. Finally, Section 7

1 Introduction concludes and suggests directions for future work.

The fast progress of statist?cal mac_hine_: trgpslatiog Related Work

(SMT) has boosted translation quality significantly.

While research keeps diversifyintpe wordremains Most previous work on morphology-aware ap-
the atomic token-unit of translation. This is fine forproaches relies heavily on language-specific tools,
languages with limited morphology like English ande.g., theTreeTagger(Schmid, 1994) or théBuck-
French, or no morphology at all like Chinese, butvalter Arabic Morphological Analyzer (Buckwal-

it is inadequate for morphologically rich languageger, 2004), which hampers their portability to
like Arabic, Czech or Finnish (Lee, 2004; Goldwateother languages. Moreover, the prevalent method
and McClosky, 2005; Yang and Kirchhoff, 2006). for incorporating morphological information is by

This research was sponsored in part by CSIDM (grant L‘leurlstlcally-dnven pre- or post-processing. For

200805) and by a National Research Foundation grant entitl&f(amplev. Sadat and HabaSh (2006)_ use different
“Interactive Media Search” (grant # R-252-000-325-279).  combinations of Arabic pre-processing schemes
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for Arabic-English SMT, whereas Oflazer and EI-3.1 Morphological Representation
Kahlout (2007) post-processes Turkish morphemey,r morphological representation is based on the

level translations by re-scoring-best lists with a output of an unsupervised morphological analyzer.
word-based language model. These systems, hogg|iowing Virpioja et al. (2007), we usilorfessoy
ever, do not attempt to incorporate their analysis agnich is trained on raw tokenized text (Creutz and
part of the decoding process, but rather rely on moq_'agus, 2007). The tool segments words into mor-
els designed for word-token translation. phemes annotated with the following labeBRE
We should also note the importance of the ”ans('prefix),STM(stem),SUF(suffix). Multiple prefixes

lation direction: it is much harder to translate from a4 suffixes can be proposed for each word; word
morphologically poor to a morphologically rich lan- .o mpounding is allowed as well. The output can be

guage, where morphological distinctions not presepfascriped by the following regular expression:
in the source need to be generated in the target lan- WORD= ( PRE STM SUE )+

guage. Research in translating into morphologically _
rich languages, has attracted interest for languages™0r €xampleuncarefully s analyzed as
like Arabic (Badr et al., 2008)Greek (Avramidis ~ Un/PRE+ care/STM+ ful/SUF+ ly/SUF

and Koehn, 2008}lungarian(Novak, 2009; Koehn The above token sequence forms the input to our
and Haddow, 2009)Russian(Toutanova et al., system. We keep thERE/STM/SUF tags as part
2008), andTurkish(Oflazer and El-Kahlout, 2007). of the tokens, and distinguish betwesare/STM+
These approaches, however, either only succeedandcare/STM . Note also that the “+” sign is ap-
enhancing the performance for small bi-texts (Badsended to each nonfinal tag so that we can distin-

et al., 2008; Oflazer and El-Kahlout, 2007), or imguish word-internal from word-final morphemes.

prove only modestly for large bi-texts .
3.2 Word Boundary-aware Phrase Extraction

3 Morphological Enhancements The core translation structure of a phrase-based

We present a morphologically-enhanced version ctMT model is thephrase table which is learned
the classic phrase-based SMT model (Koehn et affom a bilingual parallel sentence-aligned corpus,
2003). We use a hybrid morpheme-word representi/Pically using the alignment template approach
tion where the basic unit of translation is the mor{Och and Ney, 2004). It contains a set of bilingual
pheme, but word boundaries are respected at fhrase pairs, each associated with five scores: for-
stages of the translation process. This is in coryvard and backward phrase translation probabilities,
trast with previous work, where morphological enforward and backward lexicalized translation proba-

hancements are typically performed as pre-/posillities, and a constant phrase penalty.
processing steps only. The maximum phrase lengthis normally limited

In addition to changing the basic translation tokef S€ven words; higher valuesincrease the table
the phrase-based SMT model with the following: mance benefit (Koehn et al., 2003). However, things

1. word boundary-aware morpheme-level phras@re different when translating with morphemes, for
two reasons: (1) morpheme-token phrases of length

extraction;
2. minimum error-rate training for a morpheme-/* €an span less tham words; and (2) morpheme-
level model using word-level BLEU: token phrases may only partially span words.

The first point means that morpheme-token
3. joint scoring with morpheme- and word-levelphrase pairs span fewer word tokens, and thus cover

language models. a smaller context, which may result in fewer total
We first introduce our morpheme-level represenextracted pairs compared to a word-level approach.
tation, and then describe our enhancements. Figure 1 shows a case where three Finnish words

! Avramidis and Koehn (2008) improved by 0.15 BLEU overconSISt of nine morphemes. Previously, this issue

a 18.05 English-Greek baseline; Toutanova et al. (2008) imd/as add_ressed by simply in_Cre‘_aSing_ th_e value of
proved by 0.72 BLEU over a 36.00 English-Russian baseline.when using morphemes, which is of limited help.
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SRC = thegmy newST/,unpRE+ democraticgry immigrationgmy policysm\

TGT = uusigry , epdpre+ demokraatsmys tsur+ isup+ Ssur+ €Nsyr Maahanmuuttopge. politikangy
(uusi=new , epddemokraattisen=undemocratic maahanmuuttopolitikan=immigration policy)

Figure 1:Example of English-Finnish bilingual fragments morphologcally segmented byMorfessor. Solid links
represent IBM Model 4 alignments at the morpheme-tokerl.I&vanslation glosses for Finnish are given below.

The second point is more interesting: morphemdormed MERT at the morpheme-token level as well.
level phrases may span words partially, making thefmhis is not optimal since the final expected system
potentially usable in translating unknown inflectedbutput is a sequence of words, not morphemes. The
forms of known source language words, but alsmain danger is that optimizing a morpheme-token
creates the danger of generating sequences of m&:EU score could lead to a suboptimal weight for
phemes that are not legal target language words. the word penalty feature function: this is because

For example, let us consider the phrase in Figthe brevity penalty of BLEU is calculated with re-
ure 1: unprg+democratic g1\ The original  spect to the number of morphemes, which may vary
algorithm will extract the spurious phraspaprg+ for sentences with an identical number of words.
demokraat sTM+t SUF+I SUF+SSUF+ beside  This motivates us to perform MERT at the word-
the correct one that hasngyg appended at the token level, although our input consists of mor-
end. Such a spurious phrase does not generally hglhemes. In particular, for each iteration of MERT,
in translating unknown inflected forms, especiallyas soon as the decoder generates a morpheme-token
for morphologically-rich languages that feature multranslation for a sentence, we convert it into a word-
tiple affixes, but negatively affects the translationoken sequence, which is used to calculate BLEU.
model in terms of complexity and quality. We thus achieve MERT optimization at the word-

We solve both problems by modifying the phrasetoken level while translating a morpheme-token in-
pair extraction algorithm so that morpheme-tokeput and generating a morpheme-token output.
phrases can extend longer thanas long as they
spann words or less. We further require that3.4 Scoring with Twin Language Models

word boundaries be respected.e., morpheme- hAg SMT system that takes morpheme-token input

token phrases span a sequence of whole words. T
. . . and generates morpheme-token output should natu-
is a fair extension of the morpheme-token system

. . rally use a morpheme-token language model (LM).
with respect to a word-token one since both are rel:hi has the advant ¢ alleviating the problem of
stricted to span up ta word-tokens. s has Ine advantage of aflevialing the problem o

data sparseness, especially when translating into a
3.3 Morpheme-Token MERT Optimizing morphologically rich language, since t_he LM would
Word-Token BLEU be able to handle some new unseen inflected forms
~of known words. On the negative side, a morpheme-
Modern phrase-based SMT systems use a log-linegjiken LM spans fewer word-tokens and thus has a
model with the following typical feature functions: yore limited word “horizon” compared to one op-
language model probabilities, word penalty, distorarating at the word level. As with the maximum
tion cost, and the five parameters from the phrase {gnrase length, mechanically increasing the order of
ble. Their weights are set by optimizing BLEU scorghe morpheme-token LM has a limited impact.
(Paplne_n_l et al., 2001) directly using minimum error In order to address the issue in a more princi-
rate training (MERT), as suggested by Och (2003).1e4 manner, we enhance our model with a second
In previous work, phrase-based SMT systemgy that works at the word-token level. This LM is
using morpheme-token input/output naturally peryseq together with the morpheme-token LM, which

2This means that we miss the opportunity to generate ne\ﬁ achieved by using two separate feature functions

wordforms for known baseforms, but removes the problem di? the log-linear SMT model: one for each LM. We
proposing nonwords in the target language. further had to modify the Moses decoder so that
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Previous hypotheses Current hypothesis

(i) uusigy , epépre. demokraatgmy: tsur+ isur+ Ssur+ €Nsyur Maahanmuuttopge, politikangmy

(i) * Score: “sgyr+ €Ngyr Maahanmuuttopre,” ; “engyr Maahanmuuttopge. politikangy”

» Concatenate: uusi , epademokraattisen maahanmuuttopolitikan
» Score: “, epademokraattisen maahanmuuttopolitikan”

(iif)

Figure 2: Scoring with twin LMs. Shown are: (i) The current state of the decoding processtivihiarget phrases

respectively. For the word-token LM, the morpheme-tokequsace is concatenated into word-tokens before scoring.

it can be enhanced with an appropriate word-tokeHowever, for phrase-based SMT systems, it is theo-

“view” on the partial morpheme-level hypothedes retically more appealing to combine their phrase ta-
The interaction of the twin LMs is illustrated in bles since this allows the translation models of both

Figure 2. The word-token LM can capture muchsystems to influence the hypothesis search directly.

longer phrases and more complete contexts suchWe now describe our phrase table combination

as “, epademokraattisen maahanmuuttopolitikan approach. Note that it is orthogonal to the work pre-

compared to the morpheme-token LM. sented in the previous section, which suggests com-
Note that scoring with two LMs that see the out-bining the two (which we will do in Section 5).

put sequence as different numbers of tokens is not

readily offered by the existing SMT decoders. Fof.1 Building a Twin Translation Model

example, the phrase-based model in Moses (Koelfiigyre 3 shows a general scheme of our twin trans-
et al., 2007) allows scoring with multiple LMs, but|ation model. First, we tokenize the input at differ-
assumes they use the same token granularity, whight granularities: (1) morpheme-token and (2) word-
is useful for LMs trained on different monolingual oken. We then build separate phrase tables (PT) for
corpora, but cannot handle our case. While the fagne two inputs: a word-toke® 7}, and a morpheme-
tored translation model (Koehn and Hoang, 2007) ifoken PT7,,. Second, we re-tokeniz®T,, at the
Moses does allow scoring with models of differen'morpheme level, thus obtaining a new phrase table
granularity, e.g., lemma-token and word-token LMspp.  \hich is of the same granularity @&T,,.

it requires a 1:1 correspondence between the tokepgally, we mergePT,,_.,,, and PT},, and we input
in the diﬁerent faCtOI’S, Wh|Ch Clearly iS not our Casethe resulting phrase table to the decoder.

Note that scoring with twin LMs is conceptu-
ally superior ton-best re-scoring with a word-token Word Morpheme
LM, e.g., (Oflazer and El-Kahlout, 2007), since it is

. X . . . . GIZA GIZA
tightly integrated into decoding: it scores partial hy- | i | | . |
. . Word alignment J’ Morpheme alignment
potheses and influenced the search process directly.
| Phrase Extraction | | Phrase Extraction |
4 Enriching the Translation Model pﬁw ,me

o ) Morphological
Another general strategy for combining evidence segmentaﬁonl /

from the word-token and the morpheme-token rep- PTw%\m}

resentations is to build two separate SMT systems |

; | PT merging I
and then combine them. This can be done as a v
post-processing system combination step; see (Chen | Decoding |

et al., 2009a) for an overview of such approaches. . _ .
Figure 3:Building a twin phrase table (PT). First, sep-

SWe use the term “hypothesis” to collectively refer to thearate PTs are generated for different input granularities:
following (Koehn, 2003): thesource phraseovered, the cor- word-token and morpheme-token. Second, the word-
respondingarget phraseand most importantly, eeference to  token PT is retokenized at the morpheme-token level. Fi-
the previous hypothesihat it extends. nally, the two PTs are merged and used by the decoder.
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4.2 Merging and Normalizing Phrase Tables word-token level forPT,,_.,, and at the morpheme-

token level for PT,,. Thus, we propose different

Below we f|r§t describe .the two g.eneral .phrase tarherging approaches for the phrase translation prob-

ble cpmblnatloq strate_g|es us_e_d N previous Worke'\bilities and for the lexicalized probabilities.

(1) direct merging using additional feature func-

tions, and (2) phrase table interpolation. We then

introduce our approach. — oy #(]e) oy
Add-feature methods. The first line of research estimationg(fle) = 25 #(fe) where#(f,¢) is

on phrase table merging is exemplified by (Niehuethe number of times the paiyf, ¢) is extracted from

et al., 2009; Chen et al., 2009b: Do et al., 2009the training dataset (Koehn et al., 2003). In order to

Nakov and Ng, 2009). The idea is to select one dreserve the normalized ML estimations as much as

the phrase tables as primary and to add to it all nofossible, we refrain from interpolation. Instead, we

duplicating phrase pairs from the second table tdiSe the raw counts for the two modeés, (f, €) and

gether with their associated scores. For each entrfw—m(f;€) directly as follows:

features can be added to indicate its origin (whether Hon(F,8) + Fwm (], ©)

In phrase-based SMT, phrase translation probabil-
ies are computed using maximum likelihood (ML)

from the primary or from the secondary table). Later ¢(f,€) = = =—
in our experiments, we will refer to these baseline Lj#mlf,8) + L #rw—m(f.€)
methods asadd-1 and add-2 depending on how  For lexicalized translation probabilities, we would
many additional features have been added. The vdike to use simple interpolation. However, we notice
ues we used for these features in the baseline dleat when a phrase pair belongs to only one of the
given in Section 5.4; their weights in the log-lineamphrase tables, the corresponding lexicalized score
model were set in the standard way using MERT. for the other table would be zero. This might cause
Interpolation-based methods. A problem with Some good phrases to be penalized just because they
the above method is that the scores in the mergd¢ere not extracted in both tables, which we want to
phrase table that correspond to forward and bacRrevent. We thus perform interpolation froRi},
ward phrase translation probabilities, and forwar@nd T, according to the following formula:

and backward lexicalized translation probabilities eX(F1) = a x1Xn(finlEm)
can no longer be interpreted as probabilities since . Im "o
they are not normalized any more. Theoretically, + (1 —a) xlexy(fuwléw)

this is not necessarily a problem since the log-lineaghere the concatenation ¢f, andeé,, into word-
model used by the decoder does not assume that ffaen sequences yields, andé,,, respectively.
scores for the feature functions come from a normal- |f poth (fim,&m) and(f., &,) are present itPT,,
ized probability distribution. While it is possible to and PT;,, respectively, we have a simple interpola-
re-normalize the scores to convert them into prokion of their corresponding lexicalized scores,jex
abilities, this is rarely done; it also does not solveynd lex,. However, if one of them is missing, we
the problem with the dropped scores for the duplido not use a zero for its corresponding lexicalized
cated phrases. Instead, the conditional probabilitiegore, but use an estimate as follows.
in the two phrase tables are often interpolated di- For example, if only the entrif,,,, &,,) is present
rectly, e.g., using linear interpolation. Representan pPT,,, we first convert f,,,&,) into a word-token
tive work adopting this approach is (Wu and Wangpair (f,,,_..,,ém—w), and then induce a correspond-
2007). We refer to this method agerpolation ing word alignment from the morpheme-token align-
Our method. The above phrase merging ap-ment of (f,,,&,,). We then estimate a lexicalized
proaches have been proposed for phrase tables @é¢wase score using the original formula given in
rived from different sources. This is in contrast with(Koehn et al., 2003), where we plug this induced
our twin translation scenario, where the morphemeword alignment and word-token lexical translation
token phrase tables are built from the same trainingrobabilities estimated from the word-token dataset
dataset; the main difference being that word aligrithe case wher(f,,é,) is present inPT,, but
ments and phrase extraction were performed at tiig,,, &,,) is not, is solved similarly.
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5 Experiments and Evaluation w-system m-system
BLEU m-BLEU BLEU m-BLEU
T, 11.56 45,57 11.07 49.15
In our experiments, we use the English-Finnish data T, 12.95 48.63 12.68 53.78
from the 2005 shared task (Koehn and Monz, 2005), T, 13.64 50.30 13.32 54.40
which is split into training, development, and test T, 14.20 50.85 13.57 54.70
portions; see Table 1 for details. We further split Fyll 14.58 53.05 14.08 55.26
the training dataset into four subsetg T,, T3, and
T, of sizes 40K, 80K, 160K, and 320K parallel sen-Table 2: Baseline system performanceon the test
tence pairs, which we use for studying the impact dfataset). Shown are word BLEU and morpheme m-
. . . BLEU scores for thev-systenandm-system
training data size on translation performance.

5.1 Datasets

Sent. AV words  Avg. morph. higher m-BLEU scores, indicating that it may have

en fi en fi better morpheme coverayydHowever, tham-system

Train 714K 21.62 15.80 24.68 26.15 isoutperformed by the-systenon the classic word-
Dev 2K 29.33 20.99 33.40 34.94 token BLEU, which means that it either does not

Test 2K 28.98 20.72 33.10 34.47 perform as well as the/-systenor that word-token
BLEU is not capable of measuring the morpheme-

Table 1: Dataset statistics. Shown are the number of Ie(yel improvements. We return to this question later.
parallel sentences, and the average number of words an

Morfessormorphemes on the English and Finnish side
of the training, development and test datasets.

53 Adding Morphological Enhancements

We now add our three morphological enhancements

5.2 Baseline Systems from Section 3 to the baselima-system
We build two phrase-based baseline SMT systems, Phr (training) allow morpheme-token phrases to
both using Moses (Koehn et al., 2007): get potentially longer than seven morpheme-tokens

w-system works at the word-token level, extracts®S long as they cover no more than seven words;
phrases of up to seven words, and uses a 4-gramtune (tuning) MERT for morpheme-token trans-
word-token LM (as typical for phrase-based SMT);lations while optimizing word-token BLEU;

m-system works at the morpheme level, tok- Im (decoding) scoring morpheme-token transla-
enized usindvorfessof and augmented with “+” as tion hypotheses with a 5-gram morpheme-token and
described in Section 3.1. a 4-gram word-token LM.

Following Oflazer and El-Kahlout (2007) and Vir-  The results are shown in Table 3 (ii). As we can
pioja et al. (2007), we use phrases of up to 16€e, each of the three enhancements yields improve-
morpheme-tokens and a 5-gram morpheme-tokéRents in BLEU score over the-systemboth for
LM. None of the enhancements described prevemall and for large training corpora. In terms of per-
ously is applied yet. After decoding, morphemes arformance rankingfune achieves the best absolute
concatenated back to words using the “+” markersimprovement of 0.66 BLEU points dfy and of 0.47

To evaluate the translation quality, we computdoints on the full dataset, followed ly andphr.
BLEU (Papineni et al., 2001) at the word-token Table 3 (iii) further shows that usinghr and
level. We further introduce a morpheme-token verdm together yields absolute improvements of 0.70
sion of BLEU, which we call m-BLEU: it first seg- BLEU points onZ; and 0.50 points on the full train-
ments the system output and the reference tran§g dataset. Further incorporatirtgne however,
lation into morpheme-tokens and then calculates @y helps when training off .

BLEU score as usual. Table 2 shows the baseline re-Overall, the morphological enhancements are on
sults. We can see that time-systenachieves much par with thew-systenbaseline, and yield sizable im-

“We retrained Morfessor for Finnish/English on the Note that these morphemes were generated automatically
Finnish/English side of the training dataset. and thus many of them are erroneous.
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System Ti (40K)  Full (714K)  ered the primary table. Table 4 shows the results

() w-systenfw) 11.56 14.58 when trying both strategies @ud-1 As we can see,
m-systengm) 11.07 14.08 using PT,_.,, as primary performs better ai and
m-+phr 11.447037  14.43935  on the full training dataset; thus, we will use it as

(i)  m+tune 11.737066  14.557047  primary on the test dataset fadd-1andadd-2
m+im 1158051 14531045 For interpolation-based methods, we need to

(i) m+phr+im 11777070 14587050 choose a value for the interpolation parameters. Due

m+phr+im+tune  11.90'%%%  14.39"%3! 44 time constraints, we use the same value for the

T _ . phrase translation probabilities and for the lexical-

able 3: Impact of the morphological enhancements | e .

(on test dataset). Shown are BLEU scores (in %) fo'lzed probabilities, and we perfprm grid search for

training onT, and on the full dataset for (i) baselines,® € {0.3,0.4,0.5,0.6,0.7} usinginterpolateon the

(i) enhancements individually, and (iii) combined. Su-full training dataset. As Table 5 shows, = 0.6

perscripts indicate absolute improvements wmrsystem  turns out to work best on the development dataset;
we will use this value in our experiments on the test

provements over the-systenbaseline: 0.83 BLEU dataset both fointerpolateand forourMethod.

points onT} and 0.50 on the full training dataset.

a | 03 04 05 06 07
5.4 Combining Translation Tables BLEU \ 14.17 1449 146 14.73 14.52

Finally, we investigate the effect of ComblnlngTable 5:Trying different values for interpolate (on dev

phrase tables derived from a word-token and gataset). BLEU (in %) is for the full training dataset.
morpheme-token input, as described in Section 4.

We experiment with the following merging methods: Evaluation on the test datasetWe integrate the
add-1: phrase table merging using one table a§'orPhologically enhanced system+phr+im and
primary and addingneextra featuré the word-token based-systenusing the four merg-
add-2 phrase table merging using one table alhg methods above. The results for the full train-
primary and addingwo extra feature’ ing dataset are shown in Table 6. As we can see,
interpolation: simple linear interpolation with 2dd-landadd-2make little difference compared to
one parametet; them-systenaseline. In contrasityterpolationand
ourMethod:  our interpolation-like merging ourMethodyield sizable absolute improvements of
method described in Section 4.2. 0.55 and 0.74 BLEU points, respectively, over the

Parameter tuning. We tune the parameters of theM-Systemmoreover, they outperform the-system

above methods on the development dataset. Merging methods  Full (714K)
T1 (40K) Full (714K) () vrc_'iy:ttgg ﬂgg
PT,, is primary 11.99 13.45 - d3_'l ey
PTy_misprimary  12.26 14.19 (i) add-2 13-89019
Table 4:Effect of selection of primary phrase table for (i) interpolation 14.6370
add-1 (on dev dataset)PT,,_.,,, derived from a word- ourMethod 14.82+0.74

token input, vs. PT,,, from a morpheme-token input.
Shown is BLEU (in %) orl; and the full training dataset. Table 6: Merging m+phr+Im and w-system (on test
) ~ dataset). BLEU (in %) is for the full training dataset. Su-
For add-1and add-2 we need to decide which perscripts indicate performance gain/loss wrr:system
(PTy—m or PT,,) phrase table should be consid-

®The feature values are', e*/* or ¢'/® (e=2.71828...); § Discussion
when the phrase pair comes from both tables, from the primary

table only, and from the secondary table only, respectively. Below we assess the significance of our results based

7 1 1 1 0 0 1 . . .
The feature values are”, e'), (e ,¢7) or (¢’ e’) when o micro-analysis and human judgments.
the phrase pair comes from both tables, from the primary table

only, and from the secondary table only, respectively. 8Note that this might puburMethodat disadvantage.
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6.1 Translation Model Comparison BLEU m-BLEU

We first compare the following three phrase ta- ourSystem 14.82  55.64
bles: PT,,, of m-systemmaximum phrase length of m-system 14.08 55.26
10 morpheme-tokens?T,, .., of w-systemmaxi- w-system 14.58 53.05

mum phrase length of 7 word-tokens, re-segmented

; i} - an@T _ _ Table 8:0ur system vs. the two baselinegon the test
Into mgrphemg tokens; anTy, ., — morpheme dataset): BLEU and m-BLEU scores (in %).
token input using word boundary-aware phrase ex-

traction, maximum phrase length of 7 word-tokens. ) ) )
by means of micro-analysis and human evaluation.

Full (714K) Translation Proximity Match. We performed
automatic comparison based on corresponding
PT,, 43.5M )
: phrases between the translation outputl and the
(i) PT,_.m 28.9M )
PToion 22 5M reference ref), using the sources(c) test dataset as
e a pivot. The decoding log gave us the phrases used
(i) PTipnr NPTy 21.4M | q | ded to find
PTospir () P 10.7M to translatesrc to out, and we only needed to fin

correspondences betwesit andref, which we ac-
Table 7: Phrase table statistics.The number of phrase complished by appending the test dataset to training
pairs in (i) individual PTs and (ii) PT overlap, is shown. and performing IBM Model 4 word alignments.
We then looked for phrase triplesr¢, out, ref),

PTy i phr Versus PT,,. Table 7 shows that where there was a high character-level similarity be-
PT,, 1 pn- is about half the size oPT,,. Still, as tweenout andref, measured usinpngest common
Table 3 showsm+phr outperforms them-system subsequence ratiwith a threshold of 0.7, set ex-
Moreover, 95.07% (21.4M/22.5M) of the phrasePerimentally. We extracted 16,262 triples: for 6,758
pairs in PT}, 1, are also inPT,,, which confirms of them, the translations matched the references ex-
that boundary-aware phrase extraction selects go8tly, while in the remaining triples, they were close
phrase pairs fronP T}, to be retained iP T, - wordforms. These numbers support the hypothesis

PTy i phr Versus PT,, ... These two tables that our approach yields translations close to the ref-
are comparable in size: 22.5M and 28.9M pairsgrence wordforms but unjustly penalized by BLEU,
but their overlap is only 47.67% (10.7M/22.5M) ofWhich only gives credit for exact word matchs
PTy i pne- Thus, enriching the translation model Human Evaluation. ~ We asked four native

with PT,,_.,, helps improve coverage. Finnish speakers to evaluate 50 random test sen-
tences. Following (Callison-Burch et al., 2009), we
6.2 Significance of the Results provided them with the source sentence, its refer-

Table 8 shows the performance of our system confNC€ translation, and the outputs of three SMT sys-
pared to the two baselinem-systenandw-system €ms (n-systemw-systemand ourSyster)) which
We achieve an absolute improvement of 0.74 BLEYere shown in different order for each example and
points over them-systemfrom which our system We€re namedsys] sys2and sys3(by order of ap-
evolved. This might look modest, but note thafearance). We asked for three pairwise judgments:
the baseline BLEU is only 14.08, and thus the rel(l) Sys1vs. sysZ (i) syslvs. sys3 and (i) sys2vs.
ative improvement is 5.6%, which is not trivial. SyS3 For each pair, a winner had to be designated;
Furthermore, we outperform the-systemby 0.24 ties were allowed. The results are shown in Table 10.

points (1.56% relative). Both improvements are sta//é can see that the judges consistently preferred

tistically significant withp < 0.01, according to °Examples of such triples arecgnstitutional
Collins’ sign test (Collins et al., 2005). structure , perustuslaillinen rakenne, perustuslaillisempi
In terms of m-BLEU. we achieve an improvemenfaken”e) and gconomic and social , taloudellisia ja

. . sosiaalisia, taloudellisten ja sosiaalisten)
of 2.59 points over thev-systemwhich suggest our As a reference, thev-systenyielded 15,673 triples, and

system might be performing better tha:n what 5tar_t>‘,392 of them were exact matches. Compared to our system,
dard BLEU suggests. Below we test this hypothesitis means 589 triples and 366 exact matches less.
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src : as a conservative , i am incredibly thrifty with taxpayeradney .

ref : maltillisen kokoomuspuolueen edustajana suhtawatiitain saastavaisesti veronmaksajierrahoihin .

our : konservatiivinen , olerittain saastavaisesti veronmaksajiemahoja .

w : konservatiivinen , olen aarettoman tarkeaa kanssanmaksajiemahoja .

m : kutenkonservatiivinen , oleerittain saastavaisesti veronmaksajiermahoja .

Comment:our = m> w. our uses better paraphrases, from which the correct meanirld beunferred. The part
“aarettoman tarkeaa kanssa™irdoes not mention the “thriftiness” and replaces it with “onjant” (tarkeaa), which
is wrong.mintroduces “kuten”, which slightly alters the meaning tod&"like a conservative, ...".

src : we were very constructive and we negotiated until the lastite of these talks in the hague .

ref : olimme erittainrakentavia ja neuvottelimme haagisséme hetkeen saakka

our : olemme olleet hyvimakentavia ja olemme neuvotelleetime hetkeen saakkanaiden neuvottelujen haagissa .
w : olemme olleet hyvimakentavia ja olemme neuvotelleaiime tippaan niinnaiden neuvottelujen haagissa .

m : olimme erittainrakentavarja neuvottelimmeviime hetkeen saakkanaiden neuvotteluiden haagissa .
Comment:our > m> w. In our, the meaning is very close toef with only a minor difference in tense at the
beginning. monly gets the case wrong in “rakentavan”, and the correc gagasily guessable. Far the “viime
tippaan” is in principle correct but somewhat colloquialddhe “niin” is extra and somewhat confusing.

src : it would be a very dangerous situation if the europeans teebecome logistically reliant on russia .

ref : olisi eritt&in vaarallinen tilanne , josurooppalaisettulisivat logistisestiriippuvaisiksi ve@jast .

our : olisi eritt ain vaarallinen tilanne , josurooppalaisettuleelogistisestirippuvaisia ve@djan .

w : seolisi eritt &in vaarallinen tilanne , josurooppalaisterulisi logistically riippuvaisia ve@djan .

m : seolisi hyvinvaarallinen tilanne , josurooppalaisethaluavattulla logistisestiriippuvaisia ve@jan .
Comment:our = w > m our is almost correct except for the wrong inflections at the emds inferior since it
failed to translate “logistically”. “haluavat tulla” imsuggests that the Europeans would “want to become lodigtica
dependent”, which is not the case. The “se” (it), and “hy\vim’synonym of “eritain”) are minor mistakes/differences.

Table 9: English-Finnish translation examples Shown are the sourcsr€ ), the referenceréf ), and the transla-
tions of three systems(r , w, m). Text in bold indicates matches with respect tordie , while italics show where a
system was judged inferior to the rest, as judged by natingish speakers.

(1) ourSystento them-system(2) ourSystento the 7 Conclusion and Future Work

w-system(3) w-systento them-systemThese pref-
erences are statistically significant, as found by thl& the quest towards a morphology-aware SMT that

sign test. Comparing to Table 8, we can see th&nly uses unannotated data, there are two key chal-

BLEU correlates with human judgments better thatf9es: (1) to bring the performance of morpheme-
m-BLEU; we plan to investigate this in future work. ©0K€n systems to a level rivaling the standard word-
token ones, and (2) to incorporate morphological

ourvs. m | ourvs. w| wvs. m analysis directly into the translation process.
Judgel 25 18 19 12121 19 This work satisfies the first challenge: we have
Judge2 24 16 19 15| 25 14 achieved statistically significant improvements in
Judge3 27t 12|17 11| 27t 15 BLEU for a large training dataset of 714K sentence
Judge4 25 20260 12122 22 pairs and this was confirmed by human evaluation.
Total 10¥ 66| 81F 50|95 70 We think we have built a solid framework for the

second challenge, and we plan to extend it further.
Table 10: Human judgments: ourSysten{our) vs. m-

system(m) vs. w-system(w). For each pair, we show Acknowledgements
the number of times each system was judged better than
the other one, ignoring ties. Statistically significant dif We thank Joanna Bergsm-Lehtovirta (Helsinki

ferences are marked with(p < 0.05) andf (p < 0.01).  Institute for Information Technology), Katri Haveri-
nen (University of Turku and Turku Centre for Com-
Finally, Table 9 shows some examples demorputer Science), Veronika Laippala (University of
strating how our system improves over thesystem Turku), and Sampo Pyysalo (University of Tokyo)
and them-system for judging the Finnish translations.
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