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Abstract

In this paper, we present a novel approach to
Web search result clustering based on the au-
tomatic discovery of word senses from raw
text, a task referred to as Word Sense Induc-
tion (WSI). We first acquire the senses (i.e.,
meanings) of a query by means of a graph-
based clustering algorithm that exploits cycles
(triangles and squares) in the co-occurrence
graph of the query. Then we cluster the search
results based on their semantic similarity to
the induced word senses. Our experiments,
conducted on datasets of ambiguous queries,
show that our approach improves search result
clustering in terms of both clustering quality
and degree of diversification.

1 Introduction

Over recent years increasingly huge amounts of
text have been made available on the Web. Popular
search engines such as Yahoo! and Google usually
do a good job at retrieving a small number of rel-
evant results from such an enormous collection of
Web pages (i.e. retrieving with high precision, low
recall). However, current search engines are still fac-
ing the lexical ambiguity issue (Furnas et al., 1987)
– i.e. the linguistic property owing to which any
particular word may convey different meanings. In
a recent study (Sanderson, 2008) – conducted us-
ing WordNet (Miller et al., 1990) and Wikipedia as
sources of ambiguous words – it was reported that
around 3% of Web queries and 23% of the most
frequent queries are ambiguous. Examples include:
“buy B-52” (a cocktail? a bomber? a DJ worksta-
tion? tickets for a band?), “Alexander Smith quotes”

(the novelist? the poet?), “beagle search” (dogs? the
Linux search tool? the landing spacecraft?).

Ambiguity is often the consequence of the low
number of query words entered on average by Web
users (Kamvar and Baluja, 2006). While average
query length is increasing – it is now estimated at
around 3 words per query1 – many search engines
such as Google have already started to tackle the
query ambiguity issue by reranking and diversify-
ing their results, so as to prevent Web pages that are
similar to each other from ranking too high on the
list.

In the past few years, Web clustering engines
(Carpineto et al., 2009) have been proposed as a
solution to the lexical ambiguity issue in Web In-
formation Retrieval. These systems group search re-
sults, by providing a cluster for each specific aspect
(i.e., meaning) of the input query. Users can then se-
lect the cluster(s) and the pages therein that best an-
swer their information needs. However, many Web
clustering engines group search results on the ba-
sis of their lexical similarity. For instance, consider
the following snippets returned for the beagle search
query:

1. Beagle is a search tool that ransacks your...

2. ...the beagle disappearing in search of game...

3. Beagle indexes your files and searches...

While snippets 1 and 3 both concern the Linux
search tool, they do not have any content word in

1http://www.hitwise.com/us/press-center/
press-releases/google-searches-apr-09
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common except our query words. As a result, they
will most likely be assigned to two different clusters.

In this paper we present a novel approach to Web
search result clustering which is based on the auto-
matic discovery of word senses from raw text – a
task referred to as Word Sense Induction (WSI). At
the core of our approach is a graph-based algorithm
that exploits cycles in the co-occurrence graph of
the input query to detect the query’s meanings. Our
experiments on two datasets of ambiguous queries
show that our WSI approach boosts search result
clustering in terms of both clustering quality and de-
gree of diversification.

2 Related Work

Web directories. A first, historical solution to
query ambiguity is that of Web directories, that
is taxonomies providing categories to which Web
pages are manually assigned (e.g., the Open Direc-
tory Project – http://dmoz.org). Given a query,
search results are organized by category. This ap-
proach has three main weaknesses: first, it is static,
thus it needs manual updates to cover new pages;
second, it covers only a small portion of the Web;
third, it classifies Web pages based on coarse cate-
gories. This latter feature of Web directories makes
it difficult to distinguish between instances of the
same kind (e.g., pages about artists with the same
surname classified as Arts:Music:Bands and
Artists). While methods for the automatic clas-
sification of Web documents have been proposed
(e.g., (Liu et al., 2005b; Xue et al., 2008)) and some
problems have been effectively tackled (Bennett and
Nguyen, 2009), these approaches are usually super-
vised and still suffer from relying on a predefined
taxonomy of categories.

Semantic Information Retrieval (SIR). A dif-
ferent direction consists of associating explicit se-
mantics (i.e., word senses or concepts) with queries
and documents, that is, performing Word Sense Dis-
ambiguation (WSD, see Navigli (2009)). SIR is per-
formed by indexing and/or searching concepts rather
than terms, thus potentially coping with two linguis-
tic phenomena: expressing a single meaning with
different words (synonymy) and using the same word
to express various different meanings (polysemy).
Over the years, different methods for SIR have been

proposed (Krovetz and Croft, 1992; Voorhees, 1993;
Mandala et al., 1998; Gonzalo et al., 1999; Kim et
al., 2004; Liu et al., 2005a, inter alia). However, con-
trasting results have been reported on the benefits of
these techniques: it has been shown that WSD has
to be very accurate to benefit Information Retrieval
(Sanderson, 1994) – a result that was later debated
(Gonzalo et al., 1999; Stokoe et al., 2003). Also,
it has been reported that WSD has to be very pre-
cise on minority senses and uncommon terms, rather
than on frequent words (Krovetz and Croft, 1992;
Sanderson, 2000).

SIR relies on the existence of a reference dictio-
nary to perform WSD (typically, WordNet) and thus
suffers from its static nature and its inherent paucity
of most proper nouns. This latter problem is partic-
ularly important for Web searches, as users tend to
retrieve more information about named entities (e.g.,
singers, artists, cities) than concepts (e.g., abstract
information about singers or artists).

Search Result Clustering. A more popular ap-
proach to query ambiguity is that of search result
clustering. Typically, given a query, the system starts
from a flat list of text snippets returned from one or
more commonly-available search engines and clus-
ters them on the basis of some notion of textual simi-
larity. At the root of the clustering approach lies van
Rijsbergen’s (1979) cluster hypothesis: “closely as-
sociated documents tend to be relevant to the same
requests”, whereas documents concerning different
meanings of the input query are expected to belong
to different clusters.

Approaches to search result clustering can be
classified as data-centric or description-centric
(Carpineto et al., 2009). The former focus more on
the problem of data clustering than on presenting the
results to the user. A pioneering example is Scat-
ter/Gather (Cutting et al., 1992), which divides the
dataset into a small number of clusters and, after the
selection of a group, performs clustering again and
proceeds iteratively. Developments of this approach
have been proposed which improve on cluster qual-
ity and retrieval performance (Ke et al., 2009). Other
data-centric approaches use agglomerative hierar-
chical clustering (e.g., LASSI (Yoelle Maarek and
Pelleg, 2000)), rough sets (Ngo and Nguyen, 2005)
or exploit link information (Zhang et al., 2008).

Description-centric approaches are, instead, more
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focused on the description to produce for each
cluster of search results. Among the most popular
and successful approaches are those based on suf-
fix trees (Zamir et al., 1997; Zamir and Etzioni,
1998), including later developments (Crabtree et al.,
2005; Bernardini et al., 2009). Other methods in
the literature are based on formal concept analy-
sis (Carpineto and Romano, 2004), singular value
decomposition (Osinski and Weiss, 2005), spectral
clustering (Cheng et al., 2005), spectral geometry
(Liu et al., 2008), link analysis (Gelgi et al., 2007),
and graph connectivity measures (Di Giacomo et al.,
2007). Search result clustering has also been viewed
as a supervised salient phrase ranking task (Zeng et
al., 2004).

Diversification. Another recent research topic
dealing with the query ambiguity issue is diversifi-
cation, which aims to rerank top search results based
on criteria that maximize their diversity. One of the
first examples of diversification algorithms is based
on the use of similarity functions to measure the
diversity among documents and between document
and query (Carbonell and Goldstein, 1998). Other
techniques use conditional probabilities to deter-
mine which document is most different from higher-
ranking ones (Chen and Karger, 2006) or use affinity
ranking (Zhang et al., 2005), based on topic variance
and coverage. More recently, an algorithm called Es-
sential Pages (Swaminathan et al., 2009) has been
proposed to reduce information redundancy and re-
turn Web pages that maximize coverage with respect
to the input query.

Word Sense Induction (WSI). In contrast to the
above approaches, we perform WSI to dynamically
acquire an inventory of senses of the input query.
Instead of performing clustering on the basis of the
surface similarity of Web snippets, we use our in-
duced word senses to group snippets. Very little
work on this topic exists: vector-based WSI was suc-
cessfully shown to improve bag-of-words ad-hoc In-
formation Retrieval (Schütze and Pedersen, 1995)
and preliminary studies (Udani et al., 2005; Chen
et al., 2008) have provided interesting insights into
the use of WSI for Web search result clustering.
A more recent attempt at automatically identify-
ing query meanings is based on the use of hidden
topics (Nguyen et al., 2009). However, in this ap-
proach topics – estimated from a universal dataset –

are query-independent and thus their number needs
to be established beforehand. In contrast, we aim
to cluster snippets based on a dynamic and finer-
grained notion of sense.

3 Approach

Web search result clustering is usually performed in
three main steps:

1. Given a query q, a search engine (e.g., Yahoo!) is
used to retrieve a list of results R = (r1, . . . , rn);

2. A clustering C = (C0, C1, . . . , Cm) of the results
in R is obtained by means of a clustering algo-
rithm;

3. The clusters in C are optionally labeled with an
appropriate algorithm (e.g., see Zamir and Etzioni
(1998) and Carmel et al. (2009)) for visualization
purposes.

Our key idea is to improve step 2 by means of a
Word Sense Induction algorithm: given a query q,
we first dynamically induce, from a text corpus, the
set of word senses of q (Section 3.1); next, we clus-
ter the Web results on the basis of the word senses
previously induced (Section 3.2).

3.1 Word Sense Induction
Word Sense Induction algorithms are unsupervised
techniques aimed at automatically identifying the
set of senses denoted by a word. These methods in-
duce word senses from text by clustering word oc-
currences based on the idea that a given word –
used in a specific sense – tends to co-occur with the
same neighbouring words (Harris, 1954). Several
approaches to WSI have been proposed in the litera-
ture (see Navigli (2009) for a survey), ranging from
clustering based on context vectors (e.g., Schütze
(1998)) to word clustering (e.g., Lin (1998)) and
co-occurrence graphs (e.g., Widdows and Dorow
(2002)).

Successful approaches such as HyperLex
(Véronis, 2004) – a graph algorithm based on the
identification of hubs in co-occurrence graphs –
have to cope with a high number of parameters to
be tuned (Agirre et al., 2006). To deal with this
issue we propose two variants of a simple, yet
effective, graph-based algorithm for WSI, that we
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describe hereafter. The algorithm consists of two
steps: graph construction and identification of word
senses.

3.1.1 Graph construction

Given a target query q, we build a co-occurrence
graph Gq = (V,E) such that V is a set of context
words related to q and E is the set of undirected
edges, each denoting a co-occurrence between pairs
of words in V . To determine the set of co-occurring
words V , we use the Google Web1T corpus (Brants
and Franz, 2006), a large collection of n-grams (n =
1, . . . , 5) – i.e., windows of n consecutive tokens –
occurring in one terabyte of Web documents. First,
for each content word w we collect the total num-
ber c(w) of its occurrences and the number of times
c(w,w′) that w and w′ occur together in any 5-gram
(we include inflected forms in the count); second,
we use the Dice coefficient to determine the strength
of co-occurrence between w and w′:

Dice(w,w′) =
2c(w,w′)

c(w) + c(w′)
. (1)

The rationale behind Dice is that dividing by the
sum of total counts of the two words drastically de-
creases the ranking of words that tend to co-occur
frequently with many other words (e.g., new, old,
nice, etc.).

The graph Gq = (V,E) is built as follows:

• Our initial vertex set V (0) contains all the con-
tent words from the snippet results of query q
(excluding stopwords); then, we add to V (0) the
highest-ranking words co-occurring with q in the
Web1T corpus, i.e., those words w for which
Dice(q, w) ≥ δ (the threshold δ is established ex-
perimentally, see Section 4.1). We set V := V (0)

and E := ∅.

• For each word w ∈ V (0), we select the high-
est ranking words co-occurring with w in Web1T,
that is those words w′ for which Dice(w,w′) ≥
δ. We add each of these words to V (note that
some w′ might already be in V (0)) and the
corresponding edge {w,w′} to E with weight
Dice(w,w′). Finally, we remove disconnected
vertices.

3.1.2 Identification of word senses
The main idea behind our approach is that edges

in the co-occurrence graph participating in cycles
are likely to connect vertices (i.e., words) belonging
to the same meaning component. Specifically, we fo-
cus on cycles of length 3 and 4, called respectively
triangles and squares in graph theory.

For each edge e, we calculate the ratio of triangles
in which e participates:

Tri(e) =
# triangles e participates in

# triangles e could participate in
(2)

where the numerator is the number of cycles of
length 3 in which e = {w,w′} participates, and the
denominator is the total number of neighbours of w
and w′. Similarly, we define a measure Sqr(e) of
the ratio of squares (i.e., cycles of length 4) an edge
e participates in to the number of possible squares e
could potentially participate in:

Sqr(e) =
# squares e participates in

# squares e could participate in
(3)

where the numerator is the number of squares con-
taining e and the denominator is the number of pos-
sible distinct pairs of neighbours of w and w′. If no
triangle (or square) exists for e, the value of the cor-
responding function is set to 0.

In order to disconnect the graph and determine
the meaning components, we remove all the edges
whose Tri (or Sqr) value is below a threshold σ. The
resulting connected components represent the word
senses induced for the query q. Notice that the num-
ber of senses is dynamically chosen based on the co-
occurrence graph and the algorithm’s thresholds.

Our triangular measure is the edge counterpart
of the clustering coefficient (or curvature) for ver-
tices, previously used to perform WSI (Widdows
and Dorow, 2002). However, it is our hunch that
measuring the ratio of squares an edge participates
in provides a stronger clue of how important that
edge is within a meaning component. In Section 4,
we will corroborate this idea with our experiments.

3.1.3 An example
As an example, let q = beagle. Two steps are per-

formed:

119



1. Graph construction. We build the co-occurrence
graph Gbeagle = (V,E), an excerpt of which is
shown in Figure 1(a).

2. Identification of word senses. We calculate the
Sqr values of each edge in the graph. The edges
e whose Sqr(e) < σ are removed (we assume
σ = 0.25). For instance, Sqr({ dog, breed }) = 1

2 ,
as the edge participates in the square dog – breed
– puppy – canine – dog, but it could also have
participated in the potential square dog – breed
– puppy – search – dog. In fact, the other neigh-
bours of dog are canine, puppy and search, and
the other neighbour of breed is puppy, thus the
square can only be closed by connecting puppy
to either canine or search. In our example, the
only edges whose Sqr is below σ are: { dog,
puppy }, { dog, search } and { linux, mission }
(they participate in no square). We remove these
edges and select the resulting connected compo-
nents as the senses of the query beagle (shown in
Figure 1(b)). Note that, if we selected triangles
as our pruning measure, we should also remove
the following edges { search, index }, { index,
linux }, { linux, system } and { system, search }.
In fact, these edges do not participate in any tri-
angle (while they do participate in a square). As a
result, we would miss the computer science sense
of the query.

3.2 Clustering of Web results

Given our query q, we submit it to a search engine,
which returns a list of relevant search results R =
(r1, . . . , rn). We process each result ri by consid-
ering the corresponding text snippet and transform-
ing it to a bag of words bi (we apply tokenization,
stopwords and target word removal, and lemmatiza-
tion2). For instance, given the snippet:

“the beagle is a breed of medium-sized dog”,

we produce the following bag of words:

{ breed, medium, size, dog }.

As a result of the above processing, we obtain a
list of bags of words B = (b1, . . . , bn). Now, our
aim is to cluster our Web results R, i.e., the corre-
sponding bags of words B. To this end, rather than

2We use the WordNet lemmatizer.
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Figure 1: The beagle example: (a) graph construction,
“weak” edges (according to Sqr) drawn in bold, (b) the
word senses induced after edge removal.

considering the interrelationships between them (as
is done in traditional search result clustering), we
intersect each bag of words bi ∈ B with the sense
clusters {S1, . . . , Sm} acquired as a result of our
Word Sense Induction algorithm (cf. Section 3.1).
The sense cluster with the largest intersection with
bi is selected as the most likely meaning of ri. For-
mally:

Sense(ri) =

8><>:
argmax
j=1,...,m

|bi ∩ Sj | if max
j

|bi ∩ Sj | > 0

0 else
(4)

where 0 denotes that no sense is assigned to result ri,
as the intersection is empty for all senses Sj . Oth-
erwise the function returns the index of the sense
having the largest overlap with bi – the bag of words
associated with the search result ri. As a result of
sense assignment for each ri ∈ R, we obtain a clus-
tering C = (C0, C1, . . . , Cm) such that:

Cj = {ri ∈ R : Sense(ri) = j}, (5)

that is, Cj contains the search results classified with
the j-th sense of query q (C0 includes unassigned
results). Finally, we sort the clusters in our clus-
tering C based on their “quality”. For each cluster
Cj ∈ C \ {C0}, we determine its similarity with
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the corresponding meaning Sj by calculating the fol-
lowing formula:

avgsim(Cj , Sj) =

∑
ri∈Cj

sim(ri, Sj)

|Cj |
. (6)

The formula determines the average similarity be-
tween the search results in cluster Cj and the corre-
sponding sense cluster Sj . The similarity between a
search result ri and Sj is determined as the normal-
ized overlap between its bag of words bi and Sj :

sim(ri, Sj) = sim(bi, Sj) =
|bi ∩ Sj |
|bi|

. (7)

Finally, we rank the elements ri within each clus-
ter Cj by their similarity sim(ri, Sj). We note that
the ranking and optimality of clusters can be im-
proved with more sophisticated techniques (Crab-
tree et al., 2005; Kurland, 2008; Kurland and
Domshlak, 2008; Lee et al., 2008, inter alia). How-
ever, this is outside the scope of this paper.

4 Experiments

4.1 Experimental Setup

Test Sets. We conducted our experiments on two
datasets:

• AMBIENT (AMBIguous ENTries), a recently
released dataset which contains 44 ambiguous
queries3. The sense inventory for the mean-
ings (i.e., subtopics)4 of queries is given by
Wikipedia disambiguation pages. For instance,
given the beagle query, its disambiguation page
in Wikipedia provides the meanings of dog, Mars
lander, computer search service, beer brand, etc.
The top 100 Web results of each query returned
by the Yahoo! search engine were tagged with
the most appropriate query senses according to
Wikipedia (amounting to 4400 sense-annotated
search results). To our knowledge, this is cur-
rently the largest dataset of ambiguous queries
available on-line. Other datasets, such as those
from the TREC competitions, are not focused on
distiguishing the subtopics of a query.

3http://credo.fub.it/ambient
4In the following, we use the terms subtopic and word sense

interchangeably.

dataset queries queries by length avg.
1 2 3 4 polys.

AMBIENT 44 35 6 3 0 17.9
MORESQUE 114 0 47 36 31 6.7

Table 1: Statistics on the datasets of ambiguous queries.

• MORESQUE (MORE Sense-tagged QUEry re-
sults), a new dataset of 114 ambiguous queries
which we developed as a complement to AMBI-
ENT following the guidelines provided by its au-
thors. In fact, our aim was to study the behaviour
of Web search algorithms on queries of differ-
ent lengths, ranging from 1 to 4 words. How-
ever, the AMBIENT dataset is composed mostly
of single-word queries. MORESQUE provides
dozens of queries of length 2, 3 and 4, together
with the 100 top results from Yahoo! for each
query annotated as in the AMBIENT dataset
(overall, we tagged 11,400 snippets). We decided
to carry on using Yahoo! mainly for homogeneity
reasons.

We report the statistics on the composition of the
two datasets in Table 1. Given that the snippets could
possibly be annotated with more than one Wikipedia
subtopic, we also determined the average number
of subtopics per snippet. This amounted to 1.01 for
AMBIENT and 1.04 for MORESQUE for snippets
with at least one subtopic annotation (51% and 53%
of the respective datasets). We can thus conclude
that multiple subtopic annotations are infrequent.

Parameters. Our graph-based algorithms have
two parameters: the Dice threshold δ for graph
construction (Section 3.1.1) and the threshold σ
for edge removal (Section 3.1.2). The best pa-
rameters, used throughout our experiments, were
(δ = 0.00033, σ = 0.45) with triangles and (δ =
0.00033, σ = 0.33) with squares. The parameter
values were obtained as a result of tuning on a small
in-house development dataset. The dataset was built
by automatically identifying monosemous words
and creating pseudowords following the scheme
proposed by Schütze (1998).

Systems. We compared Triangles and Squares
against the best systems reported by Bernardini et
al. (2009, cf. Section 2):
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• Lingo (Osinski and Weiss, 2005): a Web clus-
tering engine implemented in the Carrot2 open-
source framework5 that clusters the most frequent
phrases extracted using suffix arrays.

• Suffix Tree Clustering (STC) (Zamir and Et-
zioni, 1998): the original Web search clustering
approach based on suffix trees.

• KeySRC (Bernardini et al., 2009): a state-of-the-
art Web clustering engine built on top of STC with
part-of-speech pruning and dynamic selection of
the cut-off level of the clustering dendrogram.

• Essential Pages (EP) (Swaminathan et al., 2009):
a recent diversification algorithm that selects fun-
damental pages which maximize the amount of
information covered for a given query.

• Yahoo!: the original search results returned by
the Yahoo! search engine.

The first three of the above are Web search result
clustering approaches, whereas the last two produce
lists of possibly diversified results (cf. Section 2).

4.2 Experiment 1: Clustering Quality
Measure. While assessing the quality of cluster-
ing is a notably hard problem, given a gold standard
G we can calculate the Rand index (RI) of a cluster-
ing C, a common quality measure in the literature,
determined as follows (Rand, 1971; Manning et al.,
2008):

RI(C) =

∑
(w,w′)∈W×W,w 6=w′ δ(w,w′)

|{(w,w′) ∈ W ×W : w 6= w′}|
(8)

where W is the union set of all the words in C and
δ(w,w′) = 1 if any two words w and w′ are in the
same cluster both in C and in the gold standard G or
they are in two different clusters in both C and G,
otherwise δ(w,w′) = 0. In other words, we calcu-
late the percentage of word pairs that are in the same
configuration in both C and G. For the gold standard
G we use the clustering induced by the sense annota-
tions provided in our datasets for each snippet (i.e.,
each cluster contains the snippets manually associ-
ated with a particular Wikipedia subtopic). Similarly
to what was done in Section 3.2, untagged results are
grouped together in a special cluster of G.

5http://project.carrot2.org

System AMBIENT MORESQUE All
Squares 72.59 65.41 67.28
Triangles 66.13 64.47 64.93
Lingo 62.75 52.68 55.49
STC 61.48 51.52 54.29
KeySRC 66.49 55.82 58.78

Table 2: Results by Rand index (percentages).

Results. The results of all systems on the AM-
BIENT and MORESQUE datasets according to
the average Rand index are shown in Table 26.
In accordance with previous results in the litera-
ture, KeySRC performed generally better than the
other search result clustering systems, especially
on smaller queries. Our Word Sense Induction sys-
tems, Squares and Triangles, outperformed all other
systems by a large margin, thus showing a higher
clustering quality (with the exception of KeySRC
performing better than Triangles on AMBIENT).
Interestingly, all clustering systems perform more
poorly on longer queries (i.e., on the MORESQUE
dataset), however our WSI systems, and especially
Triangles, are more robust across query lengths.
Compared to Triangles, the Squares algorithm per-
forms better, confirming our hunch that Squares is a
more solid graph pattern.

4.3 Experiment 2: Diversification
Measure. Search result clustering can also be used
to diversify the top results returned by a search en-
gine. Thus, for each query q, one natural way of
measuring a system’s performance is to calculate the
subtopic recall-at-K (Zhai et al., 2003) given by the
number of different subtopics retrieved for q in the
top K results returned:

S-recall@K =
|
⋃K

i=1 subtopics(ri)|
M

(9)

where subtopics(ri) is the set of subtopics manually
assigned to the search result ri and M is the number
of subtopics for query q (note that in our experiments
M is the number of subtopics occurring in the 100
results retrieved for q, so S-recall@100 = 1). How-
ever, this measure is only suitable for systems re-
turning ranked lists (such as Yahoo! and EP). Given

6For reference systems we used the implementations of
Bernardini et al. (2009) and Osinski and Weiss (2005).
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System K=3 K=5 K=10 K=15 K=20
Squares 51.9 63.4 75.8 83.3 87.4
Triangles 50.8 62.4 75.2 82.7 86.6
Yahoo! 49.2 60.0 72.9 78.5 82.7
EP 40.6 53.2 68.6 77.2 83.3
KeySRC 44.3 55.8 72.0 79.1 83.2

Table 3: S-recall@K on all queries (percentages).

a clustering C = (C0, C1, . . . , Cm), we flatten it to a
list as follows: we add to the initially empty list the
first element of each cluster Cj (j = 1, . . . ,m); then
we iterate the process by selecting the second ele-
ment of each cluster Cj such that |Cj | ≥ 2, and so
on. The remaining elements returned by the search
engine, but not included in any cluster of C \ {C0},
are appended to the bottom of the list in their orig-
inal order. Note that the elements are selected from
each cluster according to their internal ranking (e.g.,
for our algorithms we use Formula 7 introduced in
Section 3.2).

Results. For the sake of clarity and to save space,
we selected the best systems from our previous ex-
periment, namely Squares, Triangles and KeySRC,
and compared their output with the original snippet
list returned by Yahoo! and the output of the EP di-
versification algorithm (cf. Section 4.1).

The S-recall@K (with K = 3, 5, 10, 15, 20) cal-
culated on AMBIENT+MORESQUE is reported
in Table 3. Squares and Triangles show the high-
est degree of diversification, with a subtopic recall
greater than all other systems, and with Squares con-
sistently performing better than Triangles. It is inter-
esting to observe that KeySRC performs worse than
Yahoo! with low values of K and generally better
with higher values of K.

Given that the two datasets complement each
other in terms of query lengths (with AMBIENT
having queries of length ≤ 2 and MORESQUE
with many queries of length ≥ 3), we studied the S-
recall@K trend for the two datasets. The results are
shown in Figures 2 and 3. While KeySRC does not
show large differences in the presence of short and
long ambiguous queries, our graph-based algorithms
do. For instance, as soon as K = 3 the Squares al-
gorithm obtains S-recall values of 37% and 57.5%
on AMBIENT and MORESQUE, respectively. The
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Figure 2: Results by S-recall@K on AMBIENT.
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Figure 3: S-recall@K on MORESQUE.

difference decreases as K increases, but is still sig-
nificant when K = 10. We hypothesize that, because
they are less ambiguous, longer queries are easier
to diversify with the aid of WSI. However, we note
that, even with low values of K, Squares and Tri-
angles obtain higher S-recall than the other systems
(with KeySRC competing on AMBIENT whenK ≤
15). Finally, we observe that – with low values of K
– the Squares algorithm performs significantly better
than Triangles on shorter queries, and only slightly
better on longer ones.

5 Discussion

Results. Our results show that our graph-based al-
gorithms are able to consistently produce clusters of
better quality than all other systems tested in our
experiments. The results on S-recall@K show that
our approach can also be used effectively as a diver-
sification technique, performing better than a very
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recent proposal such as Essential Pages. The lat-
ter outperforms Yahoo! and KeySRC when K ≥
30 on AMBIENT, whereas on MORESQUE it per-
forms generally worse until higher values of K are
reached. If we analyze the entire dataset of 158
queries by length, EP works best after examining at
least 20 results on 1- and 2-word ambiguous queries,
whereas on longer queries a larger number of docu-
ments (≥ 30) needs to be analyzed before surpassing
Yahoo! performance.

The above considerations might not seem intu-
itive at first glance, as the average polysemy of
longer queries is lower (17.9 on AMBIENT vs. 6.7
on MORESQUE according to our gold standard).
However, we note that while the kind of ambigu-
ity of 1-word queries is generally coarser (e.g., bea-
gle as dog vs. lander vs. search tool), with longer
queries we often encounter much finer sense distinc-
tions (e.g., Across the Universe as song by The Bea-
tles vs. a 2007 film based on the song vs. a Star Trek
novel vs. a rock album by Trip Shakespeare, etc.).
Word Sense Induction is able to deal better with this
latter kind of ambiguity as discriminative words be-
come part of the meanings acquired.

Performance issues. Inducing word senses from
the query graph comes at a higher computational
cost than other non-semantic clustering techniques.
Indeed, the most time-consuming phase of our ap-
proach is the construction of the query graph, which
requires intensive querying of our database of co-
occurrences calculated from the Web1T corpus.
While graphs can be precomputed or cached, previ-
ously unseen queries will still require the construc-
tion of new graphs. Instead, triangles and squares, as
well as the resulting connected components, can be
calculated on the fly.

6 Conclusions

In this paper we have presented a novel approach
to Web search result clustering. Our key idea is to
induce senses for the target query automatically by
means of a graph-based algorithm focused on the
notion of cycles. The results of a Web search engine
are then mapped to the query senses and clustered
accordingly.

The paper provides three novel contributions.
First, we show that WSI boosts the quality of search

result clustering and improves the diversification of
the snippets returned as a flat list. We provide a clear
indication on the usefulness of a loose notion of
sense to cope with ambiguous queries. This is in
contrast to research on Semantic Information Re-
trieval, which has obtained contradictory and often
inconclusive results. The main advantage of WSI
lies in its dynamic production of word senses that
cover both concepts (e.g., beagle as a breed of dog)
and instances (e.g., beagle as a specific instance of
a space lander). In contrast, static dictionaries such
as WordNet – typically used in Word Sense Dis-
ambiguation – by their very nature encode mainly
concepts. Second, we propose two simple, yet ef-
fective, graph algorithms to induce the senses of
our queries. The best performing approach is based
on squares (cycles of length 4), a novel graph pat-
tern in WSI. Third, we contribute a new dataset of
114 ambiguous queries and 11,400 sense-annotated
snippets which complements an existing dataset of
ambiguous queries7. Given the lack of ambiguous
query datasets available (Sanderson, 2008), we hope
our new dataset will be useful in future compara-
tive experiments. Finally, we note that our approach
needed very little tuning. Moreover, its requirement
of a Web corpus of n-grams is not a stringent one, as
such corpora are available for several languages and
can be produced for any language of interest.

As regards future work, we intend to combine
our clustering algorithm with a cluster labeling al-
gorithm. We also aim to implement a number of
Word Sense Induction algorithms and compare them
in the same evaluation framework with more Web
search and Web clustering engines. Finally, it should
be possible to use precisely the same approach pre-
sented in this paper for document clustering, by
grouping the contexts in which the target query oc-
curs – and we will also experiment on this in the
future.
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