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Abstract 

In this paper we address the problem of identi-

fying a broad range of term variations in Japa-

nese web search queries, where these varia-

tions pose a particularly thorny problem due to 

the multiple character types employed in its 

writing system. Our method extends the tech-

niques proposed for English spelling correc-

tion of web queries to handle a wider range of 

term variants including spelling mistakes, va-

lid alternative spellings using multiple charac-

ter types, transliterations and abbreviations. 

The core of our method is a statistical model 

built on the MART algorithm (Friedman, 

2001). We show that both string and semantic 

similarity features contribute to identifying 

term variation in web search queries; specifi-

cally, the semantic similarity features used in 

our system are learned by mining user session 

and click-through logs, and are useful not only 

as model features but also in generating term 

variation candidates efficiently. The proposed 

method achieves 70% precision on the term 

variation identification task with the recall 

slightly higher than 60%, reducing the error 

rate of a naïve baseline by 38%.  

1 Introduction 

Identification of term variations is fundamental 

to many NLP applications: words (or more gen-

erally, terms) are the building blocks of NLP ap-

plications, and any robust application must be 

able to handle variations in the surface represen-

tation of terms, be it a spelling mistake, valid 

spelling variation, or abbreviation. In search ap-

plications, term variations can be used for query 

expansion, which generates additional query 

terms for better matching with the terms in the 

document set. Identifying term variations is also 

useful in other scenarios where semantic equiva-

lence of terms is sought, as it represents a very 

special case of paraphrase.  

This paper addresses the problem of identify-

ing term variations in Japanese, specifically for 

the purpose of query expansion in web search, 

which appends additional terms to the original 

query string for better retrieval quality. Query 

expansion has been shown to be effective in im-

proving web search results in English, where dif-

ferent methods of generating the expansion terms 

have been attempted, including relevance feed-

back (e.g., Salton and Buckley, 1990), correction 

of spelling errors (e.g., Cucerzan and Brill, 2004), 

stemming or lemmatization (e.g., Frakes, 1992), 

use of manually- (e.g., Aitchison and Gilchrist, 

1987) or automatically- (e.g., Rasmussen 1992) 

constructed thesauri, and Latent Semantic Index-

ing (e.g., Deerwester et al, 1990). Though many 

of these methods can be applied to Japanese 

query expansion, there are unique problems 

posed by Japanese search queries, the most chal-

lenging of which is that valid alternative spel-

lings of a word are extremely common due to the 

multiple script types employed in the language. 

For example, the word for 'protein' can be spelled 

as たんぱくしつ, タンパク質, 蛋白質, たん白質 

and so on, all pronounced tanpakushitsu but us-

ing combinations of different script types. We 

give a detailed description of the problem posed 

by the Japanese writing system in Section 2. 

Though there has been previous work on ad-

dressing specific subsets of spelling alterations 

within and across character types in Japanese, 

there has not been any comprehensive solution 

for the purpose of query expansion.  

Our approach to Japanese query expansion is 

unique in that we address the problem compre-

hensively: our method works independently of 

the character types used, and targets a wide range 

of term variations that are both orthographically 

and semantically similar, including spelling er-

rors, valid alternative spellings, transliterations 

and abbreviations. As described in Section 4, we 

define the problem of term variation identifica-
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tion as a binary classification task, and build two 

types of classifiers according to the maximum 

entropy model (Berger et al., 1996) and the 

MART algorithm (Friedman, 2001), where all 

term similarity metrics are incorporated as fea-

tures and are jointly optimized. Another impor-

tant contribution of our approach is that we de-

rive our semantic similarity models by mining 

user query logs, which has been explored for the 

purposes of collecting related words (e.g., Jones 

et al., 2006a), improving search results ranking 

(e.g., Craswell and Szummer, 2007) and learning 

query intention (e.g., Li et al., 2008), but not for 

the task of collecting term variations. We show 

that our semantic similarity models are not only 

effective in the term variation identification task, 

but also for generating candidates of term varia-

tions much more efficiently than the standard 

method whose candidate generation is based on 

edit distance metrics.  

2 Term Variations in Japanese 

In this section we give a summary of the Japa-

nese writing system and the problem it poses for 

identifying term variations, and define the prob-

lem we want to solve in this paper.  

2.1 The Japanese Writing System 

There are four different character types that are 

used in Japanese text: hiragana, katakana, kanji 

and Roman alphabet. Hiragana and katakana are 

the two subtypes of kana characters, which are 

syllabic character sets, each with about 50 basic 

characters. There is a one-to-one correspondence 

between hiragana and katakana characters, and, 

as they are phonetic, they can be unambiguously 

converted into a sequence of Roman characters. 

For example, the word for 'mackerel' is spelled in 

hiragana as さば or in katakana as サバ, both of 

which can be transcribed in Roman characters as 

saba, which is how the word is pronounced. 

Kanji characters, on the other hand, are ideo-

graphic and therefore numerous – more than 

5,000 are in common usage. One difficulty in 

handling Japanese kanji is that each character has 

multiple pronunciations, and the correct pronun-

ciation is determined by the context in which the 

character is used. For instance, the character 行 is 

read as kou in the word 銀行 ginkou 'bank', gyou 

in 行  'column', and i or okona in 行った  itta 

'went' or okonatta 'done' depending on the con-

text in which the word is used.
1
 Proper name 

readings are particularly difficult to disambiguate, 

as their pronunciation cannot be inferred from 

the context (they tend to have the same grammat-

ical function) or from the dictionary (they tend to 

be out-of-vocabulary). Therefore, in Japanese, 

computing a pronunciation-based edit distance 

metric is not straightforward, as it requires esti-

mating the readings of kanji characters.  

2.2 Term Variation by Character Type 

Spelling variations are commonly observed both 

within and across character types in Japanese. 

Within a character type, the most prevalent is the 

variation observed in katakana words. Katakana 

is used to transliterate words from English and 

other foreign languages, and therefore reflects 

the variations in the sound adaptation from the 

source language. For example, the word 

'spaghetti' is transliterated into six different 

forms (スパゲッティ supagetti, スパゲッティー

supagettii, スパゲッテイ supagettei, スパゲティ

supageti, スパゲティー supagetii, スパゲテイ

supagetei) within a newspaper corpus (Masuya-

ma et al., 2004).  

Spelling variants are also prevalent across 

character types: in theory, a word can be spelled 

using any of the character types, as we have seen 

in the example for the word 'protein' in Section 1. 

Though there are certainly preferred character 

types for spelling each word, variations are still 

very common in Japanese text and search queries. 

Alterations are particularly common among hira-

gana, katakana and kanji (e.g. さば~サバ~ 鯖 sa-

ba 'mackerel'), and between katakana and Roman 

alphabet (e.g. フェデックス  fedekkusu fedex). 

This latter case constitutes the problem of transli-

teration, which has been extensively studied in 

the context of machine translation (e.g. Knight 

and Graehl, 1998; Bilac and Tanaka, 2004; Brill 

et al., 2001).  

2.3 Term Variation by Re-write Categories 

Table 1 shows the re-write categories of related 

terms observed in web query logs, drawing on 

our own data analysis as well as on previous 

work such as Jones et al. (2006a) and Okazaki et 

al. (2008b). Categories 1 though 9 represent 

strictly synonymous relations; in addition, terms 

in Categories 1 through 5 are also similar ortho-

graphically or in pronunciation. Categories 10 

                                                 
1 In a dictionary of 200K entries, we find that on average 

each kanji character has 2.5 readings, with three characters 

(直,生,空) with as many as 11 readings. 
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through 12, on the other hand, specify non-

synonymous relations.  

Different sets out of these categories can be 

useful for different purposes. For example, Jones 

et al (2006a; 2006b) target all of these categories, 

as their goal is to collect related terms as broadly 

as possible for the application of sponsored 

search, i.e., mapping search queries to a small 

corpus of advertiser listings. Okazaki et al. 

(2008b) define their task narrowly, to focusing 

on spelling variants and inflection, as they aim at 

building lexical resources for the specific domain 

of medical text.  

For web search, a conservative definition of 

the task as dealing only with spelling errors has 

been successful for English; a more general defi-

nition using related words for query expansion 

has been a mixed blessing as it compromises re-

trieval precision. A comprehensive review on 

this topic is provided by Baeza-Yates and Ribei-

ro-Neto (1999). In this paper, therefore, we adopt 

a working definition of the term variation identi-

fication task as including Categories 1 through 5, 

i.e., those that are synonymous and also similar 

in spelling or in pronunciation.
2
 This definition is 

reasonably narrow so as to make automatic dis-

covery of term variation pairs realistic, while 

covering all common cases of term variation in 

Japanese, including spelling variants and transli-

terations. It is also appropriate for the purpose of 

query expansion: because term variation defined 

in this manner is based on spelling or pronuncia-

tion similarity, their meaning and function tend 

                                                 
2 In reality, Category 3 (Inflection) is extremely rare in Jap-

anese web queries, because nouns do not inflect in Japanese, 

and most queries are nominals.  

to be completely equivalent, as opposed to Cate-

gories 6 through 9, where synonymy is more 

context- or user-dependent. This will ensure that 

the search results by query expansion will avoid 

the problem of compromised precision.  

3 Related Work 

In information retrieval, the problem of vocabu-

lary mismatch between the query and the terms 

in the document has been addressed in many 

ways, as mentioned in Section 1, achieving vary-

ing degrees of success in the retrieval task. In 

particular, our work is closely related to research 

in spelling correction for English web queries 

(e.g., Cucerzan and Brill, 2004; Ahmad and 

Kondrak, 2005; Li et al., 2006; Chen et al., 2007). 

Among these, Li et al. (2006) and Chen et al. 

(2007) incorporate both string and semantic simi-

larity in their discriminative models of spelling 

correction, similarly to our approach. In Li et al. 

(2006), semantic similarity was computed as dis-

tributional similarity of the terms using query 

strings in the log as context. Chen et al. (2007) 

point out that this method suffers from the data 

sparseness problem in that the statistics for rarer 

terms are unreliable, and propose using web 

search results as extended contextual information. 

Their method, however, is expensive as it re-

quires web search results for each query-

candidate pair, and also because their candidate 

set, generated using an edit distance function and 

phonetic similarity from query log data, is im-

practically large and must be pruned by using a 

language model. Our approach differs from these 

methods in that we exploit user query logs to 

derive semantic knowledge of terms, which is 

Categories Example in English Example in Japanese 

1. Spelling mistake aple ~ apple グウグル guuguru ~ グーグル gu-guru 'google' 

2. Spelling variant color ~ colour さば~サバ~鯖; スパゲティ~スパゲッティー (Cf. Sec.2.2) 

3. Inflection matrix ~ matrices 作る tsukuru 'make' ~ 作った tsukutta 'made' 

4. Transliteration  フェデックス ~ fedex 'Fedex' 

5. Abbreviation/ 

Acronym 

macintosh ~ mac 世界銀行 sekaiginkou ~ 世銀 segin 'World Bank'; マクド

ナルド makudonarudo ~ マック makku 'McDonald's' 
6. Alias republican party ~ gop フランス furansu ~ 仏 futsu 'France' 

7. Translation パキスタン大使館 pakisutantaishikan ~ Pakistan embassy 

8. Synonym carcinoma ~ cancer 暦 koyomi ~ カレンダー karendaa 'calendar' 

9. Abbreviation 

    (user specific) 

mini ~ mini cooper クロネコヤマト kuronekoyamato ~ クロネコ kuroneko 

(name of a delivery service company)  

10. Generalization nike shoes ~ shoes シビック 部品 shibikku buhin 'Civic parts' ~ 車 部品 ku-

ruma buhin 'car parts' 

11. Specification ipod ~ ipod nano 東京駅 toukyoueki 'Tokyo station' ~ 東京駅時刻表 tou-

kyouekijikokuhyou 'Tokyo station timetable' 

12. Related windows ~ microsoft トヨタ toyota 'Toyota' ~ ホンダ honda 'Honda' 

Table 1: Categories of Related Words Found in Web Search Logs 
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used both for the purpose of generating a candi-

date set efficiently and as features in the term 

variation identification model.  

Acquiring semantic knowledge from a large 

quantity of web query logs has become popular 

in recent years. Some use only query strings and 

their counts for learning word similarity (e.g., 

Sekine and Suzuki, 2007; Komachi and Suzuki, 

2008), while others use additional information, 

such as the user session information (i.e., a set of 

queries issued by the same user within a time 

frame, e.g., Jones et al., 2006a) or the URLs 

clicked as a result of the query (e.g., Craswell 

and Szummer, 2007; Li et al., 2008). This addi-

tional data serves as an approximation to the 

meaning of the query; we use both user session 

and click-through data for discovering term vari-

ations.  

Our work also draws on some previous work 

on string transformation, including spelling nor-

malization and transliteration. In addition to the 

simple Levenshtein distance, we also use genera-

lized string-to-string edit distance (Brill and 

Moore, 2000), which we trained on aligned kata-

kana-English word pairs in the same manner as 

Brill et al. (2001). As mentioned in Section 2.2, 

our work also tries to address the individual 

problems targeted by such component technolo-

gies as Japanese katakana variation, English-to-

katakana transliteration and katakana-to-English 

back-transliteration in a unified framework.  

4 Discriminative Model of Identifying 

Term Variation 

Recent work in spelling correction (Ahmed and 

Kondrak, 2005; Li et al., 2006; Chen et al., 2007) 

and normalization (Okazaki et al., 2008b) formu-

lates the task in a discriminative framework:  

𝑐∗  = argmax𝑐∈gen  𝑞 𝑃(𝑐|𝑞) 

This model consists of two components: gen(q) 

generates a list of candidates C(q) for an input 

query q, which are then ranked by the ranking 

function P(c|q). In previous work, gen(q) is typi-

cally generated by using an edit distance function 

or using a discriminative model trained for its 

own purpose (Okazaki et al., 2008b), often in 

combination with a pre-complied lexicon. In the 

current work, we generate the list of candidates 

by learning pairs of queries and their re-write 

candidates automatically from query session and 

click logs, which is far more robust and efficient 

than using edit distance functions. We describe 

our candidate generation method in detail in Sec-

tion 5.1.  

Unlike the spelling correction and normaliza-

tion tasks, our goal is to identify term variations, 

i.e., to determine whether each query-candidate 

pair (q,c) constitutes a term variation or not. We 

formulate this problem as a binary classification 

task. There are various choices of classifiers for 

such a task: we chose to build two types of clas-

sifiers that make a binary decision based on the 

probability distribution P(c|q) over a set of fea-

ture functions fi(q,c). In maximum entropy 

framework, this is defined as:  

𝑃 𝑐 𝑞 =
exp  𝜆𝑖𝑓𝑖 𝑐, 𝑞 𝐾

𝑖=1

 exp  𝜆𝑖𝑓𝑖 𝑐, 𝑞 𝐾
𝑖=1𝑐

 

where λ1,…, λk are the feature weights. The op-

timal set of feature weights λ
*
 is computed by 

maximizing the log-likelihood of the training 

data. We used stochastic gradient descent for 

training the model with a Gaussian prior.   

The second classifier is built on MART 

(Friedman, 2001), which is a boosting algorithm. 

At each boosting iteration, MART builds a re-

gression tree to model the functional gradient of 

the cost function (which is cross entropy in our 

case), evaluated on all training samples.  MART 

has three main parameters: M, the total number 

of boosting iterations, L, the number of leaf 

nodes for each regression tree, and v, the learning 

rate. The optimal values of these parameters can 

be chosen based on performance on a validation 

set.  In our experiments, we found that the per-

formance of the algorithm is relatively insensi-

tive to these parameters as long as they are in a 

reasonable range: given the training set of a few 

thousand samples or more, as in our experiments, 

M=100, L=15, and v=0.1 usually give good per-

formance. Smaller trees and shrinkage may be 

used if the training data set is smaller. 

The classifiers output a binary decision ac-

cording to P(c|q): positive when P(c|q) > 0.5 and 

negative otherwise.  

5 Experiments 

5.1 Candidate Generation 

We used a set of Japanese query logs collected 

over one year period in 2007 and 2008. More 

specifically, we used two different extracts of log 

data for generating term variation candidate 

pairs:  

Query session data. From raw query logs, we 

extracted pairs of queries q1 and q2 such that they 

are (i) issued by the same user; (ii) q2 follows 

within 3 minutes of issuing q1; and (iii) q2 gener-

ated at least one click of a URL on the result 
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page while q1 did not result in any click. We then 

scored each query pair (q1,q2) in this subset using 

the log-likelihood ratio (LLR, Dunning, 1993) 

between q1 and q2, which measures the mutual 

dependence within the context of web search 

queries (Jones et al., 2006a). After applying an 

LLR threshold (LLR > 15) and a count cutoff 

(we used only the top 15 candidate q2 according 

to the LLR value for each q1), we obtained a list 

of 47,139,976 pairs for the 14,929,497 distinct q1, 

on average generating 3.2 candidates per q1
3
. We 

took this set as comprising query-candidate pairs 

for our model, along with the set extracted by 

click-through data mining explained below.  

Click-through data. This data extract is based 

on the idea that if two queries led to the same 

URLs being repeatedly clicked, we can reasona-

bly infer that the two queries are semantically 

related. This is similar to computing the distribu-

tional similarity of terms given the context in 

which they appear, where context is most often 

defined as the words co-occurring with the terms. 

Here, the clicked URLs serve as their context.  

One challenge in using the URLs as contex-

tual information is that the contextual representa-

tion in this format is very sparse, as user clicks 

are rare events. To learn query similarities from 

incomplete click-through data, we used the ran-

dom walk algorithm similar to the one described 

in Craswell and Szummer (2007). Figure 1 illu-

strates the basic idea: initially, document 𝑑3 has 

a click-through link consisting of query 𝑞2 only; 

the random walk algorithm adds the link from 𝑑3 

to 𝑞1 , which has a similar click pattern as 𝑞2 . 

Formally, we construct a click graph which is a 

bipartite-graph representation of click-through 

data. We use  𝑞𝑖 𝑖=1
𝑚  to represent a set of query 

nodes and  𝑑𝑗  𝑗=1

𝑛
 a set of document nodes. We 

further define an  𝑚 × 𝑛 matrix 𝑊 in which ele-

ment 𝑊𝑖𝑗  represents the click count associated 

with  𝑞𝑖 , 𝑑𝑗  . This matrix can be normalized to 

be a query-to-document transition matrix, de-

                                                 
3 We consider each query as an unbreakable term in this 

paper, so term variation is equivalent to query variation. 

noted by 𝐴, where 𝐴𝑖𝑗 = 𝑝(1)(𝑑𝑗 |𝑞𝑖) is the prob-

ability that 𝑞𝑖  transits to 𝑑𝑗  in one step. Similarly, 

we can normalize the transpose of 𝑊  to be a 

document-to-query transition matrix, denoted by 

𝐵, where 𝐵𝑗 ,𝑖 = 𝑝(1)(𝑞𝑖|𝑑𝑗 ). It is easy to see that 

using 𝐴 and 𝐵 we can compute the probability of 

transiting from any node to any other node in 𝑘 

steps. In this work, we use a simple measure 

which is the probability that one query transits to 

another in two steps, and the corresponding 

probability matrix is given by 𝐴𝐵.  
We used this probability and ranked all pairs 

of queries in the same raw query logs as in the 

query session data described above to generate 

additional candidates for term variation pairs. 

20,308,693 pairs were extracted after applying 

the count cutoff of 5, generating on average 6.8 

candidates for 2,973,036 unique queries. 

It is interesting to note that these two data ex-

tracts are quite complementary: of all the data 

generated, only 4.2% of the pairs were found in 

both the session and click-through data. We be-

lieve that this diversity is attributable to the na-

ture of the extracts: the session data tends to col-

lect the term pairs that are issued by the same 

user as a result of conscious re-writing effort, 

such as typing error corrections and query speci-

fications (Categories 1 and 11 in Table 1), while 

the click-though data collects the terms issued by 

different users, possibly with different intentions, 

and tends to include many spelling variants, syn-

onyms and queries with different specificity 

(Categories 2, 8, 10 and 11).  

5.2 Features 

We used the same set of features for the maxi-

mum entropy and MART models, which are giv-

en in Table 2. They are divided into three main 

types: string similarity features (1-16), semantic 

similarity features (17, 18), and character type 

features (19-39). Among the string similarity 

features, half of them are based on Levenshtein 

distance applied to surface forms (1-8), while the 

other half is based on Levenshtein and string-to-

string edit distance metrics computed over the 

Romanized form of the query, reflecting its pro-

nunciation. The conversion into Roman charac-

ters was done deterministically for kana charac-

ters using a simple mapping table. For Romaniz-

ing kanji characters, we used the function availa-

ble from Windows IFELanguage API (version 

 
Figure 1. Random Walk Algorithm 
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2).
4
 The character equivalence table mentioned in 

the features 3,4,7,8 is a table of 643 pairs of cha-

racters that are known to be equivalent, including 

kanji allography (same kanji in different graphi-

cal styles). The alpha-beta edit distance (11, 12, 

15, 16) is the string-to-string edit distance pro-

posed in Brill and Moore (2001), which we 

trained over about 60K parallel English-to-

katakana Wikipedia title pairs, specifically to 

capture the edit operations between English and 

katakana words, which are different from the edit 

operations between two Japanese words. Seman-

tic similarity features (17, 18) use the LLR score 

from the session data, and the click-though pair 

probability described in the subsection above. 

Finally, features 19-39 capture the script types of 

the query-candidate pair. We first defined six 

basic character types for each query or candidate: 

Hira (hiragana only), Kata (katakana only), Kanji 

(kanji only), Roman (Roman alphabet only), 

MixedNoKanji (includes more than one charac-

ter sets but not kanji) and Mixed (includes more 

than one character sets with kanji). We then de-

rived 21 binary features by concatenating these 

basic character type features for the combination 

                                                 
4 http://msdn.microsoft.com/en-us/library/ms970129.aspx. 

We took the one-best conversion result from the API. The 

conversion accuracy on a randomly sampled 100 kanji que-

ries was 89.6%.  

of query and candidate strings. For example, if 

both the query and candidate are in hiragana, 

BothHira will be on; if the query is Mixed and 

the candidate is Roman, then RomanMixed will 

be on. Punctuation characters and Arabic numer-

als were treated as being transparent to character 

type assignment. The addition of these features is 

motivated by the assumption that appropriate 

types of edit distance operations might depend 

on different character types for the query-

candidate pair.  

Since the dynamic ranges of different features 

can be drastically different, we normalized each 

feature dimension to a normal variable with zero-

mean and unit-variance. We then used the same 

normalized features for both the maximum en-

tropy and the MART classifiers. 

5.3 Training and Evaluation Data 

In order to generate the training data for the bi-

nary classification task, we randomly sampled 

the query session (5,712 samples) and click-

through data (6,228 samples), and manually la-

beled each pair as positive or negative: the posi-

tive label was assigned when the term pair fell 

into Categories 1 through 5 in Table 1; otherwise 

it was assigned a negative label. Only 364 (6.4%) 

and 244 (3.9%) of the samples were positive ex-

amples for the query session and click-through 

data respectively, which makes the baseline per-

String similarity features (16 real-valued features) 

1. Lev distance on surface form 

2. Lev distance on surface form normalized by q1 length 

3. Lev distance on surface form using character equivalence table 

4. Lev distance on surface form normalized by  q1 length using character equivalence table 

5. Lev distance on surface form w/o space 

6. Lev distance on surface form normalized q1 length w/o space 

7. Lev distance on surface form using  character equivalence table w/o space 

8. Lev distance on surface form normalized by q1 using character equivalence table  w/o space 

9. Lev distance on Roman 

10. Lev distance on Roman normalized by q1 length 

11. Alpha-beta edit distance on Roman 

12. Alpha-beta edit distance on Roman normalized by q1 length 

13. Lev distance  on Roman w/o space 

14. Lev distance  on Roman normalized by q1 length w/o space 

15. Alpha-beta edit distance on Roman w/o space 

16. Alpha-beta edit distance on Roman normalized by q1 length w/o space 

Features for semantic similarity (2 real-valued features) 

17. LLR score 

18. Click-though data probability 

Character type features (21 binary features) 

19. BothHira, 20. BothKata, 21. BothRoman, 22. BothKanji, 23. BothMixedNoKanji, 24. BothMixed,  

25. HiraKata, 26. HiraKanji, 27. HiraRoman, 28. HiraMixedNoKanji, 29. HiraMixed, 30. KataKanji, 

31.KataRoman, 32. KataMixedNoKanji, 33. KataMixed, 34. KanjiRoman, 35. KanjiMixedNoKanji,  

36. KanjiMixed, 37. RomanMixedNoKanji, 38. RomanMixed, 39. MixedNoKanjiMixed 

Table 2: Classifier Features 
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formance of the classifier quite high (always 

predict the negative label – the accuracy will be 

95%). Note, however, that these data sets include 

term variation candidates much more efficiently 

than a candidate set generated by the standard 

method that uses an edit distance function with a 

threshold. For example, there is a query-

candidate pair q=家風情報 kafuujouhou 'house-

style information' c= 花 粉 情 報  kafunjouhou 

'pollen information') in the session data extract, 

the first one of which is likely to be a mis-

spelling of the second.
5
 If we try to find candi-

dates for the query 家風情報 using an edit dis-

tance function naively with a threshold of 2 from 

the queries in the log, we end up collecting a 

large amount of completely irrelevant set of can-

didates such as 台風情報 taifuujouhou 'typhoon 

information', 株情報 kabu jouhou 'stock informa-

tion', 降雨情報 kouu jouhou 'rainfall information' 

and so on – as many as 372 candidates were 

found in the top one million most frequent que-

ries in the query log from the same period; for 

rarer queries these numbers will only be worse. 

Computing the edit distance based on the pro-

nunciation will not help here: the examples 

above are within the edit distance of 2 even in 

terms of Romanized strings.  

Another advantage of generating the annotated 

data using the result of query log data mining is 

that the annotation process is less prone to sub-

jectivity than creating the annotation from 

scratch. As Cucerzan and Brill (2004) point out, 

the process of manually creating a spelling cor-

rection candidate is seriously flawed as the inten-

tion of the original query is completely lost: for 

the query gogle, it is not clear out of context if 

the user meant goggle, google, or gogle. Using 

data mined from query logs solves this problem: 

an annotator can safely assume that if gogle-

goggle appears in the candidate set, it is very 

likely to be a valid term variation intended by the 

user. This makes the annotation more robust and 

efficient: the inter-annotator agreement rate for 

2,000 query pairs by two annotators was 95.7% 

on our data set, each annotator spending only 

about two hours to annotate 2,000 pairs.  

5.4 Results and Discussion 

In order to compare the performance of two clas-

sifiers, we first built maximum entropy and 

MART classifiers as described in Section 4 using 

                                                 
5 家風情報 does not make any sense in Japanese; on the 

other hand, information about cedar pollen is commonly 

sought after in spring due to widespread pollen allergy.  

all the features in Section 5.2. We run five expe-

riments using different random split of training 

and test data: in each run,  we used 10,000 sam-

ples for training and the remaining 1,940 samples 

for testing, and measured the performance of the 

two classifiers on the task of term variation iden-

tification in terms of the error rate i.e., 1–

accuracy. The results, average over five runs, 

were 4.18 for the maximum entropy model, and 

3.07 for the MART model. In all five runs, the 

MART model outperformed the maximum en-

tropy classifier. This is not surprising given the 

superior performance of tree-boosting algorithms 

previously reported on similar classification 

tasks (e.g., Hastie et al., 2001). In our task where 

different types of features are likely to perform 

better when they are combined (such as semantic 

features and character types features), MART 

would be a better fit than linear classifiers  be-

cause the decision trees generated by MART op-

timally combines features in the local sense. In 

what follows, we only discuss the results pro-

duced by MART for further experiments. Note 

that the baseline classifier, which always predicts 

the label to be negative, achieves 95.04% in ac-

curacy (or 4.96% error rate), which sounds ex-

tremely high, but in fact this baseline classifier is 

useless for the purpose of collecting term varia-

tions, as it learns none of them by classifying all 

samples as negative.  

For evaluating the contribution of different 

types of features in Section 5.2, we performed 

feature ablation experiments using MART. Table 

3 shows the results in error rate by various 

MART classifiers using different combination of 

features. The results in this table are also aver-

aged over five run with random training/test data 

split. From Table 3, we can see that the best per-

formance was achieved by the model using all 

features (line A of the table), which reduces the 

baseline error rate (4.96%) by 38%. The im-

provement is statistically significant according to 

the McNemar test (P < 0.05). Models that use 

string edit distance features only (lines B and C) 

did not perform well: in particular, the model 

that uses surface edit distance features only 

Features Error rate (%) 

A. All features (1-39 in Table 2) 3.07 

B. String features only (1-16) 3.49 

C. Surface string features only (1-8) 4.9 

D. No semantic feats (1-16,19-39) 3.28 

E. No character type feats (1-18) 3.5 

Table 3: Results of Features Ablation Experiments 

Using MART Model 
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without considering the term pronunciation per-

formed horribly (line C), which confirms the re-

sults reported by Jones et al. (2006b). However, 

unlike Jones et al. (2006b), we see a positive 

contribution of semantic features: the use of se-

mantic features reduced the error rate from 3.28 

(line D) to 3.07 (line A), which is statistically 

significant. This may be attributable to the nature 

of semantic information used in our experiments: 

we used the user session and click-though data to 

extract semantic knowledge, which may be se-

mantically more specific than the probability of 

word substitution in a query collection as a 

whole, which is used by Jones et al. (2006b). 

Finally, the character type features also contri-

buted to reducing the error rate (lines A and E). 

In particular, the observation that the addition of 

semantic features without the character type fea-

tures (comparing lines B and E) did not improve 

the error rate indicates that the character type 

features are also important in bringing about the 

contribution of semantic features.   

Figure 2 displays the test data precision/recall 

curve of one of the runs of MART that uses all 

features. The x-axis of the graph is the confi-

dence score of classification P(c|q), which was 

set to 0.5 for the results in Table 3. At this confi-

dence, the model achieves 70% precision with 

the recall slightly higher than 60%. In the graph, 

we observe a familiar trade-off between preci-

sion and recall, which is useful for practical ap-

plications that may favor one over the other.  

In order to find out where the weaknesses of 

our classifiers lie, we performed a manual error 

analysis on the same MART run whose results 

are shown in Figure 2. Most of the classification 

errors are false negatives, i.e., the model failed to 

predict a case of term variation as such. The most 

conspicuous error is the failure to capture ab-

breviations, such as failing to capture the altera-

tion between 十 条 中 学 校  juujoochuugakkou 

'Juujoo middle school' and 十条中 juujoochuu, 

which our edit distance-based features fail as the 

length difference between a term and its abbrevi-

ation is significant. Addition of more targeted 

features for this subclass of term variation (e.g., 

Okazaki et al., 2008a) is called for, and will be 

considered in future work. Mistakes in the Ro-

manization of kanji characters were not always 

punished as the query and the candidate string 

may contain the same mistake, but when they 

occurred in either in the query or the candidate 

string (but not in both), the result was destruc-

tive: for example, we assigned a wrong Romani-

zation on 水銀燈 as suiginnakari ‘mercury lamp’, 

as opposed to the correct suiginntou, which caus-

es the failure to capture the alteration with 水銀

痘 suiginntou, (a misspelling of 水銀燈). Using 

N-best (N>1) candidate pronunciations for kanji 

terms or using all possible pronunciations for 

kanji characters might reduce this type of error. 

Finally, the features of our models are the edit 

distance functions themselves, rather than the 

individual edit rules or operations. Using these 

individual operations as features in the classifica-

tion task directly has been shown to perform well 

on spelling correction and normalization tasks 

(e.g., Brill and Moore, 2000; Okazaki et al., 

2008b). Okazaki et al.’s (2008b) method of gene-

rating edit operations may not be viable for our 

purposes, as they assume that the original and 

candidate strings are very similar in their surface 

representation – they target only spelling variants 

and inflection in English. One interesting future 

avenue to consider is to use the edit distance 

functions in our current model to select a subset 

of query-candidate pairs that are similar in terms 

of these functions, separately for the surface and 

Romanized forms, and use this subset to align 

the character strings in these query-candidate 

pairs as described in Brill and Moore (2000), and 

add the edit operations derived in this manner to 

the term variation identification classifier as fea-

tures.  

6 Conclusion 

In this paper we have addressed the problem of 

acquiring term variations in Japanese query logs 

for the purpose of query expansion. We generate 

term variation candidates efficiently by mining 

query log data, and our best classifier, based on 

the MART algorithm, can make use of both edit-

distance-based and semantic features, and can 

identify term variation with the precision of 70% 

at the recall slightly higher than 60%. Our next 

 
Figure 2: Precision/Recall Curve of MART 

0

10

20

30

40

50

60

70

80

90

100

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

confidence

pr
e
c
is

io
n
/
re

c
al

l (
%
)

precision

recall

1491



goal is to use and evaluate the term variation col-

lected by the proposed method in an actual 

search scenario, as well as improving the per-

formance of our classifier by using individual, 

character-dependent edit operations as features in 

classification.  
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