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Abstract 

 

This paper presents a new approach to 
selecting the initial seed set using stratified 
sampling strategy in bootstrapping-based 
semi-supervised learning for semantic relation 
classification.  First, the training data is 
partitioned into several strata according to 
relation types/subtypes, then relation instances 
are randomly sampled from each stratum to 
form the initial seed set. We also investigate 
different augmentation strategies in iteratively 
adding reliable instances to the labeled set, and 
find that the bootstrapping procedure may stop 
at a reasonable point to significantly decrease 
the training time without degrading too much 
in performance. Experiments on the ACE 
RDC 2003 and 2004 corpora show the 
stratified sampling strategy contributes more 
than the bootstrapping procedure itself. This 
suggests that a proper sampling strategy is 
critical in semi-supervised learning. 

1 Introduction 

With the dramatic increase in the amount of 
textual information available in digital archives 
and the WWW, there has been growing interest 
in techniques for automatically extracting 
information from text documents. Information 
Extraction (IE) is such a technology that IE 
systems are expected to identify relevant 
information (usually of pre-defined types) from 
text documents in a certain domain and put them 
in a structured format. 

According to the scope of the NIST Automatic 
Content Extraction (ACE) program (ACE, 2000-
2007), current research in IE has three main 
objectives: Entity Detection and Tracking (EDT), 
Relation Detection and Characterization (RDC), 

and Event Detection and Characterization (EDC). 
This paper focuses on the ACE RDC subtask, 
where many machine learning methods have 
been proposed, including supervised methods 
(Miller et al., 2000; Zelenko et al., 2002; Culotta 
and Soresen, 2004; Kambhatla, 2004; Zhou et al., 
2005; Zhang et al., 2006; Qian et al., 2008), 
semi-supervised methods (Brin, 1998; Agichtein 
and Gravano, 2000; Zhang, 2004; Chen et al., 
2006; Zhou et al., 2008), and unsupervised 
methods (Hasegawa et al., 2004; Zhang et al., 
2005).  

Current work on semantic relation extraction 
task mainly uses supervised learning methods, 
since it achieves relatively better performance. 
However this method requires a large amount of 
manually labeled relation instances, which is 
both time-consuming and laborious. In the 
contrast, unsupervised methods do not need 
definitions of relation types and hand-tagged data, 
but it is difficult to evaluate their performance 
since there are no criteria for evaluation. 
Therefore, semi-supervised learning has received 
more and more attention, as it can balance the 
advantages and disadvantages between 
supervised and unsupervised methods. With the 
plenitude of unlabeled natural language data at 
hand, semi-supervised learning can significantly 
reduce the need for labeled data with only 
limited sacrifice in performance. Specifically, a 
bootstrapping algorithm chooses the unlabeled 
instances with the highest probability of being 
correctly labeled and use them to augment 
labeled training data iteratively.  

Although previous work (Yarowsky, 1995; 
Blum and Mitchell, 1998; Abney, 2000; Zhang, 
2004) has tackled the bootstrapping approach 
from both the theoretical and practical point of 
view, many key problems still remain unresolved, 
such as the selection of initial seed set. Since the 
size of the initial seed set is usually small (e.g. 
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100 instances), the imbalance of relation types or 
manifold structure (cluster structure) in it will 
severely weaken the strength of bootstrapping. 
Therefore, it is critical for a bootstrapping 
approach to select the most appropriate initial 
seed set. However, current systems (Zhang, 2004; 
Chen et al., 2006) use a randomly sampling 
strategy, which fails to explore the affinity nature 
among the training instances. Alternatively, 
Zhou et al. (2008) bootstrap a set of weighted 
support vectors from both labeled and unlabeled 
data using SVM. Nevertheless, the initial labeled 
data is still randomly generated only to ensure 
that there are at least 5 instances for every 
relation subtype. 

This paper presents a new approach to 
selecting the initial seed set based on stratified 
sampling strategy in the bootstrapping procedure 
for semi-supervised semantic relation 
classification. The motivation behind the 
stratified sampling is that every relation type 
should be as much as possible represented in the 
initial seed set, thus leading to more instances 
with diverse structures being added to the labeled 
set. In addition, we also explore different 
strategies to augment reliably classified instances 
to the labeled data iteratively, and attempt to find 
a stoppage criterion for the iteration procedure to 
greatly decrease the training time, other than 
using up all the unlabeled set. 

The rest of this paper is organized as follows. 
First, Section 2 reviews related work on semi-
supervised relation extraction. Then we present 
an underlying supervised learner in Section 3. 
Section 4 details various key aspects of the 
bootstrapping procedure, including the stratified 
sampling strategy. Experimental results are 
reported in Section 5. Finally we conclude our 
work in Section 6. 

2 Related Work 

Within the realm of information extraction, 
currently there are several representative semi-
supervised learning systems for extracting 
relations between named entities. 

DIPRE (Dual Iterative Pattern Relation 
Expansion) (Brin, 1998) is a system based on 
bootstrapping that exploits the duality between 
patterns and relations to augment the target 
relation starting from a small sample. However, 
it only extracts simple relations such as (author, 
title) pairs from the WWW. Snowball (Agichtein 
and Gravano, 2000) is another bootstrapping-
based system that extracts relations from 

unstructured text. Snowball shares much in 
common with DIPRE, including the use of both 
the bootstrapping framework and the pattern 
matching approach to extract new unlabeled 
instances. Due to pattern matching techniques, 
their systems are hard to be adapted to the 
general problem of relation extraction. 

Zhang (2004) approaches the relation 
classification problem with bootstrapping on top 
of SVM. He uses various lexical and syntactic 
features in the BootProject algorithm based on 
random feature projection to extract top-level 
relation types in the ACE corpus. Evaluation 
shows that bootstrapping can alleviate the burden 
of hand annotations for supervised learning 
methods to a certain extent.  

Chen et al. (2006) investigate a semi-
supervised learning algorithm based on label 
propagation for relation extraction, where labeled 
and unlabeled examples and their distances are 
represented as the nodes and the weights of 
edges respectively in a connected graph, then the 
label information is propagated from any vertex 
to nearby vertices through weighted edges 
iteratively, finally the labels of unlabeled 
examples are inferred after the propagation 
process converges.  

Zhou et al. (2008) integrate the advantages of 
SVM bootstrapping in learning critical instances 
and label propagation in capturing the manifold 
structure in both the labeled and unlabeled data, 
by first bootstrapping a moderate number of 
weighted support vectors through a co-training 
procedure from all the available data, and then 
applying label propagation algorithm via the 
bootstrapped support vectors. 

However, in most current systems, the initial 
seed set is selected randomly such that they may 
not adequately represent the inherent structure of 
unseen examples, hence the power of 
bootstrapping may be severely weakened. 

This paper presents a simple yet effective 
approach to generate the initial seed set by 
applying the stratified sampling strategy, 
originated from statistics theory. Furthermore, 
we try to employ the same stratified strategy to 
augment the labeled set. Finally, we attempt to 
find a reasonable criterion to terminate the 
iteration process. 

3 Underlying Supervised Learning 

A semi-supervised learning system usually 
consists of two relevant components: an 
underlying supervised learner and a 
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bootstrapping algorithm on top of it. In this 
section we discuss the former, while the latter 
will be described in the following section.  

In this paper, we select Support Vector 
Machines (SVMs) as the underlying supervised 
classifier since it represents the state-of-the-art in 
the machine learning research community, and 
there are good implementations of the algorithm 
available. Specifically, we use LIBSVM (Chang 
et al., 2001), an effective tool for support vector 
classification, since it supports multi-class 
classification and provides probability estimation 
as well. 

For each pair of entity mentions, we extract 
and compute various lexical and syntactic 
features, as employed in a state-of-the-art 
relation extraction system (Zhou et al., 2005). 

(1) Words: According to their positions, four 
categories of words are considered: a) the words 
of both the mentions; b) the words between the 
two mentions; c) the words before M1; and d) 
the words after M2.  

(2) Entity type: This category of features 
concerns about the entity types of both the 
mentions. 

(3) Mention Level: This category of features 
considers the entity level of both the mentions. 

(4) Overlap: This category of features includes 
the number of other mentions and words between 
two mentions. Typically, the overlap features are 
usually combined with other features such as 
entity type and mention level. 

(5) Base phrase chunking: The base phrase 
chunking is proved to play an important role in 
semantic relation extraction. Most of the 
chunking features concern about the headwords 
of the phrases between the two mentions.  

In this paper, we do not employ any deep 
syntactic or semantic features (such as 
dependency tree, full parse tree etc.), since they 
contribute quite limited in relation extraction. 

4 Bootstrapping & Stratified Sampling 

We first present the self-bootstrapping algorithm, 
and then discuss several key problems on 
bootstrapping in the order of initial seed 
selection, augmentation of labeled data and 
stoppage criterion for iteration. 

4.1 Bootstrapping Algorithm 

Following Zhang (2004), we define a basic self-
bootstrapping strategy, which keeps augmenting 
the labeled data set with the models 

straightforwardly trained from previously 
available labeled data as follows: 

Require: labeled seed set L
Require: unlabeled data set U
Require: batch size S
Repeat
    Train a single classifier on L
    Run the classifier on U
    Find at most S instances in U that the classifier has
the highest prediction confidence
    Add them into L
Until: no data points available or the stoppage
condition is reached

Algorithm self-bootstrapping

Figure 1. Self-bootstrapping algorithm 
In order to measure the confidence of the 

classifier’s prediction, we compute the entropy 
of the label probability distribution that the 
classifier assigns to the class label on an example 
(the lower the entropy, the higher the confidence): 

log
n

i i
i

H p p= −∑      (1) 

Where n denotes the total number of relation 
classes, and pi denotes the probability of current 
example being classified as the ith class.  

4.2 Stratified Sampling for Initial Seeds  

Normally, the number of available labeled 
instances is quite limited (usually less than 100 
instances) when the iterative bootstrapping 
procedure begins. If the distribution of the initial 
seed set fails to approximate the distribution of 
the test data, the augmented data generated from 
bootstrapping would not capture the essence of 
relation types, and the performance on the test 
set will significantly decrease even only after one 
or two rounds of iterations. Therefore, the 
selection of initial seed set plays an important 
role in bootstrapping-based semantic relation 
extraction. 

Sampling is a part of statistical practice 
concerned with the selection of individual 
observations, which is intended to yield some 
knowledge about a population of interest. When 
dealing with the task of semi-supervised 
semantic relation classification, the population is 
the training set of relation instances from the 
ACE RDC corpora. We compare two practical 
sampling strategies as follows: 

(1) Randomly sampling, which picks the initial 
seeds from the training data using a random 
scheme. Each element thus has an equal 
probability of selection, and the population is not 
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subdivided or partitioned. Currently, most work 
on semi-supervised relation extraction employs 
this method. However, since the size of the initial 
seed set is very small, they are not guaranteed to 
capture the statistical properties of the whole 
training data, let alone of the test data. 

(2) Stratified sampling. When the population 
embraces a number of distinct categories, 
stratified sampling (Neyman, 1934) can be 
applied to this case. First, the population can be 
organized by these categories into separate 
"strata", then a sample is selected within each 
"stratum" separately, and randomly. Generally, 
the sample size is normally proportional to the 
relative size of the strata. The main motivation 
for using a stratified sampling design is to ensure 
that particular groups within a population are 
adequately represented in the sample. 

It is well known that the number of the 
instances for each relation type in the ACE RDC 
corpora is greatly unbalanced  (Zhou et al., 2005) 
as shown in Table 1 for the ACE RDC 2004 
corpus. When the relation instances for a specific 
relation type occurs frequently in the initial seed 
set, the classifier will achieve good performance 
on this type, otherwise the classifier can hardly 
recognize them from the test set. In order for 
every type of relations to be properly represented, 
the stratified sampling strategy is applied to the 
seed selection procedure. 
Types Subtypes Train Test

Located 593 145
Near 70 17

PHYS 

Part-Whole 299 79
Business 134 39
Family 101 20

PER-SOC 

Other 44 11
Employ-Executive 388 101
Employ-Staff 427 112
Employ-Undetermined 66 12
Member-of-Group 152 39
Subsidiary 169 37
Partner 10 2

EMP-ORG 

Other 64 16
User-or-Owner 160 40
Inventor-or-Man. 8 1

ART 

Other 1 1
Ethnic 31 8
Ideology 39 9

OTHER-
AFF 

Other 43 11
Citizen-or-Resid. 226 47
Based-In 165 50

GPE-AFF 

Other 31 8
DISC  224 55
Total  3445 860
Table 1. Numbers of relations on the ACE RDC 
2004: break down by relation types and subtypes 

Figure 2 illustrates the stratified sampling 
strategy we use in bootstrapping, where RSET 
denotes the training set, V is the stratification 
variable, and SeedSET denotes the initial seed set. 
First, we divide the relation instances into 
different strata according to available properties, 
such as major relation type (considering reverse 
relations or not) and relation subtype 
(considering reverse relations or not). Then 
within every stratum, a certain number of 
instances are sampled randomly, and this number 
is normally proportional to the size of that 
stratum in the whole population. However, when 
this number is 0 due to the rounding of real 
numbers, it is set to 1. Also it must be ensured 
that the total number of instances being sampled 
is NS. Finally, these instances form the initial 
seed set and can be used as the input to the 
underlying supervised learning for the 
bootstrapping procedure. 

 
Require: RSET ={R1,R2,…,RN} 
Require: V = {v1, v2,…,vK} 
Require: SeedSET with the size of NS (100) 
Initialization: 
SeedSET = NULL 

Steps: 
z Group RSET into K strata according to the 

stratified variable V, i.e.:  
RSET={RSET1,RSET2,…,RSETK} 

z Calculate the class prior probability for each 
stratum i={1,2,…,K} 

)(/)( RSETNUMRSETNUMP ii =  
z Caculate the number of intances being sampled 

for each stratum 
NPN ii ∗=  

If Ni =0 then Ni=1 
z Calculate the difference of numbers as follows: 

∑
=

∆ −=
K

i
iS NNN

1
 

z If N△>0 then add Ni (i=1,2,…,|N△|) by 1 
If N△<0 then subtract 1 from Ni (i=1,2,...,|N△|) 
z For each i from 1 to K 

Select Ni instances from RESTi randomly 
Add them into SeedSET 

 
Figure 2. Stratefied Sampling for initial seeds 

4.3 Augmentation of labeled data 

After each round of iteration, some newly 
classified instances with the highest confidence 
can be augmented to the labeled training data. 
Nevertheless, just like the selection of initial seed 
set, we still wish that every stratum would be 
represented as appropriately as possible in the 
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instances added to the labeled set. In this paper, 
we compare two kinds of augmentation strategies 
available: 

(1) Top n method: the classified instances are 
first sorted in the ascending order by their 
entropies (i.e. decreasing confidence), and then 
the top n (usually 100) instances are chosen to be 
added.  

(2) Stratified method: in order to make the 
added instances representative for their stratum, 
we first select m (usually greater than n) 
instances with the highest confidence, then we 
choose n instances from them using the stratified 
strategy. 

4.4 Stoppage of Iterations 

In a self-bootstrapping procedure, as the 
iterations go on, both the reliable and unreliable 
instances are added to the labeled data 
continuously, hence the performance will 
fluctuate in a relatively small range. The key 
question here is how we can know when the 
bootstrapping procedure reaches its best 
performance on the test data. The bootstrapping 
algorithm by Zhang (2004) stops after it runs out 
of all the training instances, which may take a 
relatively long time. In this paper, we present a 
method to determine the stoppage criterion based 
on the mean entropy as follows: 

Hi <= p    (2) 

Where Hi denotes the mean entropy of the 
confidently classified instances being augmented 
to the labeled data in each iteration, and p 
denotes a threshold for the mean entropy, which 
will be fixed through empirical experiments. 
This criterion is based on the assumption that 
when the mean entropy becomes less than or 
equal to a certain threshold, the classifier would 
achieve the most reliable confidence on the 
instances being added to the labeled set, and it 
may be impossible to yield better performance 
since then. Therefore, the iteration may stop at 
that reasonable point.  

5 Experimentation 

This section aims to empirically investigate the 
effectiveness of the bootstrapping-based semi-
supervised learning we discussed above for 
semantic relation classification. In particular, 
different methods for selecting the initial seed set 
and augmenting the labeled data are evaluated. 

5.1 Experimental Setting 

We use the ACE corpora as the benchmark data, 
which are gathered from various newspapers, 
newswire and broadcasts. The ACE 2004 corpus 
contains 451 documents and 5702 positive 
relation instances. It defines 7 relation types and 
23 subtypes between 7 entity types. For easy 
reference with related work in the literature, 
evaluation is also done on 347 documents 
(including nwire and bnews domains) and 4305 
relation instances using 5-fold cross-validation. 
That is, these relation instances are first divided 
into 5 sets, then, one of them (about 860 
instances) is used as the test data set, while the 
others are regarded as the training data set, from 
which the initial seed set is sampled. In the ACE 
2003 corpus, the training set consists of 674 
documents and 9683 positive relation instances 
while the test data consists of 97 documents and 
1386 positive relation instances. The ACE RDC 
2003 task defines 5 relation types and 24 
subtypes between 5 entity types. 

The corpora are first parsed using Collins’s 
parser (Collins, 2003) with the boundaries of all 
the entity mentions kept. Then, the parse trees 
are converted into chunklink format using 
chunklink.pl 1. Finally, various useful lexical and 
syntactic features, as described in Subsection 3.1, 
are extracted and computed accordingly. For the 
purpose of comparison, we define our task as the 
classification of the 5 or 7 major relation types in 
the ACE RDC 2003 and 2004 corpora. 

For LIBSVM parameters, we adopted the 
polynomial kernel, and c is set to 10, g is set to 
0.15. Under this setting, we achieved the best 
classification performance. 

5.2 Experimental Results 

In this subsection, we compare and discuss the 
experimental results using various sampling 
strategies, different augmentation methods, and 
iteration stoppage criterion. 

 
Comparison of sampling strategies in selecting 
the initial seed set 

Table 2 and Table 3 show the initial and the 
highest classification performance of 
Precision/Recall/F-measure for various sampling 
strategies of the initial seed set on 7 major 
relation types of the ACE RDC 2004 corpus 
respectively when the size of initial seed set L is 
100, the batch size S is 100, and the top 100 

                                                 
1 http://ilk.kub.nl/~sabine/chunklink/ 
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instances with the highest confidence are added 
at each iteration. Table 2 also lists the number of 
strata for stratified sampling methods from which 
the initial seeds are randomly chosen 
respectively. Table 3 additionally lists the time 
needed to complete the bootstrapping process (on 
a PC with a Pentium IV 3.0G CPU and 1G 
memory). In this paper, we consider the 
following five experimental settings when 
sampling the initial seeds: 
z Randomly Sampling: as described in 

Subsection 4.2. 
z Stratified-M Sampling: the strata are 

grouped in terms of major relation types 
without considering reverse relations. 

z Stratified-MR Sampling: the strata are 
grouped in terms of major relation types, 
including reverse relations. 

z Stratified-S Sampling: the strata are 
grouped in terms of relation subtypes 
without considering reverse subtypes. 

z Stratified-SR Sampling: the strata are 
grouped in terms of relation subtypes, 
including reverse subtypes. 

For each sampling strategies, we performed 20 
trials and computed average scores and the total 
time on the test set over these 20 trials. 

Sampling strategies 
for initial seeds 

# of 
strat. P(%) R(%) F 

Randomly 1 66.1 65.9 65.9
Stratified-M 7 69.1 66.5 67.7
Stratified-MR 13 69.3 67.3 68.2
Stratified-S 30 69.8 67.7 68.7
Stratified-SR 39 69.9 68.5 69.2

Table 2. The initial performance of applying 
various sampling strategies to selecting the initial 
seed set on the ACE RDC 2004 corpus 

Sampling strategies 
for initial seeds 

Time 
(min) P(%) R(%) F 

Randomly 52 68.6 66.2 67.3
Stratified-M 65 71.0 66.9 68.8
Stratified-MR 65 71.6 67.0 69.2
Stratified-S 71 72.7 67.8 70.1
Stratified-SR 77 72.9 68.4 70.6

Table 3. The highest performance of applying 
various sampling strategies in selecting the initial 
seed set on the ACE RDC 2004 corpus 

 
These two tables jointly indicate that the self-

bootstrapping procedure for all sampling 
strategies can moderately improve the 
classification performance by ~1.2 units in F-
score, which is also verified by Zhang (2004). 
Furthermore, they show that: 

z  The most improvements in performance 
come from improvements in precision. Actually, 
for some settings the recalls even decrease 
slightly. The reason may be that due to the nature 
of self-bootstrapping, the instances augmented at 
each iteration are always those which are the 
most similar to the initial seed instances, 
therefore the models trained from them would 
exhibit higher precision on the test set, while it 
virtually does no help for recall. 
z  All of the four stratified sampling methods 

outperform the randomly sampling method to 
various degrees, both in the initial performance 
and the highest performance. This means that 
sampling of the initial seed set based on 
stratification by major/sub relation types can be 
helpful to relation classification, largely due to 
the performance improvement of the initial seed 
set, which is caused by adequate representation 
of instances for every relation type. 
z  Of all the four stratified sampling methods, 

the Stratified-SR sampling achieves the best 
performance of 72.9/68.4/70.6 in P/R/F. 
Moreover, the more the number of strata 
generated by the sampling strategy, the more 
appropriately they would be represented in the 
initial seed set, and the better performance it will 
yield. This also implies that the hierarchy of 
relation types/subtypes in the ACE RDC 2004 
corpus is fairly reasonably defined. 
z  An important conclusion, which can be 

draw accordingly, is that the F-score 
improvement of Stratified-SR sampling over 
Randomly sampling in initial performance (3.3 
units) is significantly greater than the F-score 
improvement gained by bootstrapping itself 
using Randomly sampling (1.4 units). This means 
that the sampling strategy of the initial seed set is 
even more important than the bootstrapping 
algorithm itself for relation classification. 
z  It is interesting to note that the time needed 

to bootstrap increases with the number of strata. 
The reason may be that due to more diverse 
structures in the labeled data for stratified 
sampling, the SVM needs more time to 
differentiate between instances, i.e. more time to 
learn the models. 
 
Comparison of different augmentation 
strategies of training data 

Figure 3 compares the performance of F-score 
for two augmentation strategies: the Top n 
method and the stratified method, over various 
initial seed sampling strategies on the ACE RDC 
2004 corpus. For each iteration, a variable 
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number (m is ranged from 100 to 500) of 
classified instances in the decreasing order of 
confidence are first chosen as the base examples, 
then at most 100 examples are selected from the 
base examples to be augmented to the labeled set. 
Specifically, when m is equal to 100, the whole 
set of the base example is added to the labeled 
data, i.e. degenerated to the Top n augmentation 
strategy. On the other hand, when m is greater 
than 100, we wish we would select examples of 
different major relation types from the base 
examples according to their distribution in the 
training set, in order to achieve the performance 
improvement as much as the stratified sampling 
does in the selection of the initial seed set. 

64
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72
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0
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0
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0
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# Base examples
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c
o
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Randomly

Stratified-M 

Stratified-MR

Stratified-S

Stratified-SR

Figure 3. Comparison of two augmentation 
strategies over different sampling strategies in 
selecting the initial seed set. 

This figure shows that, except for randomly 
sampling strategy, the stratified augmentation 
strategies improve the performance. Nevertheless, 
this result is far from our expectation in two 
ways: 
z  The performance improvement in F-score is 

trivial, at most 0.4 units on average. The reason 
may be that, although we try to add as many as 
100 classified instances to the labeled data 
according to the distribution of every major 
relation type in the training set, the top m 
instances with the highest confidence are usually 
focused on certain relation types (e.g. PHSY and 
PER-SOC), this leads to the stratified 
augmentation failing to function effectively. 
Hence, all the following experiments will only 
adopt Top n method for augmenting the labeled 
data. 
z  With the increase of the number of the base 

examples, the performance fluctuates slightly, 
thus it is relatively difficult to recognize where 
the optima is. We think there are two 
contradictory factors that affect the performance. 
While the reliability of the instances extracted 
from the base examples decreases with the 
increase of the number of base examples, the 

probability of extracting instances of more 
relation types increases with the increase of the 
number of the base examples. These two factors 
inversely interact with each other, leading to the 
fluctuation in performance. 
 
Comparison of different threshold values for 
stoppage criterion 

We compare the performance and 
bootstrapping time (20 trials with the same initial 
seed set) when applying stoppage criterion in 
Formula (2) with different threshold p over 
various sampling strategies on the ACE RDC 
2004 corpus in Figure 4 and Figure 5 
respectively. These two figures jointly show that: 
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Figure 4. Performance for different p values 
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Figure 5. Bootstrapping time for different p 
values 
z  The performance decreases slowly while the 

bootstrapping time decreases dramatically with 
the increase of p from 0 to 0.3. Specifically, 
when the p equals to 0.3, the bootstrapping time 
tends to be neglected, while the performance is 
almost similar to the initial performance. It 
implies that we can find a reasonable point for 
each sampling strategy, at which the time falls 
greatly while the performance nearly does not 
degrade.  
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Bootproject LP-js Stratified Bootstrapping Relation types 
P R F P R F P R F 

ROLE 78.5 69.7 73.8 81.0 74.7 77.7 74.7 86.3 80.1
PART 65.6 34.1 44.9 70.1 41.6 52.2 66.4 47.0 55.0
AT 61.0 84.8 70.9 74.2 79.1 76.6 74.9 66.1 70.2
NEAR - - - 13.7 12.5 13.0 100.0 2.9 5.6
SOC 47.0 57.4 51.7 45.0 59.1 51.0 65.2 79.0 71.4
Average 67.9 67.4 67.6 73.6 69.4 70.9 73.8 73.3 73.5
Table 4. Comparison of semi-supervised relation classification systems on the ACE RDC 2003 corpus 

 
z  Clearly, if the performance is the primary 

concern, then p=0.2 may be the best choice in 
that we can get ~30% saving on the time at the 
cost of only ~0.08 loss in F-score on average. If 
the time is a primary concern, then p=0.22 is a 
reasonable threshold in that we get ~50% saving 
on the time at the cost of ~0.25 units loss in F-
score on average. This suggests that our 
proposed stoppage criterion is effective to 
terminate the bootstrapping procedure with 
minor performance loss. 
 
Comparison of Stratified Bootstrapping with 
Bootproject and Label propagation  

Table 4 compares Bootproject (Zhang, 2004), 
Label propagation (Chen et al., 2006) with our 
Stratified Bootstrapping on the 5 major types of 
the ACE RDC 2003 corpus. 

Both Bootproject and Label propagation 
select 100 initial instances randomly, and at each 
iteration, the top 100 instances with the highest 
confidence are added to the labeled data. 
Differently, we choose 100 initial seeds using 
stratified sampling strategy; similarly, the top 
100 instances with the highest confidence are 
augmented to the labeled data at each iteration. 
Due to the lack of comparability followed from 
the different size of the labeled data used in 
(Zhou et al., 2008), we omit their results here. 

This table shows that our stratified 
bootstrapping procedure significantly 
outperforms both Bootproject and Label 
Propagation methods on the ACE RDC corpus, 
with the increase of 5.9/4.1 units in F-score on 
average respectively. Stratified bootstrapping 
consistently outperforms Bootproject in every 
major relation type, while it outperforms Label 
Propagation in three of the major relation types, 
especially SOC type, with the exception of AT 
and NEAR types. The reasons may be follows. 
Although there are many AT relation instances in 
the corpus, they are scattered divergently in 
multi-dimension space so that they tend to be 
relatively difficult to be recognized via SVM. 

For the NEAR relation instances, they occur least 
frequently in the whole corpus, so it is very hard 
for them to be identified via SVM. By contrast, 
even small size of labeled instances can be fully 
utilized to correctly induce the unlabeled 
instances via LP algorithm due to its ability to 
exploit manifold structures of both labeled and 
unlabeled instances (Chen et al., 2006). 

In general, these results again suggest that the 
sampling strategy in selecting the initial seed set 
plays a critical role for relation classification, and 
stratified sampling can significantly improve the 
performance due to proper selection of the initial 
seed set. 

6 Conclusion 

This paper explores several key issues in semi-
supervised learning based on bootstrapping for 
semantic relation classification. The application 
of stratified sampling originated from statistics 
theory to the selection of the initial seed set 
contributes most to the performance 
improvement in the bootstrapping procedure. In 
addition, the more strata the training data is 
divided into, the better performance will be 
achieved. However, the augmentation of the 
labeled data using the stratified strategy fails to 
function effectively largely due to the 
unbalanced distribution of the confidently 
classified instances, rather than the stratified 
sampling strategy itself. Furthermore, we also 
propose a mean entropy-based stoppage criterion 
in the bootstrapping procedure, which can 
significantly decrease the training time with little 
loss in performance. Finally, it also shows that 
our method outperforms other state-of-the-art 
semi-supervised ones. 
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