
Proceedings of the 2009 Conference on Empirical Methods in Natural Language Processing, pages 1114–1123,
Singapore, 6-7 August 2009. c©2009 ACL and AFNLP

A Joint Language Model With Fine-grain Syntactic Tags

Denis Filimonov1

1Laboratory for Computational Linguistics
and Information Processing

Institute for Advanced Computer Studies
University of Maryland, College Park

den@cs.umd.edu

Mary Harper1,2

2Human Language Technology
Center of Excellence

Johns Hopkins University
mharper@umiacs.umd.edu

Abstract

We present a scalable joint language
model designed to utilize fine-grain syn-
tactic tags. We discuss challenges such
a design faces and describe our solutions
that scale well to large tagsets and cor-
pora. We advocate the use of relatively
simple tags that do not require deep lin-
guistic knowledge of the language but pro-
vide more structural information than POS
tags and can be derived from automati-
cally generated parse trees – a combina-
tion of properties that allows easy adop-
tion of this model for new languages. We
propose two fine-grain tagsets and evalu-
ate our model using these tags, as well as
POS tags and SuperARV tags in a speech
recognition task and discuss future direc-
tions.

1 Introduction

In a number of language processing tasks, particu-
larly automatic speech recognition (ASR) and ma-
chine translation (MT), there is the problem of se-
lecting the best sequence of words from multiple
hypotheses. This problem stems from thenoisy
channelapproach to these applications. The noisy
channel model states that the observed data, e.g.,
the acoustic signal, is the result of some input
translated by some unknown stochastic process.
Then the problem of finding the best sequence of
words given the acoustic input, not approachable
directly, is transformed into two separate models:

argmax
wn

1

p(wn
1 |A) = argmax

wn
1

p(A|wn
1) · p(wn

1)

(1)
whereA is the acoustic signal andwn

1 is a se-
quence ofn words.p(A|wn

1) is called an acoustic

model andp(wn
1) is the language model1.

Typically, these applications use language mod-
els that compute the probability of a sequence in a
generative way:

p(wn
1) =

n∏
i=1

p(wi|wi−1
1)

Approximation is required to keep the parameter
space tractable. Most commonly the context is re-
duced to just a few immediately preceding words.
This type of model is called anngrammodel:

p(wi|wi−1
1) ≈ p(wi|wi−1

i−n+1)

Even with limited context, the parameter space can
be quite sparse and requires sophisticated tech-
niques for reliable probability estimation (Chen
and Goodman, 1996). While the ngram models
perform fairly well, they are only capable of cap-
turing very shallow knowledge of the language.

There is extensive literature on a variety of
methods that have been used to imbue models
with syntactic and semantic information in differ-
ent ways. These methods can be broadly catego-
rized into two types:

• The first method uses surface words within
its context, sometimes organizing them into
deterministic classes. Models of this type in-
clude: (Brown et al., 1992; Zitouni, 2007),
which use semantic word clustering, and
(Bahl et al., 1990), which uses variable-
length context.

• The other method adds stochastic variables
to express the ambiguous nature of surface
words2. To obtain the probability of the next

1Real applications useargmaxwn
1

p(A|wn
1)·p(wn

1)α·nβ

instead of Eq. 1, whereα andβ are set to optimize a heldout
set.

2These variables have to be predicted by the model.

1114

word we need to sum over all assignments of
the stochastic variables, as in Eq. 2.

p(wi|wi−1
1) =

∑
t1...ti

p(witi|wi−1
1 ti−1

1) (2)

=
∑

t1...ti p(witi|wi−1
1 ti−1

1)p(wi−1
1 ti−1

1)∑
t1...ti−1

p(wi−1
1 ti−1

1)

Models of this type, which we calljoint
models since they essentially predict joint
events of words and some random vari-
able(s), include (Chelba and Jelinek, 2000)
which used POS tags in combination with
“parser instructions” for constructing a full
parse tree in a left-to-right manner; (Wang
et al., 2003) used SuperARVs (complex tu-
ples of dependency information) without re-
solving the dependencies, thus calledalmost
parsing; (Niesler and Woodland, 1996; Hee-
man, 1999) utilize part of speech (POS) tags.
Note that some models reduce the context by
making the following approximation:

p(witi|wi−1
1 ti−1

1) ≈ p(wi|ti)·p(ti|ti−1
1) (3)

thus, transforming the problem into a stan-
dard HMM application. However, these
models perform poorly and have only been
able to improve over the ngram model when
interpolated with it (Niesler and Woodland,
1996).

Although joint models have the potential
to better express variability in word usage
through the introduction of additional latent
variables, they do not necessarily perform
better because the increased dimensionality
of the context substantially increases the al-
ready complex problem of parameter estima-
tion. The complexity of the space also makes
computation of the probability a challenge
because of space and time constraints. This
makes the choice of the random variables a
matter of utmost importance.

The model presented in this paper has some el-
ements borrowed from prior work, notably (Hee-
man, 1999; Xu and Jelinek, 2004), while others
are novel.

1.1 Paper Outline

The message we aim to deliver in this paper can
be summarized in two theses:

• Use fine-grain syntactic tags in a joint LM.
We propose a joint language model that can
be used with a variety of tagsets. In Section
2, we describe those that we used in our ex-
periments. Rather than tailoring our model to
these tagsets, we aim for flexibility and pro-
pose an information theoretic framework for
quick evaluation for tagsets, thus simplifying
the creation of new tagsets. We show that
our model with fine-grain tagsets outperform
the coarser POS model, as well as the ngram
baseline, in Section 5.

• Address the challengesthat arise in a joint
language model with fine-grain tags. While
the idea of using joint language modeling is
not novel (Chelba and Jelinek, 2000; Hee-
man, 1999), nor is the idea of using fine-grain
tags (Bangalore, 1996; Wang et al., 2003),
none of prior papers focus on the issues that
arise from the combination of joint language
modeling with fine-grain tags, both in terms
of reliable parameter estimation and scalabil-
ity in the face of the increased computational
complexity. We dedicate Sections 3 and 4 to
this problem.

In Section 6, we summarize conclusions and lay
out directions for future work.

2 Structural Information

As we have mentioned, the selection of the ran-
dom variable in Eq. 2 is extremely important for
the performance of the model. On one hand, we
would like for this variable to provide maximum
information. On the other hand, as the number of
parameters grow, we must address reliable param-
eter estimation in the face of sparsity, as well as
increased computational complexity. In the fol-
lowing section we will compare the use of Super-
ARVs, POS tags, and other structural tags derived
from parse trees.

2.1 POS Tags

Part-of-speech tags can be easily obtained for
unannotated data using off-the-shelf POS taggers
or PCFG parsers. However, the amount of infor-
mation these tags typically provide is very limited,

1115

Figure 1: A parse tree example

e.g., while it is helpful to know whetherfly is a
verb or a noun, knowing thatyouis a personal pro-
noun does not carry the information whether it is
a subject or an object (given the Penn Tree Bank
tagset), which would certainly help to predict the
following word.

2.2 SuperARV

The SuperARV essentially organizes information
concerning one consistent set of dependency links
for a word that can be directly derived from its
syntactic parse. SuperARVs encode lexical in-
formation as well as syntactic and semantic con-
straints in a uniform representation that is much
more fine-grained than POS. It is a four-tuple
(C; F ; R+;D), whereC is the lexical category
of the word,F is a vector of lexical features for
the word,R+ is a set of governor and need labels
that indicate the function of the word in the sen-
tence and the types of words it needs, andD rep-
resents the relative position of the word and its de-
pendents. We refer the reader to the literature for
further details on SuperARVs (Wang and Harper,
2002; Wang et al., 2003).

SuperARVs can be produced from parse trees
by applying deterministic rules. In this work we
use SuperARVs as individual tags and do not clus-
ter them based of their structure. While Super-
ARVs are very attractive for language modeling,
developing such a rich set of annotations for a new
language would require a large amount of human
effort.

We propose two other types of tags which have
not been applied to this task, although similar in-
formation has been used in parsing.

2.3 Modifee Tag

This tag is a combination of the word’s POS
tag and the POS tag of its governor role. We

designed it to resemble dependency parse struc-
ture. For example, the sentence in Figure 1 would
be tagged:the/DT-NN black/JJ-NN cat/NN-VBD
sat/VBD-root. Henceforth, we will refer to this
kind of tag ashead.

2.4 Parent Constituent

This tag is a combination of the word’s POS tag
with its immediate parent in the parse tree, along
with the POS tag’s relative position among its sib-
lings. We refer to this type of tags asparent. The
example in Figure 1 will be tagged:the/DT-NP-
start black/JJ-NP-mid cat/NN-NP-end sat/VB-VP-
single. This tagset is designed to represent con-
stituency information.

Note that theheadandparent tagsets are more
language-independent (all they require is a tree-
bank) than the SuperARVs which, not only uti-
lized the treebank, but were explicitly designed by
a linguist for English only.

2.5 Information Theoretic Comparison of
Tags

As we have mentioned in Section 1, the choice of
the tagset is very important to the performance of
the model. There are two conflicting intuitions for
tags: on one hand they should be specific enough
to be helpful in the language model’s task; on the
other hand, they should be easy for the LM to pre-
dict.

Of course, in order to argue which tags are more
suitable, we need some quantifiable metrics. We
propose an information theoretic approach:

• To quantify how hard it is to predict a tag, we
compute the conditional entropy:

Hp(ti|wi) = Hp(tiwi)−Hp(wi)

=
∑
witi

p(tiwi) log p(ti|wi)

• To measure how helpful a tagset is in the LM
task, we compute the reduction of the condi-
tional cross entropy:

Hp̃,q(wi|wi−1ti−1) − Hp̃,q(wi|wi−1) =

−
∑

wi
i−1ti−1

p̃(wi
i−1ti−1) log q(wi|wi−1ti−1)

+
∑
wi

i−1

p̃(wi
i−1) log q(wi|wi−1)

= −
∑

wi
i−1ti−1

p̃(wi
i−1ti−1) log

q(wi|wi−1ti−1)

q(wi|wi−1)

1116

Note that in this case we use conditional
cross entropy because conditional entropy
has the tendency to overfit the data as we se-
lect more and more fine-grain tags. Indeed,
Hp(wi|wi−1ti−1) can be reduced to zero if
the tags are specific enough, which would
never happen in reality. This is not a prob-
lem for the former metric because the con-
text there,wi, is fixed. For this metric, we
use a smoothed distributioñp computed on
the training set3 and the test distributionq.

B
it
s

0

0.5

1

1.5

2

2.5

3

Tags

POS SuperARV parent head

Figure 2: Changes in entropy for different tagsets

The results of these measurements are presented
in Figure 2. POS tags, albeit easy to predict, pro-
vide very little additional information about the
following word, and therefore we would not ex-
pect them to perform very well. Theparenttagset
seems to perform somewhat better than Super-
ARVs – it provides 0.13 bits more information
while being only 0.09 bits harder to predict based
on the word. Theheadtagset is interesting: it pro-
vides 0.2 bits more information about the follow-
ing word (which would correspond to 15% per-
plexity reduction if we had perfect tags), but on
the other hand the model is less likely to predict
these tags accurately.

This approach is only a crude estimate (it uses
only unigram and bigram context) but it is very
useful for designing tagsets, e.g., for a new lan-
guage, because it allows us to assess relative per-
formance of tagsets without having to train a full
model.

3We usedone-countsmoothing (Chen and Goodman,
1996).

3 Language Model Structure

The size and sparsity of the parameter space of the
joint model necessitate the use of dimensionality
reduction measures in order to make the model
computationally tractable and to allow for accu-
rate estimation of the model’s parameters. We also
want the model to be able to easily accommodate
additional sources of information such as morpho-
logical features, prosody, etc. In the rest of this
section, we discuss avenues we have taken to ad-
dress these problems.

3.1 Decision Tree Clustering

Binary decision tree clustering has been shown to
be effective for reducing the parameter space in
language modeling (Bahl et al., 1990; Heeman,
1999) and other language processing applications,
e.g., (Magerman, 1994). Like any clustering algo-
rithm, it can be represented by a functionH that
maps the space of histories to a set of equivalence
classes.

p(witi|wi−1
i−n+1t

i−1
i−n+1) ≈ p(witi|H(wi−1

i−n+1t
i−1
i−n+1))

(4)

While the tree construction algorithm is fairly
standard – to recursively select binary questions
about the history optimizing some function – there
are important decisions to make in terms of which
questions to ask and which function to optimize.
In the remainder of this section, we discuss the de-
cisions we made regarding these issues.

3.2 Factors

The Factored Language Model (FLM) (Bilmes
and Kirchhoff, 2003) offers a convenient view of
the input data: it represents every word in a sen-
tence as a tuple of factors. This allows us to extend
the language model with additional parameters. In
an FLM, however, all factors have to be determin-
istically computed in a joint model; whereas, we
need to distinguish between the factors that are
given or computed and the factors that the model
must predict stochastically. We call these types
of factorsovert andhidden, respectively. Exam-
ples of overt factors include surface words, mor-
phological features such as suffixes, case informa-
tion when available, etc., and the hidden factors
are POS, SuperARVs, or other tags.

Henceforth, we will useword to represent the
set of overt factors andtag to represent the set of
hidden factors.

1117

3.3 Hidden Factors Tree

Similarly to (Heeman, 1999), we construct a bi-
nary tree where each tag is a leaf; we will refer
to this tree as theHidden Factors Tree(HFT). We
use Minimum Discriminative Information (MDI)
algorithm (Zitouni, 2007) to build the tree. The
HFT represents a hierarchical clustering of the tag
space. One of the reasons for doing this is to allow
questions about subsets of tags rather than individ-
ual tags alone4.

Unlike (Heeman, 1999), where the tree of tags
was only used to create questions, this representa-
tion of the tag space is, in addition, a key feature
of our decoding optimizations, which we discuss
in Section 4.

3.4 Questions

The context space is partitioned by means of bi-
nary questions. We use different types of ques-
tions for hidden and overt factors.

• Questions about surface words are con-
structed using the Exchange algorithm (Mar-
tin et al., 1998). This algorithm takes the set
of words that appear at a certain position in
the training data associated with the current
node in the history tree and divides the set
into two complementary subsets greedily op-
timizing some target function (we use the av-
erage entropy of the marginalized word dis-
tribution, the same as for question selection).
Note that since the algorithm only operates
on the words that appear in the training data,
we need to do something more to account for
the unseen words. Thus, to represent this type
of question, we create the history tree struc-
ture depicted in Fig. 4.

For other overt factors with smaller vocabu-
laries, such as suffixes, we use equality ques-
tions.

• As we mentioned in Section 3.3, we use the
Hidden Factors Tree to create questions about
hidden factors. Note that every node in a bi-
nary tree can be represented by a binary path
from the root with all nodes under an inner
node sharing the same prefix. Thus, a ques-
tion about whether a tag belongs to a subset

4Trying all possible subsets of tags is not feasible since
there are2|T | of them. The tree allows us to reduce the num-
ber to O(T) of the most meaningful (as per the clustering
algorithm) subsets.

Figure 3: Recursive smoothing:̃pn = λnpn +
(1− λn)p̃n′

of tags dominated by a node can be expressed
as whether the tag’s path matches the binary
prefix.

3.5 Optimization Criterion and Stopping
Rule

To select questions we use the average entropy of
the marginalized word distribution. We found that
this criterion significantly outperforms the entropy
of the distribution of joint events. This is proba-
bly due to the increased sparsity of the joint distri-
bution and the fact that our ultimate metrics, i.e.,
WER and word perplexity, involve only words.

3.6 Distribution Representation

In a clusterHx, we factor the joint distribution as
follows:

p(witi|Hx) = p(wi|Hx) · p(ti|wi, Hx)

wherep(ti|wi, Hx) is represented in the form of
an HFT, in which each leaf has the probability of a
tag and each internal node contains the sum of the
probabilities of the tags it dominates. This repre-
sentation is designed to assist the decoding process
described in Section 4.

3.7 Smoothing

In order to estimate probability distributions at the
leaves of the history tree, we use the following re-
cursive formula:

p̃n(witi) = λnpn(witi) + (1− λn)p̃n′(witi) (5)

where n′ is the n-th node’s parent,pn(witi) is
the distribution at noden (see Figure 3). The

1118

root of the tree is interpolated with the distribu-
tion punif (witi) = 1

|V |pML(ti|wi)5. To estimate
interpolation parametersλn, we use the EM algo-
rithm described in (Magerman, 1994); however,
rather than setting aside a separate development
set of optimizingλn, we use 4-fold cross valida-
tion and take the geometric mean of the resulting
coefficients6. We chose this approach because a
small development set often does not overlap with
the training set for low-count nodes, leading the
EM algorithm to setλn = 0 for those nodes.

Let us consider one leaf of the history tree in
isolation. Its context can be represented by the
path to the root, i.e., the sequence of questions and
answersq1, . . . q(n′)′qn′ (with q1 being the answer
to the topmost question):

p̃n(witi) = p̃(witi|q1 . . . q(n′)′qn′)

Represented this way, Eq. 5 is a variant of Jelinek-
Mercer smoothing:

p̃(witi|q1 . . . qn′) = λnp(witi|q1 . . . qn′) +
(1− λn)p̃(witi|q1 . . . q(n′)′)

For backoff nodes (see Fig. 4), we use a lower
order model7 interpolated with the distribution at
the backoff node’s grandparent (see nodeA in Fig.
4):

p̃B(witi|wi−1
i−n+1t

i−1
i−n+1) =

αAp̃bo(witi|wi−1
i−n+2t

i−1
i−n+2) + (1 − αA)p̃A(witi)

How to computeαA is an open question. For this
study, we use a simple heuristic based on obser-
vation that the further nodeA is from the root
the more reliable the distributioñpA(witi) is, and
henceαA is lower. The formula we use is as fol-
lows:

αA =
1√

1 + distanceToRoot(A)
5We use this distribution rather than uniform joint distri-

bution 1
|V ||T | because we do not want to allow word-tag pairs

that have never been observed. The idea is similar to (Thede
and Harper, 1999).

6To avoid a large number of zeros due to the product, we
set a minimum forλ to be10−7.

7The lower order model is constructed by the same algo-
rithm, although with smaller context. Note that the lower or-
der model can back off on words or tags, or both. In this paper
we backoff both on words and tags, i.e.,p(witi|wi−1

i−2ti−1
i−2)

backs off top(witi|wi−1ti−1), which in turn backs off to the
unigramp(witi).

Figure 4: A fragment of the decision tree with a
backoff node.S ∪ S̄ is the set of words observed
in the training data at the nodeA. To account for
unseen words, we add the backoff nodeB.

4 Decoding

As in HMM decoding, in order to compute prob-
abilities fori-th step, we need to sum over|T |n−1

possible combinations of tags in the history, where
T is the set of tags andn is the order of the
model. With|T | predictions for thei-th step, we
haveO(|T |n) computational complexity per word.
Straightforward computation of these probabili-
ties is problematic even for a trigram model with
POS tags, i.e.,n = 3, |T | ≈ 40. A standard ap-
proach to limit computational requirements is to
use beam search where onlyN most likely paths
are retained. However, with fine-grain tags where
|T | ≈ 1, 500, a tractable beam size would only
cover a small fraction of the whole space, leading
to search errors such as pruning good paths.

Note that we have a history clustering function
(Eq. 4) represented by the decision tree, and we
should be able to exploit this clustering to elimi-
nate unnecessary computations involving equiva-
lent histories. Note that words in the history are
known exactly, thus we can create a projection of
the clustering functionH in Eq. 4 to the plane
wi−1

i−n+1 = const, i.e., where words in the context
are fixed to be whatever is observed in the history:

H(wi−1
i−n+1t

i−1
i−n+1) ⇒ Ĥwi−1

i−n+1=const(t
i−1
i−n+1)

(6)
The number of distinct clusters in the projection
Ĥ depends on the decision tree configuration and
can vary greatly for different wordswi−1

i−n+1 in the
history, but generally it is relatively small:

|Ĥwi−1
i−n+1=const(t

i−1
i−n+1)| ≪ |Tn−1| (7)

1119

Figure 5: Questions about hidden factors split
states (see Figure 6) in the decoding lattice rep-
resented by HFTs.

thus, the number of probabilities that we need to
compute is|Ĥwi−1

i−n+1=const| · |T |.
Our decoding algorithm works similarly to

HMM decoding with the exception that the set of
hidden states is not predetermined. Let us illus-
trate how it works in the case of a bigram model.
Recall that the set of tagsT is represented as a
binary tree (HFT) and the only type of questions
about tags is about matching a binary prefix in the
HFT. Such a question dissects the HFT into two
parts as depicted in Figure 5. The cost of this op-
eration isO(log |T |).

We represent states in the decoding lattice as
shown in the Figure 6, wherepS

in is the probability
of reaching the stateS:

pS
in =

∑
S′∈INS

pS′
in p(wi−2|HS′)

∑
t∈TS′

p(t|wi−2HS′)


where INS is the set of incoming links to the
stateS from the previous time index, andTS′ is
the set of tags generated from the stateS′ repre-
sented as a fragment of the HFT. Note, that since
we maintain the property that the probability as-
signed to an inner node of the HFT is the sum
of probabilities of the tags it dominates, the sum∑

t∈TS′ p(t|wi−2HS′) is located at the root ofTS′ ,
and therefore this is anO(1) operation.

Now given the stateS at timei − 1, in order to
generate tag predictions fori-th word, we apply
questions from the history clustering tree, start-
ing from the top. Questions about overt factors

Figure 6: A stateS in the decoding lattice.pS
in is

the probability of reaching the stateS through the
set of linksINS . The probabilities of generating
the tagsp(ti−1|wi−1, Hs), (ti−1 ∈ TS) are repre-
sented in the form of the HFT.

always follow either atrueor falsebranch, implic-
itly computing the projection in Eq. 6. Questions
about hidden factors, can split the stateS into two
statesStrue andSfalse, each retaining a part ofTS

as shown in the Figure 5.
The process continues until each fragment of

each state at the timei − 1 reaches the bottom of
the history tree, at which point new states for time
i are generated from the clusters associated with
leaves. The states ati− 1 that generate the cluster
HS̃ become the incoming links to the stateS̃.

Higher order models work similarly, except that
at each time we consider a stateS at time i − 1
along with one of its incoming links (to some
depth according to the size of the context).

5 Experimental Setup

To evaluate the impact of fine-grain tags on lan-
guage modeling, we trained our model with five
settings: In the first model, questions were re-
stricted to be about overt factors only, thus making
it a tree-based word model. In the second model,
we used POS tags. To evaluate the effect of fine-
grain tags, we train two models:headandparent
described in Section 2.3 and Section 2.4 respec-
tively. Since our joint model can be used with
any kind of tags, we also trained it with Super-
ARV tags (Wang et al., 2003). The SuperARVs
were created from the same parse trees that were
used to produce POS and fine-grain tags. All our
models, including SuperARV, use trigram context.
We include standard trigram, four-gram, and five-

1120

gram models for reference. The ngram models
were trained using SRILM toolkit with interpo-
lated modified Kneser-Ney smoothing.

We evaluate our model with an nbest rescoring
task using 100-best lists from the DARPA WSJ’93
and WSJ’92 20k open vocabulary data sets. The
details on the acoustic model used to produce the
nbest lists can be found in (Wang and Harper,
2002). Since the data sets are small, we com-
bined the 93et and 93dt sets for evaluation and
used 92et for the optimization8. We transformed
the nbest lists to match PTB tokenization, namely
separating possessives from nouns,n’t from auxil-
iary verbs in contractions, as well as contractions
from personal pronouns.

All language models were trained on the NYT
1994-1995 section of the English Gigaword cor-
pus (approximately 70M words). Since the New
York Times covers a wider range of topics than
the Wall Street Journal, we eliminated the most ir-
relevant stories based on their trigram coverage by
sections 00-22 of WSJ. We also eliminated sen-
tences over 120 words, because the parser’s per-
formance drops significantly on long sentences.
After parsing the corpus, we deleted sentences that
were assigned a very low probability by the parser.
Overall we removed only a few percent of the data;
however, we believe that such a rigorous approach
to data cleaning is important for building discrim-
inating models.

Parse trees were produced by an extended ver-
sion of the Berkeley parser (Huang and Harper,
2009). We trained the parser on a combination of
the BN and WSJ treebanks, preprocessed to make
them more consistent with each other. We also
modified the trees for the speech recognition task
by replacing numbers and abbreviations with their
verbalized forms. We pre-processed the NYT cor-
pus in the same way, and parsed it. After that, we
removed punctuation and downcased words. For
the ngram model, we used text processed in the
same way.

In head and parent models, tag vocabularies
contain approximately 1,500 tags each, while the
SuperARV model has approximately 1,400 dis-
tinct SuperARVs, most of which represent verbs
(1,200).

In these experiments we did not use overt fac-
tors other than the surface word because they split

8We optimized the LM weight and computed WER with
scripts in the SRILM and NIST SCTK toolkits.

Models WER

trigram (baseline) 17.5
four-gram 17.7
five-gram 17.8

Word Tree 17.3
POS Tags 17.0
HeadTags 16.8
ParentTags 16.7
SuperARV 16.9

Table 1: WER results, optimized on 92et set, eval-
uated on combined 93et and 93dt set. The Oracle
WER is 9.5%.

<unk>, effectively changing the vocabulary thus
making perplexity incomparable to models with-
out these factors, without improving WER notice-
ably. However, we do plan to use more overt
factors in Machine Translation experiments where
a language model faces a wider range of OOV
phenomena, such as abbreviations, foreign words,
numbers, dates, time, etc.

Table 1 summarizes performance of the LMs on
the rescoring task. Theparenttags model outper-
forms the trigram baseline model by 0.8% WER.
Note that four- and five-gram models fail to out-
perform the trigram baseline. We believe this is
due to the sparsity as well as relatively short sen-
tences in the test set (16 words on average).

Interestingly, whereas the improvement of the
POS model over the baseline is not statistically
significant (p < 0.10)9, the fine-grain models out-
perform the baseline much more reliably:p <
0.03 (SuperARV) andp < 0.007 (parent).

We present perplexity evaluations in Table 2.
The perplexity was computed on Section 23 of
WSJ PTB, preprocessed as the rest of the data we
used. Theheadmodel has the lowest perplexity
outperforming the baseline by 9%. Note, it even
outperforms the five-gram model, although by a
small 2% margin.

Although the improvements by the fine-grain
tagsets over POS are not significant (due to the
small size of the test set), the reductions in per-
plexity suggest that the improvements are not ran-
dom.

9For statistical significance, we used SCTK implementa-
tion of themapsswetest.

1121

Models PPL

trigram (baseline) 162
four-gram 152
five-gram 150

Word Tree 160
POS Tags 154
HeadTags 147
ParentTags 150
SuperARV 150

Table 2: Perplexity results on Section 23 WSJ
PTB

6 Conclusion and Future Work

In this paper, we presented a joint language mod-
eling framework. Unlike any prior work known
to us, it was not tailored for any specific tag set,
rather it was designed to accommodate any set
of tags, especially large sets (∼ 1, 000), which
present challenges one does not encounter with
smaller tag sets, such at POS tags. We discussed
these challenges and our solutions to them. Some
of the solutions proposed are novel, particularly
the decoding algorithm.

We also proposed two simple fine-grain tagsets,
which, when applied in language modeling, per-
form comparably to highly sophisticated tag sets
(SuperARV). We would like to stress that, while
our fine-grain tags did not significantly outperform
SuperARVs, the former use much less linguistic
knowledge and can be automatically induced for
any language with a treebank.

Because a joint language model inherently pre-
dicts hidden events (tags), it can also be used to
generate the best sequence of those events, i.e.,
tagging. We evaluated our model in the POS tag-
ging task and observed similar results: the fine-
grain models outperform the POS model, while
both outperform the state-of-the-art HMM POS
taggers. We refer to (Filimonov and Harper, 2009)
for details on these experiments.

We plan to investigate how parser accuracy and
data selection strategies, e.g., based on parser con-
fidence scores, impact the performance of our
model. We also plan on evaluating the model’s
performance on other genres of speech, as well as
in other tasks such as Machine Translation. We
are also working on scaling our model further to
accommodate amounts of data typical for mod-
ern large-scale ngram models. Finally, we plan to

apply the technique to other languages with tree-
banks, such as Chinese and Arabic.

We intend to release the source code of our
model within several months of this publication.

7 Acknowledgments

This material is based upon work supported in
part by the Defense Advanced Research Projects
Agency (DARPA) under Contract No. HR0011-
06-C-0023 and NSF IIS-0703859. Any opinions,
findings and/or recommendations expressed in this
paper are those of the authors and do not necessar-
ily reflect the views of the funding agencies or the
institutions where the work was completed.

References
Lalit R. Bahl, Peter F. Brown, Peter V. de Souza, and

Robert L. Mercer. 1990. A tree-based statistical
language model for natural language speech recog-
nition. Readings in speech recognition, pages 507–
514.

Srinivas Bangalore. 1996. ‘Almost parsing’ technique
for language modeling. InProceedings of the Inter-
national Conference on Spoken Language Process-
ing, volume 2, pages 1173–1176.

Jeff A. Bilmes and Katrin Kirchhoff. 2003. Factored
language models and generalized parallel backoff.
In Proceedings of HLT/NACCL, 2003, pages 4–6.

Peter F. Brown, Vincent J. Della Pietra, Peter V. deS-
ouza, Jennifer C. Lai, and Robert L. Mercer. 1992.
Class-based n-gram models of natural language.
Computational Linguistics, 18(4):467–479.

Ciprian Chelba and Frederick Jelinek. 2000. Struc-
tured language modeling for speech recognition.
CoRR.

Stanley F. Chen and Joshua Goodman. 1996. An em-
pirical study of smoothing techniques for language
modeling. InProceedings of the 34th annual meet-
ing on Association for Computational Linguistics,
pages 310–318, Morristown, NJ, USA. Association
for Computational Linguistics.

Denis Filimonov and Mary Harper. 2009. Measuring
tagging performance of a joint language model. In
Proceedings of the Interspeech 2009.

Peter A. Heeman. 1999. POS tags and decision trees
for language modeling. InIn Proceedings of the
Joint SIGDAT Conference on Empirical Methods in
Natural Language Processing and Very Large Cor-
pora, pages 129–137.

Zhongqiang Huang and Mary Harper. 2009. Self-
Training PCFG grammars with latent annotations
across languages. InProceedings of the EMNLP
2009.

1122

David M. Magerman. 1994.Natural language pars-
ing as statistical pattern recognition. Ph.D. thesis,
Stanford, CA, USA.

Sven Martin, Jorg Liermann, and Hermann Ney. 1998.
Algorithms for bigram and trigram word clustering.
In Speech Communication, pages 1253–1256.

Thomas R. Niesler and Phil C. Woodland. 1996.
A variable-length category-based n-gram language
model.Proceedings of the IEEE International Con-
ference on Acoustics, Speech, and Signal Process-
ing, 1:164–167 vol. 1, May.

Scott M. Thede and Mary P. Harper. 1999. A second-
order hidden markov model for part-of-speech tag-
ging. InProceedings of the 37th Annual Meeting of
the ACL, pages 175–182.

Wen Wang and Mary P. Harper. 2002. The SuperARV
language model: investigating the effectiveness of
tightly integrating multiple knowledge sources. In
EMNLP ’02: Proceedings of the ACL-02 conference
on Empirical methods in natural language process-
ing, pages 238–247, Morristown, NJ, USA. Associ-
ation for Computational Linguistics.

Wen Wang, Mary P. Harper, and Andreas Stolcke.
2003. The robustness of an almost-parsing language
model given errorful training data. InProceedings
of the IEEE International Conference on Acoustics,
Speech, and Signal Processing.

Peng Xu and Frederick Jelinek. 2004. Random forests
in language modeling. Inin Proceedings of the 2004
Conference on Empirical Methods in Natural Lan-
guage Processing.

Imed Zitouni. 2007. Backoff hierarchical class n-
gram language models: effectiveness to model un-
seen events in speech recognition.Computer Speech
& Language, 21(1):88–104.

1123

